
Hierarchically Animated Transitions
in Visualizations of Tree Structures

David Guilmaine
École de technologie

supérieure
Montreal, Canada
david.guilmaine

@gmail.com

Christophe Viau
École de technologie

supérieure
Montreal, Canada
christopheviau
@gmail.com

Michael J. McGuf�n
École de technologie

supérieure
Montreal, Canada

michael.mcguf�n@etsmtl.ca

ABSTRACT
We present an experimental comparison of 4 techniques for
smoothly animating changes in a radial tree visualization.
Two traditional techniques, linear and staged animation,
are compared with two novel techniques: a hierarchical an-
imation that proceeds level-by-level through the tree, and a
hybrid animation technique that mixes the staged and hier-
archical approaches. Users were asked to track changes in
nodes of the tree during animated transitions. Results show
a signi�cant advantage for the hierarchical and hybrid ani-
mation techniques for tracking certain kinds of changes. We
then propose guidelines for designing animated transitions.
Finally, we present a new popup widget for interactively
controlling the progression of an animation that combines
advantages of previous widgets.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation|
Viewing algorithms

General Terms
Human Factors, Experimentation

Keywords
tree visualization, animation, smoothly animated transiti ons

1. INTRODUCTION
Smoothly animated transitions have become increasingly com-
mon in interactive visualizations [16, 10, 8]. Recent experi-
ments [10, 19] have shown that when a user changes the view
or representation of their data, rather than show a sudden
and discontinuous change in visual feedback, it is better to
show an animation of the data elements continuously tran-
sitioning from their initial state to their new state, as thi s
helps the user better understand the change in the view. An
alternative to showing any transition is to show the old and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. AVI '12, May 21-25, 2012, Capri Island, Italy
Copyright c
 2012 ACM 978-1-4503-1287-5/12/05... $10.00.

new views (or a sequence of views) side-by-side, as in small
multiples [17, 1, 22]. However, small multiples reduce the
screen space allotted to each view, and cannot be used if the
user wants to see only one view at a time, to maximize the
space available for that view.

Although animated transitions are better than no anima-
tion, one remaining research question is how to best design
these transitions. The simplest design has all changes in
the visualization animated simultaneously; we call this kind
of transition linear . SpaceTrees [16] proposed breaking the
transition into 3 stages: a 1st stage where elements are col-
lapsed, a 2nd stage where remaining elements are moved,
and a 3rd where elements are expanded. Heer and Robert-
son [10] found that such stagedtransitions were subjectively
preferred by users, but found only modest performance gains
with staged transitions compared to linear transitions, an d
even found that staged transitions were sometimes outper-
formed by linear transitions.

Staged transitions break the transition into steps based on
the kinds of changes to show. An alternative would be to
modify the transition based on the structure of the data, or
the connections between data elements. For example, Heer
and Robertson [10] proposed staggered transitions, where
the animation of each element is delayed incrementally, ac-
cording to the ordering of bars in a barchart for example, to
reduce inter-element occlusion. We explore a di�erent data-
dependent strategy in the case of tree visualizations, and
propose breaking the transition into non-overlapping steps
based on the hierarchical levels of the tree. Speci�cally, we
investigate transitions that animate changes on each level of
a tree separately, which we call hierarchical transitions. We
report an experiment comparing linear, staged, and hierar-
chical transitions, as well as a hybrid transition technique
that mixes the staged and hierarchical approaches. The hi-
erarchical and hybrid transitions yielded a signi�cant advan -
tage over the other techniques in certain cases.

Our hierarchical and hybrid transitions are a potential way
to improve the displayed output during a transition. As a
complementary topic, we also investigated ways of using and
improving input during a transition. For example, mouse
control could be used by the user to slow down or replay a
transition, helping the user to better understand the chang es
occurring. Toward the end of this paper, we discuss the de-
sirable properties of interactive techniques for controlli ng

Figure 1: A linear transition, where collapsing, per-
muting, and expanding occur simultaneously. In
this example, the north-east subtree in frame 1
(we will call this NE for short) is collapsed; the
north-east and north-west subtrees (NE and NW)
are swapped (and other, deeper nodes are also per-
muted); and the south child of the south subtree
(which we will call S-S) is expanded. The top ver-
sion of the �gure shows what the user sees. As an
aid for the reader, the bottom version highlights col-
lapsing nodes in green, expanding nodes in orange,
and permuting nodes in blue.

transitions, and present a taxonomy of widget designs ex-
hibiting these properties.

