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Toward Real-Time Pedestrian Detection
Based on a Deformable Template Model

Marco Pedersoli, Jordi Gonzalez, Xu Hu, and Xavier Roca

Abstract—Most advanced driving assistance systems already
include pedestrian detection systems. Unfortunately, there is still a
tradeoff between precision and real time. For a reliable detection,
excellent precision-recall such a tradeoff is needed to detect as
many pedestrians as possible while, at the same time, avoiding
too many false alarms; in addition, a very fast computation is
needed for fast reactions to dangerous situations. Recently, novel
approaches based on deformable templates have been proposed
since these show a reasonable detection performance although
they are computationally too expensive for real-time performance.
In this paper, we present a system for pedestrian detection based
on a hierarchical multiresolution part-based model. The proposed
system is able to achieve state-of-the-art detection accuracy due
to the local deformations of the parts while exhibiting a speedup
of more than one order of magnitude due to a fast coarse-to-fine
inference technique. Moreover, our system explicitly infers the
level of resolution available so that the detection of small examples
is feasible with a very reduced computational cost. We conclude
this contribution by presenting how a graphics processing unit-
optimized implementation of our proposed system is suitable for
real-time pedestrian detection in terms of both accuracy and
speed.

Index Terms—Driving assistance, object detection, pattern
recognition.

I. INTRODUCTION

RIVING assistance is a growing area of research that
involves many different disciplines, from mechanics to
computer science. The fields of application span not only very
specific and rule-based systems such as the antilock brake
system and airbags that are present in almost every commercial
vehicle but also very challenging and complex tasks such as fol-
lowing the correct path while avoiding obstacles and accidents
in uncontrolled scenarios.
In this paper, we deal with a very specific but fundamen-
tal task, which is pedestrian detection using a single camera
mounted on the vehicle. Being able to detect pedestrians and
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other objects using only a normal camera sensor would be a
great technological advance. In fact, cameras, as compared with
other sensors such as laser scanner, are very economic, and this
would allow this technology to be deployed also in low-class
vehicles.

From a profane point of view, the task of detecting and local-
izing pedestrians from single images looks simple. We can find
in every last-generation photographic camera a face detection
system that works pretty well in real time. Therefore, theoreti-
cally, the task is just about learning to detect pedestrians instead
of faces. Unfortunately, the task is not very easy because:
1) pedestrians have a much broader appearance variability than
faces or other objects [1]; thus, traditional methods such as [2]
and [3] do not really work for pedestrians and 2) even if we
are able to achieve the same performance than for faces, the
real application is much more error critical in the sense that a
false detection in a pedestrian avoidance system would produce
an abnormal vehicle behavior (e.g., automatically braking when
not necessary) and missing a detection can lead to a dangerous
situation (e.g., risk of being run over).

The computer vision community in the last years has devel-
oped better methods that achieve higher accuracy and can deal
with more challenging and complex object categories [4], [5].
However, this level of accuracy has been reached at the cost
of relaxing the real-time performance requirement due to the
higher computational cost of complex features [4] and complex
object models [5].

Restricting detection to the specific task of pedestrian local-
ization for driving assistance, some speedups can be achieved.
For instance, in normal conditions, the upper part of the image
always contains sky, and the search for pedestrians is usually
avoided, thus producing a savings in time and in the number
of false positives. In addition, more sophisticated techniques to
reduce the number of locations to scan using specific knowl-
edge of the problem can be used [6]. Furthermore, as we deal
with video sequences, it is possible to add temporal coherence
among frames, which can contribute to further reduce false
positives and localize the search to specific image regions.

Still, considering that the time for computing an image in a
high-level PC is on the order of 1 min for [4] and around 10 s
for [5], they are too far for reaching real-time performance.
Furthermore, these techniques work properly when the object
to detect has a relatively high resolution. This condition is not
satisfied in pedestrian detection for driving assistance, where it
is very important to detect far low-resolution pedestrians.

In this paper, we present a framework for pedestrian detec-
tion that merges recent advances on deformable object detection
with strategies specialized for the task of pedestrian detection
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from a moving vehicle. There are three contributions of this
paper.

1) We use a multiresolution representation and the coarse-
to-fine (CtF) strategy proposed in [7] to speed up the
search for pedestrians in an image.

2) We introduce an additional reasoning about small objects
that normal detectors cannot detect: Scores of small ob-
jects where high-resolution features are not available are
made comparable to full-resolution detections, adding an
additional bias.

