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AUTOMATIC DETECTION OF VERTEBRAE 
BOUNDARIES IN SPINE IMAGES 

FIELD OF THE DISCLOSURE 

This disclosure relates generally to imaging solutions, and, 
more particularly, to methods and systems to automatically 
detect vertebrae boundaries in spine images. 

BACKGROUND 

Precise detection of the boundaries of spine vertebrae in 
magnetic resonance images is useful in quantifying spinal 
deformities and intervertebral disc diseases. 

BRIEF SUMMARY 

Certain examples provide methods and systems to detect a 
vertebra in a spine image. An example method includes gen 
erating a rectangle approximation of a reference vertebra. The 
example method includes identifying a mask with similar 
characteristics to the rectangle approximation and labeling a 
mask region in the mask. The example method includes com 
paring the mask region to the rectangle approximation and 
detecting a vertebra in the spine image based on the compari 
son. 

Another example method includes determining whether a 
spine image is included in a series of images. The example 
method includes generating a rectangle approximation of a 
reference vertebra in the spine image. The example method 
includes identifying a mask similar to the rectangle approxi 
mation based on a comparison of image intensity and labeling 
mask regions in the mask based on a comparison of pixel 
intensity. The example method includes generating a window 
including a portion of the mask and comparing a plurality of 
mask regions within the window to the rectangle approxima 
tion based on the shape of each mask region and the shape of 
the rectangle approximation. The example method includes 
identifying the mask region closest to the shape of the rect 
angle approximation as a vertebra and labeling the location of 
the vertebra in the remaining images in the series of images 
when the spine image is included in a series of images. 

Another example includes a computer readable storage 
medium including computer program code to be executed by 
a processor, the computer program code, when executed, to 
implement a method to detect a vertebra in a spine image. The 
example method includes generating a rectangle approxima 
tion of a reference vertebra in the spine image. The example 
method includes identifying a mask similar to the rectangle 
approximation and labeling a mask region in the mask. The 
example method includes generating a window including a 
portion of the mask and comparing a mask region within the 
mask to the rectangle approximation. The example method 
includes determining whether the mask region is a vertebra 
based on the comparison 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of a ?rst example implementation 
of a vertebra detector. 

FIG. 2 is an example image of a sagittal view of a spine. 
FIG. 3 is a block diagram of an example implemented of 

the example mask region analyzer of FIG. 1. 
FIG. 4 is a block diagram of an example implementation of 

the example mask generator of FIG. 3. 
FIGS. 5 and 6 are another example image of a sagittal view 

of a spine. 
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2 
FIG. 7 is a block diagram of an example implementation of 

the example shape analyzer of FIG. 1. 
FIG. 8 is another example image of a sagittal view of a 

spine. 
FIG. 9 is a blown-up image of a sagittal view of a spine. 
FIG. 10 is a block diagram of a second example implemen 

tation of a vertebra detector. 
FIG. 11 is a block diagram of an example implementation 

of the example propagator of FIG. 10. 
FIGS. 12-14 are another example image of a sagittal view 

of a spine. 
FIG. 15 is a ?owchart representative of example machine 

readable instructions that may be executed to implement the 
example vertebra detector of FIG. 1. 

FIG. 16 is a ?owchart representative of example machine 
readable instructions that may be executed to implement the 
example vertebra detector of FIG. 10. 

FIG. 17 is a ?owchart representative of example machine 
readable instructions that may be executed to implement the 
example propagator of FIG. 10. 

FIG. 18 is a block diagram of an example processing plat 
form capable of executing the machine readable instructions 
of FIGS. 15, 16 and 17 to implement the example vertebra 
detector of FIGS. 1 and/or 10. 
The foregoing summary, as well as the following detailed 

description of certain embodiments of the present invention, 
will be better understood when read in conjunction with the 
appended drawings. For the purpose of illustrating the inven 
tion, certain embodiments are shown in the drawings. It 
should be understood, however, that the present invention is 
not limited to the arrangements and instrumentality shown in 
the attached drawings. 