Our contributions are two new transition techniques (hier-
archical and hybrid), an experimental evaluation of these
techniques, two new guidelines for designing transitions, and
novel widget designs for controlling transitions that are o r-
ganized in a taxonomy.

2. BACKGROUND
Animation has many applications and bene�ts in user inter-
faces [2, 3]. In visualization, animation could be used, for

Figure 2: A staged transition, which performs col-
lapsing, then permuting, then expanding. Frames
1-3: the NE subtree is collapsed. Frames 4-8: nodes
on all 3 levels of the tree are permuted (for exam-
ple, NE and NW are swapped, and S-NE and S-NW
are also swapped). Frames 9-12: S-S is expanded.
Highlighting in this �gure (and Figures 4, 6) is for
the reader's bene�t, and is not shown to the user.

example, to shown an additional dimension of a dataset, be-
yond the dimensions shown in the spatial substrate or in the
marks of a visualization. Tversky et al. [21] present evidence
that animation may often not be well suited for portraying
changes over time when compared to static representations
that convey the same information (a recent example agree-
ing with this is Robertson et al. [17]). However, Tversky et
al. do not rule out the appropriateness of animation for \rea l
time reorientations". Indeed, our work focuses on the use of
animation for depicting changes in a view of a dataset, in
which case a smoothly animated transition is preferable to
a sudden, discrete change, as shown experimentally [19, 10].

Breaking an animation into stages [16] has been proposed as
a way of better displaying them. Heer and Robertson [10]
found that these were preferred by users, but found only
modest performance gains with staging, and in some cases
staging performed worse than linear transitions. We propose
alternative ways of breaking up a transition into steps.

Di�erentiated transitions [18] are another way of improving
transitions, by animating each element in a way that is a
function of the type of element, conveying additional infor-
mation about the element. However, di�erentiated transi-
tions must be designed according to the kind of data being
shown using data-dependent metaphors, and hence may be

more di�cult to generalize.

Dragicevic et al. [7] experimentally compared constant-speed
animations with slow-in/slow-out and other variable speed
animations, and found advantages with slow-in/slow-out.
Our work instead focuses on the breaking of transitions
into non-overlapping steps, with each step played out with
constant speed, however our proposed animation techniques
could be used in conjunction with slow-in/slow-out.

3. TREE VISUALIZATION
Dozens of visualizations of trees have been catalogued [11].
We decided to focus on radial, nested circle visualizations
of trees [5, 20]. For any given static view of such a tree vi-
sualization, the radial, nested circle layout is usually mo re
space-e�cient than many other tree visualizations, allocat -
ing more area to leaf nodes than classical layouts (as shown
mathematically in [14]). It is also an easy-to-understand
layout. These two qualities make it desirable to users. At
the same time, animated transitions that change the posi-
tions of nodes in such layouts often create much inter-node
occlusion, making it challenging to design transitions that
are easy to understand.

We also decided to study transitions that are more com-
plex than those used in SpaceTree [16]. With SpaceTree,
a transition occurs whenever the user clicks on a new focal
noden, causing certain nodes outsiden's subtree to collapse,
and then causing nodes to be repositioned, and �nally caus-
ing nodes under n to be expanded. This kind of transition
seems to work very well in SpaceTree because the user only
expresses interest in one node at a time, and collapsing and
expanding always occur in predictable regions of the tree,
outside and within, respectively, n's subtree. In contrast, we
were interested in studying more complex transitions where
the user cannot predict where collapsing or expanding may
occur.

For example, if the user is viewing a tree and, over time, in-
teractively collapses or expands several nodes, and then per-
forms a multi-level undo to return to a previous state, there
may be many unrelated nodes that need to be un-collapsed
or un-expanded. Complex transitions may also occur if the
user wishes to return to a previously bookmarked view, or
selects a preset view (for example, sorting all nodes by de-
creasing size and collapsing all nodes below a size threshold,
or sorting all nodes in decreasing recency and collapsing all
nodes older than a time threshold). Complex transitions
could also occur if a DOI function [9] is used to determine
which nodes to expand or collapse, and the user is interac-
tively moving the focal node for the DOI function.