3) We speed up the feature computation, which is the bot-
tleneck of our method, by computing them on a graphics
processing unit (GPU). Altogether, we show that our final
system is suitable in terms of both accuracy and speed for
real-time applications.

The structure of this paper is as follows. In Section II, we
consider the related work, whereas in Section III, we present an
overview of our detector system. More in detail, we formulate
the CtF search (see Section III-A), we extend it to deformable
templates (see Section III-B), we introduce the resolution fea-
tures to detect small pedestrians (see Section III-C), and finally,
we formulate the latent support vector machine (SVM) problem
(see Section III-D). In Section IV-A, we adapt the system for
real-time computation by computing the image features on a
GPU and by considering a specific region of interest. Finally,
in Section V, we evaluate the performance of the system on
a pedestrian-specific database, and in Section VI, we give the
final conclusions.

II. RELATED WORK

In driving assistance, reliable pedestrian detection is essen-
tial but very difficult to achieve. Considering the additional
constraint that the system should be real time, building such
a system is very challenging. In the past years, the common
way to obtain a good compromise of speed and detection ac-
curacy was to make use of multiple sensors, particularly stereo
cameras [8].

An early example of a real-time system for pedestrian de-
tection was presented in [9], where the authors coupled stereo
measurements computed from a couple of cameras mounted on
the vehicle together with a detection system based on neural
network classification. From disparity images, the algorithm
selects only a reduced set of candidate regions that will be
subsequently classified using disparity and appearance cues.

In [10], a pipeline of different cues based on stereo vision is
used to obtain a fast and accurate pedestrian detection. A survey
of different algorithms for real-time dense stereo for pedestrian
detection is presented in [11]. A system that integrates detection
from stereo images and tracking using particle filters is pre-
sented in [12]. Finally, in [13], using stereo images, the ground
plane of the road is estimated to search for the pedestrian in a
limited region of the image.

In more recent years, object detection has shown great im-
provements and opened the way to the possibility to detect
pedestrians using single images (monocular cameras). Current
object detection has two main families of methods to tackle the
problem, namely, bag of words (BOW) and template matching

(TM) models. The first one comes from document classifica-
tion techniques and claims that a powerful way to distinguish
different document categories is to learn statistics about the
distribution of relevant words in the text. Now, for the task of
image classification, words have been substituted by quantized
visual features (i.e., scale-invariant feature transform [14]), but
the main idea remains the same. Examples of this method
for image classification can be found in [15]-[18], whereas
examples of detectors are in [4] and [19]. The second approach
for object detection is based on an even simpler representation:
An object is represented by a learned template, i.e., the average
of gradients of a collection of objects of the same category.
Recent examples of detectors based on this technique can be
found in [5] and [20]-[22].

In both representations, in order to localize an object in an
image, it is necessary to scan the learned object model at all
possible scales and positions (i.e., depending on the problem,
rotations also) and evaluate how similar is the model to the
local image location. Considering that in a standard image we
can find millions of possible locations, it is easy to see that,
for object detection, a fundamental feature is to use a fast
way to evaluate the similarity between object model and image
region.

Although a lot of work have been done for speeding-up BOW
techniques [23]-[25], these are intrinsically slower than TM
techniques. In particular, while in TM techniques, the image
features are directly evaluated for computing a similarity mea-
sure, in BOW-based techniques, a further step of quantization is
applied after the feature extraction, with a computational time
on the order of O(W'F'), where F' is the number of features
extracted and W is the number of words used. Generally, for
good performance, both factors F' and W are on the order of
thousands; therefore, this implies a very high computational
cost. In contrast, TM techniques do not compute any feature
quantization, and in the case of linear classifiers, their compu-
tational cost is O(F') proportional to the feature size.

Although BOW models are possibly a more powerful rep-
resentation, so far, only TM models are suitable for real-time
performance. In this sense, in [26] and [27], two similar meth-
ods for real-time object detection are presented. They use an
integral image for fast computation of gradient-based features
and boosting for learning. Although quite fast, these methods
do not consider part deformation, which is important for getting
state-of-the-art accuracy. Recently, Benenson et al. [28] have
improved [27] introducing scale-specific detectors and a GPU
implementation to get real-time performance.

In [29], a cascade of parts to speed up deformable object
detection is proposed. The method achieves a similar speedup
to the CtF procedure, and it can be used in conjunction with the
CtF procedure [7] to further speed up the detection phase.