DETAILED DESCRIPTION 

Current clinical approaches to detect boundaries of spine 
vertebrae in magnetic resonance images are based on visual 
inspection and/or manual tracing. Manual tracing is prohibi 
tively time-consuming and, therefore, automatic or semi-au 
tomatic methods are highly desirable. The problem is di?icult 
because of l) the similarity in intensity pro?les between 
vertebral regions and other irrelevant, non-vertebral regions, 
2) the intensity inhomogeneity that occurs within the verte 
brae, and 3) a strong level of imaging noise in many instances. 
Therefore, image (or intensity) information by itself is not 
suf?cient. Additionally, comparing images of a subject over a 
period of time allows detecting changes, for example, of a 
tumor. However, the number of images in a series of images of 
the subject may be larger than 100 images. Labeling land 
marks in each of these images is too costly. 

Vertebra boundary detection allows quantitative and repro 
ducible reporting of spinal diseases and/or deformities. 
Detecting vertebrae boundaries is useful in calculating diag 
nosis measures such as vertebrae dimensions, disc dimen 
sions, disc intensity statistics, and benchmark points for disc 
bulging. User input is sometimes used to identify the bound 
ary of a reference vertebra on a reference image of a spine. For 
example, a healthcare practitioner (e. g., a radiologist, physi 
cian and/or technician) may utilize a computer mouse to 
select corners on the boundary of a reference vertebra (e.g., a 
T12 vertebra) in a displayed sagittal image of a spine. This 
user input is used to approximate the boundary of the refer 
ence vertebra. For example, a rectangle is approximated trac 
ing the boundary of a reference vertebra based on the user 
input comers. 

Certain characteristics relating to the reference vertebra 
may be calculated based on the approximated rectangle. For 
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example, a statistical distribution model may be generated 
describing the pixel intensity of the reference vertebra. 
Regions in the sagittal image of the spine with similar pixel 
intensities to the reference vertebra may be identi?ed. Addi 
tionally and/or alternatively, a statistical model may be gen 
erated describing the shape of the reference vertebra. Com 
paring regions in the spine image with similar pixel intensities 
and a similar shape may automatically identify additional 
vertebrae displayed in the spine image. 

Example methods and systems disclosed herein enable 
automated, accurate, fast and reproducible detection of ver 
tebrae boundaries in spine images. Examples disclosed 
herein are particularly useful in connection with automati 
cally detecting vertebrae boundaries in spine images based on 
minimal user input. Additional example methods and systems 
disclosed herein enable the automatic propagation of the 
detected vertebrae boundaries through a series of images. 

FIG. 1 is a block diagram of an example implementation of 
an example vertebra detector 100. In the illustrated example, 
the vertebra detector 100 is used to identify vertebrae bound 
aries in a spine image based on minimal user input on a 
reference (e.g., an initial) vertebra in the spine image. As 
described above, the identi?ed vertebrae boundaries are used 
to calculate several diagnosis measures relating to the spine in 
the image, such as vertebrae dimensions, disc dimensions, 
disc intensity and disc bulging benchmarks. User input 
received by the example vertebra detector 100 is communi 
cated to an example rectangle approximator 102. FIG. 2 is an 
example sagittal image of a spine 200. In the illustrated 
example of FIG. 2, the user (e.g., a healthcare practitioner 
such as a radiologist, a physician and/or a technician) has 
selected ?rst through third comers 202-206. The example 
rectangle approximator 102 calculates a rectangle approxi 
mation along the boundary of the reference vertebra based on 
the three points. In the illustrated example of FIG. 2, the 
rectangle approximation 208 is generated by the example 
rectangle approximator 102. Knowing the boundary of the 
reference vertebra (e. g., the rectangle approximation) allows 
calculating other characteristics of the reference vertebra. For 
example, the distribution of pixel values within the reference 
vertebra may be calculated. Additionally, the general shape of 
the reference vertebra may be calculated using the boundary 
of the reference vertebra. This rectangle approximation (e.g., 
the example rectangle approximation 208) is communicated 
to a mask region analyzer 104 and a vertebra identi?er 106.As 
described in detail below in connection with FIG. 3, the 
example mask region analyzer 104 uses the rectangle 
approximation (e.g., the example rectangle approximation 
208) of the reference vertebra to identify regions (e.g., mask 
regions) in a mask of the spine image with similar pixel 
intensities as the reference vertebra. These identi?ed mask 
regions are used to identify mask regions in the spine image. 
For example, two adjacent pixels with similar pixel intensities 
are identi?ed (e.g., labeled) as a mask region. In some 
examples, the example mask region analyzer 104 records the 
labeled mask regions in an example storage device 108. 