Another scenario where complex transitions may occur is if
the tree is a model of a factory, industrial plant, or compute r
network, and the visualization is used to monitor the system
over time, with nodes automatically expanding or collaps-
ing based on activity, events, or problems within them. The
children of each node may also be sorted or permuted ac-
cording to a dynamically computed metric of importance.
In such a case, transitions from one state to another may
collapse, expand, and/or permute nodes at any level of the
tree, in unpredictable ways.

Our software prototype displays a visualization of a tree and
can display transitions involving 3 kinds of changes: col-
lapsing a subtree, permuting the children of a node (causing
them to be repositioned), and expanding a subtree (revealing
its children). The two �rst transition techniques we imple-
mented were linear (Figure 1) and staged (Figure 2).

Figure 3: Matrices describing di�erent transitions.
Columns correspond to depth within the tree, and
rows correspond to types of changes. Each transi-
tion is broken into steps, and numbers in the cells
specify the step at which each cell's change occurs.

3.1 Hierarchical and Hybrid Transitions
There are multiple ways to break up a transition into steps
based on the levels in a tree. We developed a matrix notation
to unambiguously specify the ordering of changes in di�eren t
transitions, shown in Figure 3. For example, in a linear
transition, all changes occur simultaneously, so there is a
single step, and all cells in the matrix contain the number
1. However, in a staged animation, there are 3 steps, and
all expanding changes occur at the same time during step 3,
hence the cells corresponding to that change in the matrix
contain the number 3.

The two middle matrices in Figure 3 show ways of perform-
ing staged transition in each level of the tree separately:
either performing all 3 stages in the 1st level, then all 3 in
the 2nd level, etc. (\Level-by-stage") or performing collap s-
ing in the 1st level, then the 2nd, etc., then permuting in
the 1st level, 2nd level, etc., then expanding in each level
(\Stage-by-level"). Both of these approaches require a total
of 3N steps, whereN is the depth of the tree. We decided
that these approaches required too many steps to be useful:
a tree with a mere 3 levels could require as many as 9 steps
in a transition.

If we allow collapsing, permuting, and expanding to occur
simultaneously, but on each level separately, we obtain a hi-
erarchical transition (bottom left matrix in Figure 3, and
Figure 4). To understand the rationale for this technique,
consider a parent node p and its children a, b, c, d under-

Figure 4: A hierarchical transition, where changes
occur at level 1, then level 2, etc. Frames 1-5:
NE collapses, and NE and NW are simultaneously
swapped. Frames 5-9: S-S expands, and S-NE and
S-NW are simultaneously swapped. Frames 9-12:
nodes on the 3rd level of the node are permuted.

Figure 5: Top row: the displacements of a parent
node and its children in a linear transition, in a
single step. Bottom row: the displacements of the
same nodes in two steps of a hierarchical transition.
Dashed circles show the target positions and previ-
ous positions of nodes.

going a change that moves p to a new location and also
permutes the relative positions of a, b, c, d within p. With
a linear transition, each of the �ve nodes move toward their
new �nal position, probably along non-parallel lines, thus
appearing as separate objects to an observer (Figure 5, top
row). As surveyed in [6], observers have the ability to track
approximately 4 targets simultaneously, however not much
more. With a hierarchical transition, one step i would repo-

Figure 6: A hybrid transition, which collapses nodes
on all levels, then permutes on each level, then
expands on all levels. Frames 1-3: NE collapses.
Frames 4-6: NE and NW are swapped. Frames 7-9:
S-NE and S-NW are swapped. Frames 10-12: nodes
on the 3rd level of the node are permuted. Frames
13-15: S-S is expanded.

sition p (with its children), and the next step i + 1 would
reposition a, b, c, d. During step i , the �ve nodes move to-
gether as a group toward p's new location, and during this
movement they would be perceived as a single object, pos-
sibly creating less load on the observer's perceptual system.
During step i + 1, the children would then move, and have
less distance to travel compared to the linear transition be -
cause they would already be close to their �nal positions
(Figure 5, bottom row). In a hierarchical transition, this
would continue recursively.

Another way to think about the hierarchical transition is
that the ratio of the distance travelled by a node divided
by the radius of the node is roughly constant, whereas with
a linear or staged transition this ratio increases with the
depth of the node. Thus, with a hierarchical transition, as
movements become moredetailed (acting on deeper, more

numerous nodes), they act on smaller spatial scales. We hy-
pothesize that this property of hierarchical transitions m ay
help to guide the user's attention from one level to the next.