Finally, in [30], the authors propose to use GPU computation
and ground-plane constraints to also obtain a real-time system
for pedestrian detection. In addition, in this case, the lack of
deformations in the model reduces the detector accuracy and,
as it will be shown in Section V, makes it too weak for real-
world applications.

For a complete survey on pedestrian detection and data sets,
see [31]-[33].



PEDERSOLI et al.: TOWARD REAL-TIME PEDESTRIAN DETECTION BASED ON A DEFORMABLE TEMPLATE MODEL 357

Feature
Computation

Coarse-to-Fine
scan

Non Maximum
Suppression

Fig. 1. Overview of our detection system. From the image, a pyramid of HOG
features is computed and given as input for the CtF procedure, which finds
the best detections. These detections are subsequently filtered using an NMS
procedure.

III. OUR SYSTEM

The architecture of our system for pedestrian localization
is illustrated in Fig. 1. Given an image, we precompute the
histograms of oriented gradient (HOGs) features of the image
at different resolutions, obtaining a pyramid of HOGs. Then,
given an object template or model, the pyramid is scanned
at all resolutions in a CtF way, finding the locations that are
the most similar to the template. These locations are further
processed by applying nonmaximum suppression (NMS) to
the overlapping ones. The remaining locations represent the
detected pedestrians. In the following sections, we will ex-
plain the most relevant parts of our system. For the HOG
computation, we use the implementation of [5], which is an
improvement over the standard HOG features [20]. For NMS,
we rank the detection scores and we select the 1000 best detec-
tions for greedy clustering based on the PASCAL overlapping
criteria [34].

A. CtF Search

The standard procedure to find an object in the image consists
of evaluating the similarity between the object model and
the image features at every location and scale in the image.
Considering that we use a model learned with a linear SVM,
the similarity measure is the scalar product of the object model
M and the corresponding pyramid feature H at location x =
(z,y,s), where = and y are the coordinates of the window

Coarse-to-Fine Recursive
Localization
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g Scanned Locations u
@ Detected Locations
0 Not Evaluated Locations
& Object Model

(a) (b)

Fig. 2. Comparison of a standard sliding windows scan versus the CtF
procedure. (a) Sliding windows have to evaluate all locations at high resolution.
(b) CtF localization evaluates the image everywhere only at coarse resolution,
and then the best hypotheses are propagated and evaluated only locally produc-
ing a high computational saving.

center and s is its scale. Therefore, the standard search is the
correlation between M and each level of the HOG pyramid

D(x) = (M, H(x)) . (D

In general, fine feature resolutions are required to learn more
discriminative detectors, which also produces a more complex
object model. This implies that the vectors of the scalar product
in (1) can be on the order of thousand dimensions; therefore, the
complete scan over positions and scales is very expensive, and
often, it is the computational bottleneck of the entire system.
Facing this problem, authors in [35] proposed a CtF search
to save computation but still obtain results very similar to the
complete search.

The key idea is to decompose the search over multiple res-
olutions, i.e., from coarse and then fine. The coarse resolution
has less locations where to scan, and the scalar product is faster
to compute because the vectors have less features. However,
few coarse features are not enough for good discrimination of
the model. For this reason, adding finer resolutions improves
performance but increases the computational cost. In practice,
we can think the CtF procedure like a progressive refinement
search: The coarse object representation is used to roughly
and quickly find the object locations and then successive local
refinement is applied with the next model resolutions. Fig. 2
illustrates the CtF procedure.

The score of the multiple-resolution detector is computed
as sum over resolutions r of the object model M, with the
corresponding features [

D(x)= > (M, H(x,)). 2)

r=1:R
Considering a model resolution with scale ratio equal to 2 (i.e.,

each model M,.;; doubles the previous model resolution M,.),
we set

Xp = Xpp1 = 2X, 3)
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Fig. 3. (a) Example of a multiple-resolution deformable part model. Each part
is a collection of HOG filters at different resolutions. (b) HOG filters form
a father—child hierarchy where connections control the relative displacement
of parts.

to impose that the locations z,. for all resolutions r represent the
same image position. An example of a three-resolution object
model for pedestrians is shown in Fig. 3(a).