We also implemented a variant of the hierarchical transitio n
that leverages an idea that motivated staged transitions: i t
may be advantageous to perform all collapsing up-front, to
minimize the number of visible elements during displace-
ments or permutations. Thus, our hybrid technique (bottom
right matrix in Figure 3, and Figure 6) collapses nodes on
all levels as a �rst step, then permutes on each level, then
�nally expands on all levels.

4. EXPERIMENTAL COMPARISON
We compared the four transition techniques using two tasks.
The primary task was to track the motion of a single target
node that was highlighted at the start of the trial (Figure 7) ,
since users are often particularly interested in changes to a
single node. To also evaluate the user's ability to remain
aware of other changes in the tree, a secondary task that had
to be performed simultaneously was to notice other changes
elsewhere in the tree (nodes undergoing collapsing, expand-
ing, or permuting).

Figure 7: Experimental stimuli.

At the start of each trial, the target node (always a leaf node,
on the 3rd level) for the primary task was highlighted. Also,
a string at the top of the screen provided instructions for
the secondary task, informing the user whether they would
need to monitor for collapsing nodes, or expanding nodes,
or permuting nodes. (Between 1 and 3 nodes on the 1st
level of the tree would undergo the indicated change and
need to be noticed by the user for the secondary task.) The
user would then hit the spacebar to indicate they are ready,
the highlighting would disappear, and the transition would
play out, which could permute nodes on any level as well
as expand or collapse nodes on the 1st level. At the end
of the transition, the user would click on the leaf node they
believed to be the target node, completing the primary task.
The user would then click on between 1 and 3 nodes on the
1st level that they believed underwent the change for the
secondary task. The user would then hit the spacebar to
complete the task. Feedback was then displayed to the user
to inform them how many correct nodes they clicked on for
the primary and secondary tasks, allowing them to adjust
their strategy for the subsequent trial.

The experiment was performed on a recently purchased lap-
top with a 1680� 1050 pixel, 15.4 inch screen, and hardware-
accelerated graphics. 12 users participated (including 2 women),
all university engineering students who use computers 5-15
hours/day, aged 21-45 years of age (average 29). In total,

there were 4 conditions (linear, staged, hierarchical, hybr id)
� 3 kinds of changes to monitor for the secondary task (ex-
panding, collapsing, permuting) � 3 (for 1, 2, or 3 nodes that
underwent a change for the secondary task) � 8 repetitions
� 12 participants = 3456 trials.

Warmup trials were performed for each transition technique,
to familiarize users with the tasks. However, the design of
each transition technique was not explained to participants.
The order of presentation of the four transition techniques
was counterbalanced using a 4� 4 Latin square, and the or-
dering of trials within each condition was determined pseu-
dorandomly using the same four seeds for each participant.
A post-questionnaire solicited subjective preferences.

The tree involved always had 3 levels. The root node could
have between 3 and 8 children, and nodes on the 1st and 2nd
levels could each have between 2 and 6 children. These num-
bers were chosen to avoid excessively small nodes. The total
time for each transition was always 5 seconds, regardless of
the number of steps involved. For the primary (tracking)
task, the node to track always underwent a translation of
at least 100 pixels. Many of these parameters were chosen
following a pilot experiment used for �ne tuning.

4.1 Results
There was a total of 864 trials for each transition technique.
In the primary task, the number of successful trials for each
technique was 619 (linear), 608 (staged), 699 (hierarchical),
653 (hybrid); see Figure 8. ANOVA found that the hierar-
chical technique signi�cantly outperformed the other tech-
niques (F3;33 = 10 :3, p < 0:05). No other signi�cant dif-
ferences were found. We also measured the time required
for users to click on the target node at the end of a trial,
and found that with the linear technique, users were signi�-
cantly slower (1.45 seconds on average for linear, compared
with average times of 1.28 seconds or less for the other tech-
niques; F3;33 = 7 :1, p < 0:01). We did not ask users to
click as quickly as possible on the target node at the end of
the trial, nor did we control for the initial cursor position ,
however the slower times suggests that users hesitated more
about where to click following a linear transition, possibl y
due to the high degree of occlusion that occurs during a
linear transition.

Figure 8: Successful trials for the primary task
(tracking a single node).

In the secondary task, the number of successful trials for
each technique was 588 (linear), 467 (staged), 580 (hierar-
chical), 615 (hybrid); see Figure 9. ANOVA found that the
staged technique was signi�cantly worse than the other tech-
niques (F3;33 = 22 :2, p < 0:001).