In the CtF procedure, the search starts computing the score
of the coarse model everywhere in the feature space x;. After
this, the score locations are clustered into local neighborhoods,
and like in NMS, only the highest score for each neighbor-
hood is selected. The selected hypotheses are propagated to
the following resolution model Ms using (3). Now again, a
local neighborhood is built around every hypothesis. Notice
that after the first resolution level, the local neighborhoods do
not cover anymore all the possible locations of the image but
only a small fraction around the hypotheses. This produces
a high computational saving because the scalar product has
a computational cost that increases four times when doubling
resolution, but with the CtF procedure, only a small fraction of
locations is actually computed, i.e., those that are close to the
hypotheses. The procedure is then recursively repeated for all
model resolutions.

B. CtF Search With Deformations

In this section, we extend the CtF search to deformable
parts models. Adding moving parts allows the detector to
better adapt to local object deformations that are produced
by viewpoint changes or articulated movements such as limb
movements in the case of pedestrians. Unfortunately, adding
deformation to the object model supposes a huge increment
of computation because for each location the best object parts
configuration should be found. Previous methods reduce the
computational cost of finding the best object parts configuration
using distance transform, assuming squared deformation cost
[5]. This procedure reduces the cost of matching parts, but still,
all locations should be evaluated by computing the costly dot
product between features and object model.

To reduce this cost, we use the CtF procedure extended to
deformable models presented in [7]. Now, in the object model,
each resolution level is further divided into parts, as shown in
Fig. 3(a) (green boxes). Specifically, the coarse representation
of the model has only one part. The middle resolution is divided
into P local parts, and moving to the finer resolution, each of
these parts is again decomposed into P subparts in a recursive

@ (b)

Fig. 4. Details of a pedestrian head and torso model. (a) Model learned
without local deformation. (b) Model learned with local deformation.
The second model has clearer edges due to the local deformations.

way, creating a treelike structure, as shown in Fig. 3(b). The
object score at a certain location x is now computed as

D)= Y D (Mg, [H(xy),d2,d2]) 4

r=1:Rp=1:Pr—1

where the feature vector is now extended with deformation
features d,, and d, that represent the displacement of a part p
with respect to its father. In the CtF procedure with the new
object model, the initial hypothesis produced by the model
M 1 is propagated to the next resolution level generating P
new hypotheses for the subparts

Xep — Xpg 1,1, Xr41,25 - Xpp 1,P—1- (5)

The procedure is recursively repeated until covering all parts
of the model. Each new hypothesis x,41; is found at double
resolution and with a certain offset o; due to the relative subpart
location

Xr41, = 0; + 2Xr,p- (6)

As before, from each hypothesis, a local neighborhood is used
to find the maximum local score, which is the hypothesis for the
next resolution level. However, while in the rigid CtF algorithm,
the local search was used to align the entire object model with
the image features; now, this procedure is done locally for each
part, simulating local deformations.

In Fig. 4, a comparison of an object model learned with
and without local deformations is shown. The model learned
without local deformations is quite fuzzy, whereas the model
learned with local deformations has stronger edges that make
the model more discriminative.

C. Small Pedestrians

An important requirement in pedestrian detection for driving
assistance is to detect low-resolution pedestrian instances. Due
to perspective distortion, low-resolution pedestrians correspond
to pedestrians far from the vehicle. Detecting far pedestrian
gives enough time for a proper action to avoid collision, which
is the first aim of a driving assistance system. However, when
the number of pixels representing an object is low, the ability to
recognize the object is highly reduced.
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Concretely, for HOG computation, the number of pixels
needed to build the features should always be the same to
avoid undersampling effects. This means that, when an object
instance in an image has very low resolution, the corresponding
HOG features cannot be properly extracted and the object
would be missed.

When using multiple resolutions, like in our case, a small
instance object does not have fine-resolution features, but it still
has the coarse representation. Therefore, in the CtF procedure,
the search for the object can be extended to those scales that
contain very small objects. In this case, the missing high-
resolution features are set to zero. This allows the method to
detect small objects. In this way, due to the missing contribution
of the high-resolution features, detections of small objects
would have a score that is unbalanced (lower) with respect to
full-resolution detections because a part of the descriptor is
artificially set to zero.

To overcome this problem, we extend [36] to our object
model. We add to the feature descriptor a further binary feature
for each resolution level, which represents whether, in the
considered example, the corresponding resolution is available.
Now, the score is computed as

Dx) =Y Y (M, [H(xpp)d2,d2 k) (D)

r=1:Rp=1:Pr—1

where h, is a binary variable that is enabled, when the corre-
sponding HOG features H (z,.,) are missing and therefore set
to 0. In this way, A, acts as a bias term that makes scores of
detections generated without high-resolution features compa-
rable to full-resolution detections. We evaluate the advantage
of this solution in the experimental result section. For easy
understanding in the rest of this paper, we will refer to these
additional features as “resolution” features.

From the computational point of view, the increment of
computation due to the use of the resolution feature is limited
to the scan of the coarser resolutions of the model at the finer
resolutions of the feature pyramid, which is actually much
smaller than applying the detector to the whole image.

D. Learning

The learning procedure of our system is based on a latent
SVM [5], [21], [37]. Given a set of input data {z, ..., 2, } and
the associated labels {y1,...,y,}, we find a parameter vector
w of a function y that minimizes the regularized empirical risk

1 n
§Hw||2+C’Zmax(0,l —yiy(z;,w)). (3)

i=1

In our problem, the input data x; is the set of features extracted
from the HOG pyramid H defined in the previous section and
associated to an image region, whereas the output data y; is
a binary label indicating whether the object is present in the
region. We introduce a latent variable k that represents the
relative position of each child part with respect to its father.
Considering the local position of each part allows the detector
to learn a more discriminative model during learning and also

to obtain a better alignment of the object model with the image
data. The estimated output y is computed as

y(z,w)
= max

2 D, (x+k)
= > > max(Myy, [Hixptke) didy b))

r=1:Rp=1:Pr—1
©)

From (9), we see that w corresponds to the flattened and
concatenated versions of all the parts M,. , of our object model.

In contrast to normal SVM optimization, y is no longer linear
in w due to the maximization on k; therefore, the empirical
risk is no longer convex, and standard optimization techniques
cannot be used. Instead, we use the iterative procedure proposed
in [5], where learning is divided into two iterative steps, i.e., the
optimization of w with k fixed for the positive examples and the
estimation of the best k using the computed w.

The optimization of w given k is convex and is computed
using parallelized stochastic gradient descent [38]. The estima-
tion of k with the current object model w is computed from (9).
Instead of computing the exact maximization of (9), we apply
the CtF procedure. Although there is no guarantee of the final
performance of the approximate learning, we empirically see
that it produces optimal results with a reduced computation.

While for the positive examples, the object bounding box is
given, for the negative examples, a set of images not containing
pedestrian is given (negative images). Thus, the negative exam-
ples at the beginning are selected as random bounding boxes
from the negative images. Then, after a new model is built,
the model itself is applied to the negative images in order to
collect those regions of the image that are incorrectly classified
as pedestrian and use them as extra negative examples.

IV. ADAPTING THE SYSTEM FOR
REAL-TIME COMPUTATION

So far, we have described a general detection system with
a fast image scan due to the CtF procedure, which is able to
detect small pedestrians due to the introduction of additional
features that explicitly consider feature resolutions. However,
as we will show in the experiments, although the system reaches
a very high performance, it is still not fast enough for real-time
application. In this sense, adapting the general framework to
our specific task of pedestrian detection from a moving vehicle,
we can get some additional speed that can lead to real-time
performance. In contrast to normal sliding window methods,
where the main cost of a detection is produced by the image
scan, in the CtF procedure, the image scan is reduced by more
than ten times and therefore the dominant cost is the feature
computation. In this regard, we propose to take advantage of
the GPU for the feature computation. In addition, as we want to
detect pedestrian in moving vehicles, although there is no stable
background, we still know that the camera on the vehicle has a
fixed inclination with the street. Assuming this fact, we avoid
the evaluation of those image regions in which pedestrians are
not likely to be.
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Fig. 5.
A. Accelerating HOG Computation by GPU

GPU pipeline for the computation of the HOG features.

GPUs, in addition to their general use in computer graphics,
can be also used for improving the speed of general algo-
rithms using their high capability of parallel computing. By
using Compute Unified Device Architecture, our algorithm
designed in parallel manner can take advantages of the single-
instruction—multiple-thread architecture, in which a block of
threads can be executed concurrently on a streaming multi-
processor. Inspired by similar implementations [30], [39], we
propose a fast HOG feature computation. Our implementation
follows the design of [5]; in contrast to the standard HOG
as defined in [20] and [30], our implementation uses both
contrast-insensitive and contrast-sensitive orientation channels
but substitutes the multiple normalization of the HOG cells
with additional normalization features. In this way, the final
descriptor is smaller than the original HOG (31 dimensions
instead of 36) but more discriminative.