Figure 9: Successful trials for the secondary task
(noticing a change in the tree).

Results for the secondary task are broken down according to
the type of change to monitor in Figure 10. For secondary
tasks requiring that the use identify expanding nodes, the hi-
erarchical technique was signi�cantly worse than the other
techniques. When identifying collapsing nodes, the linear
technique was signi�cantly better than the other techniques.
Finally, when identifying permuting nodes, the hierarchica l
and hybrid techniques were signi�cantly better than the lin-
ear and staged techniques.

Figure 10: Successful trials for the secondary task,
broken down by type of change to notice. Each bar
is out of a maximum possible of 288 trials.

The results for expanding and collapsing nodes in the sec-
ondary task can be explained by considering which changes
are visible toward the end of a transition. We suspect that
users spent most of the time during a transition monitoring
the primary task's target node, and only toward the end of
the transition (when the target node has gotten very close to
its �nal position) does it become easier for the user to allo-
cate attentional resources to check for the location of nodes
undergoing changes as part of the secondary task. We no-
ticed that, because of the way we animated collapsing and
expanding nodes as pie slices undergoing an angular shrink-
ing or growing (see Figure 1, NE node, frames 2 and 3), in
linear transitions these collapsing or expanding nodes are
visibly changing right up to the very end of the transition,
either as narrow pie slices or as discs missing a narrow slice,
respectively. So, such changes are easy to notice toward
the end of a linear transition, explaining the high success
rates in Figure 10 for linear in expanding and collapsing.
However, in hierarchical transitions, the expanding of node s
on the 1st level of the tree occurs at the beginning of the
transition, and the collapsing of 1st-level nodes in the thr ee
non-linear techniques also occurs at the beginning of the
transition, meaning these changes are no longer visible to-
ward the end of the transition, explaining the lower success
rates in those cases.

Users ranked the four techniques by preference for the pri-
mary and secondary tasks. In the case of the primary task,
the results are roughly evenly divided and show no particular
tendencies. For the secondary task, however, there seemed
to be clearly preferred techniques (Figure 11).

Figure 11: Subjective preferences for the secondary
task. Each of the 12 users were allowed to choose
more than one \favorite" technique in each case,
hence the bar heights can sum to more than 12.

4.2 Discussion
For the primary (tracking) task, hierarchical transitions we re
signi�cantly better than other techniques, with hybrid tran-
sitions a close second. The reason hybrid transitions were
slightly worse in this task may be because hybrid transitions
involve 2 extra steps, leaving less time for permutations, re-
quiring them to be accelerated.

In the secondary task, when users needed to notice permuta-
tions, hierarchical and hybrid transitions were signi�cant ly
better and also subjectively preferred. However, in the sec-
ondary task, noticing expanding or collapsing nodes was best
supported by techniques that made these changes visible
just before the end of the transition. We therefore propose
a change to the hybrid technique that may make it a good
candidate for all 3 kinds of secondary tasks: simply stretch
out the collapsing of nodes to last all N + 2 steps instead of
�nishing during the 1st step (Figure 12). This way, nodes
will still be visibly collapsing just before the end of the tra n-
sition, possibly improving the performance of this modi�ed
hybrid transition in the secondary task where users must
notice collapsing nodes.

Figure 12: A proposed modi�cation to the hybrid
transition technique. Here, collapsing takes place
gradually over all N +2 steps (indicating by the 1::N +
2 in the cells), meaning that the nodes undergoing
collapse are still visible (in the form of narrow pie
slices) just before the end of the transition.

As discussed earlier, the results in Figure 10 can be explained
by considering which changes are still visible at the end of a
transition. When designing new transitions, we may assume
that the user will often focus on one element in particular,

but will also want to remain aware of other kinds of changes
during the transition. To help the user, we suggest the fol-
lowing guidelines for designing transitions.
� Changes that are more likely to be important to the user
should remaining visible toward the end of the transition.
This could be done by performing such changes during the
last step of a multi-step transition, or stretching out the
change over many steps to include the last step, and/or by
highlighting the changes with a color that persists until th e
end of the transition. (Such color highlighting might even
persist with an \afterglow", somewhat like Phosphor [4].)
� Changes that are less likely to be of interest to the user
could be performed in earlier steps of the transition.