The pipeline of HOG computation is divided into five steps
(see Fig. 5), namely, image rescaling, gradient computation
with spatial aggregation, energy summation in each cell, nor-
malization with feature assembling, and data transferring. Af-
ter an image is transferred from the host (CPU side) to the
device (GPU side), the other four steps will be executed in
the device iteratively until all scales are computed and results
will be sent back to the host. Generally, modern GPU can use
hundreds of threads for each step on the device, which produces
incredible acceleration, but many factors can delay the whole
processing time.

In our case, the bottleneck is data transferring. It takes more
than 50% of the time needed for the whole pipeline. It is easy
to see that exchanging data with the host memory frequently
might lose the time saved by parallel computing. Thus, an
efficient way is to keep all steps executed in the GPU. In our
implementation, we transfer an image from the global memory
(off-chip memory) to GPU and keep it until the complete
pyramid of HOGs is computed. For each scale, we resize the
image, compute the gradient map, and aggregate the gradient
into the local histograms.

Since the final result of the HOG pyramid on GPU is exactly
the same as in CPU, we can compare the two versions just in
terms of speed because the overall detection accuracy of the
system is the same. In Fig. 6, we show a comparison of HOG
computation of a 40-level feature pyramid (an image downscale
from 640 x 480 to 43 x 32, i.e., four octaves and ten intervals

40 ® GPU
B CPU
30
g
° 20
S
=
10
0“‘.’1}“‘
0 4 8 12 16 20 24 28 32 36

Scale Level

Fig. 6. Comparison of computation cost between CPU HOG and our GPU
HOG.

between two octaves) between GPU and CPU. We can see
that GPU is on average 9.7 times faster than the CPU over all
40 scales.

B. Region of Interest

In contrast to general object detection, pedestrian detection
from a moving vehicle has some prior knowledge about the
camera location, and this can be used to further speed up
the final detector. In [13] for instance, the 3-D location of the
road (assuming it a plane) is estimated to reduce the pedestrian
search only on this plane, therefore reducing the search cost.
In contrast, we do not make any assumption about the road
structure and do not estimate its 3-D location. We take a
simpler and conservative approach. Considering that the camera
orientation in the vehicle is fixed and the maximum level of
steep variation a road can present is limited, we explicitly avoid
searching for pedestrians in the upper part of the image: In
our experiments, once the superior one third of the image is
discarded, there is no loss in recall and a 30% saving of the
total amount of computation.

V. EXPERIMENTS

We evaluate our method on the Computer Vision Center
(CV(O)-02 data set [40], which is a data set specific for pedes-
trian detection in the context of driving assistance. It consists of
pedestrians taken in the range from 0 to 50 m, which correspond
approximatively to 70 x 140 to 12 x 24 pixels bounding
boxes. The training set consists of 1016 cropped humans with
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Fig. 7.

Examples of detections from the test set of the CVC-02 dataset. For each image we show the bounding boxes of the detections with the corresponding

score and the part configuration that led to the detection. When the detection score is followed by a “S1”, it represents that the detection has been obtained using

only the coarser resolutions (i.e., small object).
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Fig. 8. DR versus FPPIonthe CVC-02 database. Our method corresponds to the
CtF detector with deformations and “resolution” features activated (correspond-
ing to the seventh row of Table I). The other curves are obtained from [40].

a corresponding vertical mirror for a total of 2032 images. The
testing set consists of 250 urban images containing pedestrians.
Examples of detections on test images of the CVC-02 data set
are shown in Fig. 7.

In Fig. 8, we compare our detector in terms of detection
rate (DR) versus false positive per image (FPPI) with differ-
ent configurations of the simplified HOG based on the SVM
learning detector (SHOG + SVM) proposed in [40]. For this
experiment, we use our CtF configuration with deformations
and “resolution” features activated. Our detector has a quite
relevant higher DR than the other when the working point is
set to high precision (< 1 FPPI). The fastest configuration
from [40] takes more than 10 s for detecting pedestrian in an
image of the database (size 640 x 480 pixels). This is in line
with our results using a complete image scan (see rows 1 and
2 of Table I). In contrast, our method on our machine (Intel
Pentium Xeon 2.67 GHz using only one core) takes less than
1 s to compute the HOG pyramid on the CPU and less than
0.1 s on the GPU, whereas the image scan takes less than 0.5 s
depending on the specific configuration.

A. Rigid Versus Deformable Models

In Table I, we evaluate the quality of a detector config-
uration in terms of average precision (AP) and time. AP is
the averaged value of the precision obtained by the detector
in a precision—recall curve drawn applying the detector the
complete test set. Time is the average time needed for: 1) the

image scan, i.e., searching the object in the image; 2) the feature
precomputation in both CPU and GPU; and 3) the overall
computation of a frame.