5. WIDGETS FOR INTERACTIVE CONTROL
Improving the visual display of transitions is one way to
make them easier to understand. Another, complementary
way, is to give the user interactive control over the progres s
of animated transitions, allowing the user to traverse mult i-
ple transitions when desired, and also to slow down, reverse,
or replay a transition to understand all the changes.

We observed that a transition might be invoked with a dis-
crete input action, such as hitting a physical or virtual but-
ton (e.g., a \Back" button), or selecting an object (e.g., an
element to zoom into). Such discrete actions can activate a
transition that plays out at a constant speed. Another exam-
ple of such discrete input is in [15], where left and right
ic ks
within a radial menu cause layers of a volumetric model to
be peeled or unpeeled. Discrete actions have the advantage
that they are simple and can be repeated in quick succession,
possibly invoking an entire sequence of transitions.

On the other hand, if the user wants to be able to slow down
or stop a transition to better understand all the changes
taking place, continuous control is appropriate, such as tha t
a�orded by a slider widget, or a dragging gesture. For ex-
ample, dragging has been used for expanding and collapsing
multiple levels of a graph (see Figure 14 in [13]).

ScatterDice [8] allows for both kinds of control over transi-
tions. The scatterplot matrix in ScatterDice gives an overvi ew
of all views of the data; clicking on a cell in the matrix in-
vokes a constant-speed transition in the main view, while
\scratching" (i.e., dragging) on cells allows the user to co n-
tinuously control the progress of a transition.

We propose using instead a popup widget to control tran-
sitions, to bene�t from the advantages of popup widgets,
namely that they only occupy screen space when in use,
and they don't require the user to move toward a menubar
or toolbar to invoke them. For maximal
exibility, such a
widget should support both discrete input to invoke transi-
tions at constant-speed, and continuous control (dragging)
for control over the progress of a transition. For discrete
control, we feel that left- and right-
icks are a good choice
for many applications, since they can be performed ballisti -
cally as soon as the widget is popped up (similar to marking
menu gestures [12]) and since left and right naturally map
to backwards and forwards in a history of views. Next, there
needs to be some way to indicate when the user wants to use
continuous control. Figure 13 shows two possibilities: per-
pendicular motion (e.g., upward dragging) could be used,

causing a popup slider to appear; or the user could drag
and stop over an activation zone, causing a slider to expand
open. In Figure 13, these two possibilities are crossed with
linear and circular sliders. Linear sliders have the advant age
that users may be able to drag more quickly to the very end
of a sequence of views, whereas circular sliders allow the
user to continuously vary the angular gain by moving their
cursor closer or further away from the center of the slider.

Figure 13: A taxonomy of popup widgets for con-
trolling transitions. Right (or left)
icks invoke tran-
sitions that play out at a constant rate, advancing
(or backing up) in a sequence of transition states.
Each widget also enables the widget to invoke a
slider for continuous control over a transition.

A mock-up sketch of the lower-left widget in Figure 13 is
shown in Figure 14. We have also implemented a very sim-
ilar widget for navigating a video (Figure 15).

Figure 14: A mock-up sketch of a popup widget for
controlling transitions. Top: the user
icks right or
left to advance or backup to the next or previous
view in a history or sequence of visualization states.
Bottom: dragging up causes a slider to appear, af-
terwhich the user may drag sideways to continuously
move forward or backward through transitions to
other states. Thumbnails show each state.

6. CONCLUSIONS
Our novel hierarchical transition technique signi�cantly ou t-
performed other techniques in a target-tracking task, with
our novel hybrid technique coming in as a close second. Both

Figure 15: An implemented popup widget for nav-
igating a video timeline. Sideways
icks jump
to di�erent chapters in the video. Dragging
up and sideways enables continuous navigation
within a timeline, with thumbnails correspond-
ing to chapter boundaries. Video frames from
www.bigbuckbunny.org , c
 Blender Foundation.

of the new techniques also signi�cantly outperformed exist-
ing techniques in a task where users needed to notice addi-
tional nodes undergoing permutations, and were also sub-
jectively preferred.

To improve interactive control over transitions, we have al so
presented designs for widgets that enable both discrete and
continuous control over transitions, combining the advan-
tages of previous approaches.

Future work could study if the hierarchical approach taken i n
this work could be scaled up to larger numbers of elements,
and/or applied to non-tree data, such as graph structures
(for example, animated nodes that are progressively further
and further away from a given focal node).