The first two rows of Table I compare a model using a
rigid template (as explained in Section III-A) and a model
using deformable parts (as explained in Section III-B). In both
cases, we use a complete search to avoid any possible problem
due to the CtF scan. Learning local deformations through the
object parts is useful to better align the object model with the
image. This translates into an improved detector recall because
misaligned objects also can be correctly detected. In practice,
the overall detector performance using the deformable model is
increased of almost five points with respect to the rigid model
with a relatively small increment of computational cost (from
8.48 to 10.73 s).

B. CtF Versus Complete Search

We next evaluate the performance of the CtF search com-
pared with the complete search (i.e., sliding window), both in
terms of speed and accuracy. The first two rows of Table I
have exactly the same configuration as rows 3 and 4. The only
difference is in the scan procedure. The first two rows use
complete search, whereas the second two rows use CtF.

While the AP of the two methods is comparable, CtF pro-
cedure scans an image in much less than 1 s while standard
sliding windows take up to 10 s. Note that, for the rigid model
(rows 1 and 3), both complete and CtF searches give exactly
the same AP. In the case of the deformable model, using the
CtF approximation produces a loss in AP of one point. Still, the
improvement compared with the rigid model is quite high, as
well as the gain in time.

C. Detection of Small Pedestrians

For pedestrian detection from a moving vehicle, the detection
of small examples (far from the vehicle and therefore at low
resolution) is fundamental. This is proved in the last part of
Table 1. Here, it is possible to notice the high AP improvement
when adding the search for objects at smaller size and the cor-
responding “resolution” features, as explained in Section III-C.
The AP for the rigid model rises from 29.8 to 59.4. For
deformable models, the gap is almost similar, i.e., from 33.7 to
63.1 adding only the search of small objects and 65.0 adding
also the “resolution” feature. In terms of time, the search at
a smaller resolution of the object adds some overhead in the
image scan (from 0.14 to 0.24 for the rigid model and from 0.25
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TABLE 1
AP AND DETECTION TIME WITH DIFFERENT CONFIGURATIONS OF OUR SYSTEM. IMAGE SCAN CAN BE COMPLETE IF SEARCHING AT ALL POSSIBLE
LOCATIONS AND CORRESPONDS TO STANDARD SLIDING WINDOWS IN THE CASE OF USING A RIGID TEMPLATE, OR CtF IF USING THE FASTER
PROCEDURE EXPLAINED IN SECTION III-A FOR RIGID TEMPLATES AND IN SECTION III-B FOR DEFORMABLE TEMPLATES. SMALL WINDOWS
CORRESPOND TO EVALUATING ALSO THE WINDOWS WHERE THE HIGH-RESOLUTION MODEL IS NOT PRESENT WITHOUT ADDING THE
CORRESPONDING FEATURE SMALL OR ADDING THE CORRESPONDING “RESOLUTION” FEATURE. FEAT IMAGE SizE 1S THE SIZE OF THE IMAGE USED FOR
DETECTION THAT CAN BE THE ORIGINAL X 1 OF 640 X 480 OR THE DOUBLE X 2. FINALLY, THE OBJECT MoDEL CAN BE RIGID OR REFORMABLE

Image scan Small windows | Image size Model Average Time (s)

Complete CtF | Small Feat x1 x2 | Rigid Def | Precision (%) | Scan | Feat-CPU Total-CPU | feat-GPU Total-GPU
X X X 29.8 7.67 0.81 8.48 0.08 7.75
X X X 34.8 9.92 0.81 10.73 0.08 10.0

X X X 29.8 0.14 0.81 0.95 0.08 0.22
X X X 33.7 0.25 0.81 1.06 0.08 0.33
X X X X 59.4 0.24 0.81 1.05 0.08 0.32
X X X X 63.1 0.40 0.81 1.21 0.08 0.48
X X X X X 65.0 0.40 0.81 1.21 0.08 0.48
X X X X 66.2 0.91 3.87 4.78 0.20 1.11
X X X X 73.1 1.36 3.87 5.23 0.20 1.56
X X X X X 73.4 1.36 3.87 5.23 0.20 1.56
TABLE 1II

to 0.4 for the deformable model). However, this is minor than
the one introduced by doubling the image resolution. Doubling
the image resolution would generate a slowdown of around four
times in the image scan and in the feature computation. In con-
trast, the search of the object at smaller sizes is done only at low
resolution, which is not very expensive but good enough to find
many additional detections as confirmed by the improved AP.

Although the AP of the method is highly increased by using
“resolution” features, the overall performance is still affected
by small objects that in certain cases are missed. We evaluate
this by testing the method on resized images at double reso-
lution. This configuration obtains the best AP gaining around
10% over the normal image size AP. However, the detection
time per frame also highly increased up to 5 s.

D. GPU for Feature Computation

In Table I and Fig. 6, we can see that the use of GPU has a
stable speedup in the feature computation of around ten times.
Compared with other implementations such as [30] and [39],
this is not very high. However, we should remind that in contrast
to other methods, in our current implementation, only the fea-
ture computation is computed on GPU, whereas the image scan
is still done in the CPU. This is mainly due to a design choice
drawn from different reasons. First, implementing everything
on the GPU, particularly the recursive part of the CtF algorithm,
would be quite complex, long, and prone to errors. Second,
leaving the scan of the image in the CPU can be useful in case
of further developments where multiple classes (i.e., cars and
bicycles) should be detected at the same time. In this case,
the algorithm can be easily extended to use multiple cores
(nowadays quite common in standard PCs), each one for each
class. Thus, the final detection speed would remain the same.
This cannot be exploited computing everything on GPU. Due to
the CtF procedure, the time spent in the feature computation is
much more relevant than that in the complete scan. For instance,
using the complete search with a rigid model, the CPU and GPU
overall times for detection are 8.48 and 7.45 s, respectively. The
relative difference is not very relevant. In contrast, the total time
in the CPU for computing an image using CtF search is almost
1 s, whereas in the GPU, it is just 0.22 s, i.e., an overall speedup
of more than four times.

RECALL AT 10~ ! FALSE POSITIVE PER WINDOW (FPPI)
ON THE INRIA PEDESTRIAN DATA SET

Method Recall (at 10~! FPPS)
Viola & Jones [1] 37%
Dalal & Triggs [20] 50%
fastHOG [39] 50%
groundHOG [30] 60%
OURS 74%
DPM [5] 75%

In addition, as introduced in Section IV-A, we can add a
further improvement in speed by computing only the region of
the image where pedestrians should appear. In the CVC-02 data
set, using a selected region of the lower two thirds of the image
produces a 33% speedup while maintaining the same degree of
accuracy. Note that all the reported times are computed using
a single CPU. Taking advantage of multiple CPUs nowadays
available in almost every PC could give a further boost.

Finally, using a four-core PC, the GPU computation of the
features and an additional reduction of the sampling scale in
the pyramid computation lead to a complete detection system
that is able to run at around 10 frames/s.

E. Comparison With Other GPU-Based Detectors

A general comparison with other methods based on differ-
ent implementations and different machines is quite difficult.
However, one advantage of our work compared with previous
pedestrian detectors is the use of deformations in conjunction
with the CtF search, which give a high boost in performance
and a small increment of computation. In this sense, we can
compare our detector with those proposed in [30] and [39],
which are based on a fast GPU implementation of the Dalal
and Triggs detector [20].

In Table II, we compare those methods on the Inria data set
[20]. The original pedestrian detector from Dalal and Triggs has
a recall of 50% at 0.1 FPPI, which is the same as for the GPU
implementation of fastHOG [39]. In contrast, probably due to
a better HOG implementation, groundHOG reaches a recall of
60%. Our detector with deformable model at 0.1 FPPI has a
recall of 74%. For completeness, we also report the recall of
the well-known Viola et al. model [1] and the deformable part
model [5].
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VI. CONCLUSION

In this paper, we have presented a new framework for fast
pedestrian detection in the context of driving assistance. The
framework is based on the combination of recent state-of-the-
art techniques for fast and accurate object detection in still
images.

We have evaluated our system on a data set specific for
pedestrian detection from a moving vehicle, and we have shown
that it is able to outperform other fast detection methods in both
speed and accuracy. This is due to: 1) the use of a CtF procedure
for fast image scan; 2) the use of object parts to simulate
local deformations; 3) the evaluation of detections with missing
resolutions; and 4) the introduction of an additional feature that
balances out scores with missing resolutions and gives possibly
high scores also to small detections, which are very important
in the context of driving assistance.

Finally, we have proposed some techniques that exploiting
domain-specific characteristics of pedestrian detection from a
moving vehicle can further speed up the detection and lead to
accurate and real-time performance.
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