7. ACKNOWLEDGMENTS
Thanks to Pierre Dragicevic for insightful feedback, and to
the participants in our study for their time. This work was
funded by NSERC and FQRNT.

8. REFERENCES
[1] D. Archambault, H. C. Purchase, and B. Pinaud.

Animation, small multiples, and the e�ect of mental
map preservation in dynamic graphs. IEEE TVCG ,
17(4):539{552, 2011.

[2] R. M. Baecker and I. Small. Animation at the
interface, 1990. A chapter (pp. 251{267) in Brenda
Laurel, editor, The Art of Human-Computer Interface
Design, Addison-Wesley.

[3] L. Bartram. Can motion increase user interface
bandwidth? In Proc. IEEE Conference on Systems,
Man, and Cybernetics, pages 1686{1692, 1997.

[4] P. Baudisch, D. Tan, M. Collomb, D. Robbins,
K. Hinckley, M. Agrawala, S. Zhao, and G. Ramos.
Phosphor: explaining transitions in the user interface
using afterglow e�ects. In Proc. ACM UIST , 2006.

[5] R. Boardman. Bubble trees: The visualization of
hierarchical information structures. In Extended
Abstracts of ACM CHI 2000 , pages 315{316, 2000.

[6] P. Cavanagh and G. A. Alvarez. Tracking multiple
targets with multifocal attention. TRENDS in

Cognitive Sciences, 9(7):349{354, July 2005.
[7] P. Dragicevic, A. Bezerianos, W. Javed, N. Elmqvist,

and J.-D. Fekete. Temporal distortion for animated
transitions. In Proc. ACM CHI , 2011.

[8] N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling
the dice: Multidimensional visual exploration using
scatterplot matrix navigation. IEEE TVCG ,
14(6):1141{1148, 2008.

[9] G. W. Furnas. Generalized �sheye views. In Proc.
ACM CHI , pages 16{23, 1986.

[10] J. Heer and G. G. Robertson. Animated transitions in
statistical data graphics. IEEE TVCG ,
13(6):1240{1247, 2007.

[11] S. J•urgensmann and H.-J. Schulz. A visual survey of
tree visualization. In Proc. IEEE InfoVis Poster
Compendium, 2010. http://treevis.net/.

[12] G. Kurtenbach and W. Buxton. The limits of expert
performance using hierarchic marking menus. In Proc.
ACM CHI , pages 482{487, 1993.

[13] M. J. McGu�n and R. Balakrishnan. Interactive
visualization of genealogical graphs. In Proc. IEEE
InfoVis , pages 17{24, 2005.

[14] M. J. McGu�n and J.-M. Robert. Quantifying the
space-e�ciency of 2D graphical representations of
trees. Information Visualization , 9(2):115{140, 2010.

[15] M. J. McGu�n, L. Tancau, and R. Balakrishnan.
Using deformations for browsing volumetric data. In
Proc. IEEE Visualization (VIS) , pages 401{408, 2003.

[16] C. Plaisant, J. Grosjean, and B. B. Bederson.
SpaceTree: Supporting exploration in large node link
tree, design evolution and empirical evaluation. In
Proc. IEEE InfoVis , pages 57{64, 2002.

[17] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and
J. Stasko. E�ectiveness of animation in trend
visualization. IEEE TVCG , 14(6):1325{1332, 2008.

[18] C. Schlienger, P. Dragicevic, C. Ollagnon, and
S. Chatty. Les transitions visuelles di��erenci�ees :
principes et applications. In Proc. AFIHM Conf�erence
Francophone sur l'Interaction Homme-Machine
(IHM) , pages 59{66, 2006.

[19] M. Shanmugasundaram, P. Irani, and C. Gutwin. Can
smooth view transitions facilitate perceptual
constancy in node-link diagrams? In Proc. Graphics
Interface (GI) , pages 71{78, 2007.

[20] S. T. Teoh and K.-L. Ma. RINGS: A technique for
visualizing large hierarchies. In Proc. Graph Drawing
(GD) , pages 268{275, 2002.

[21] B. Tversky, J. B. Morrison, and M. Betrancourt.
Animation: can it facilitate? International Journal of
Human-Computer Studies, 57:247{262, 2002.

[22] L. Zaman, A. Kalra, and W. Stuerzlinger. The e�ect
of animation, dual view, di�erence layers, and relative
re-layout in hierarchical diagram di�erencing. In Proc.
Graphics Interface (GI) , pages 183{190, 2011.