The example vertebra identi?er 106 uses the rectangle 
approximation (e.g., the example rectangle approximation 
208) of the reference vertebra received from the example 
rectangle approximator 102 and the mask regions identi?ed 
by the example mask region analyzer 104 to identify mask 
regions in the mask with a similar shape as the reference 
vertebra. The example vertebra identi?er 106 compares the 
shape of the reference vertebra to the shape of each mask 
region received from the example mask region analyzer 104 
and/or the example storage device 108. The mask regions 
most similar in shape to the reference vertebra are identi?ed 
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4 
as vertebrae and their boundaries are identi?ed accordingly. 
In some examples, the example vertebra identi?er 106 stores 
the detected vertebrae boundaries in the example storage 
device 108. 

FIG. 3 illustrates an example implementation of the 
example mask region analyzer 104 of FIG. 1. The example 
mask region analyzer 104 identi?es a mask similar to the 
rectangle approximation of the reference vertebra received 
from the example rectangle approximator 102 based on 
image intensity. In the illustrated example, a mask (e.g., a 
binary mask) describes the ON/OFF status of eachpixel in the 
image. For example, in a 3x3 pixel image, a ?rst mask may 
include all 9 pixels in the ON status. A second mask may 
include the ?rst pixel in the ?rst row in an OFF status and the 
remaining pixels in the ON status. In some examples, the 
mask may be described by a matrix. Identifying the mask 
similar to the rectangle approximation based on image inten 
sity allows mask regions within the spine image to be identi 
?ed. These mask regions are then analyzed by the example 
vertebra identi?er 106 to ?nd a mask region(s) similar to the 
reference vertebra in shape. 

In the illustrated example of FIG. 3, the mask region ana 
lyzer 104 receives the rectangle approximation (e.g., the 
example rectangle approximation 208 of FIG. 2) of the ref 
erence vertebra from the rectangle approximator 102 and 
builds a statistical distribution model based on the image 
intensity. For example, the intensity distribution builder 302 
builds a statistical distribution model using the pixel intensity 
values inside the rectangle approximation. In the illustrated 
example of FIG. 3, the intensity distribution model describing 
the rectangle approximation 208 is a probability density func 
tion (e.g., kernel density estimation). 
As an illustrative example, the intensity distribution model 

of the rectangle approximation 208 (M) is a vector of size I, 
where J is the number of bins (e.g., 1:255) for intensity 
values. The jth value of the intensity distribution model of the 
rectangle approximation 208 M is denoted MU), j:l . . . J, and 
is the probability of having an intensity value equal to j. 
However, other statistical distribution models may be used. 
The intensity distribution model M built by the example 

intensity distribution builder 302 is compared to a mask gen 
erated by the example optimizer 304. The example optimizer 
304 of FIG. 3 identi?es the mask most similar to the rectangle 
approximation 208 based on the image intensity (e.g., the 
distribution of pixels). The example optimizer 304 calculates 
a similarity score including a Bhattacharyya distance and a 
smoothing factor. In the illustrated example, the Bhatta 
charyya distance describes the overlap between two distribu 
tions. For example, the Bhattacharyya distance describes the 
overlap between a distribution describing the rectangle 
approximation and a distribution describing the mask. The 
smoothing factor attempts to reduce noise in the mask. For 
example, the smoothing factor improves the similarity score 
of the mask by reducing (or eliminating) noisy data (e.g., 
small scale mask regions) in the mask. When the similarity 
score reaches a minimum value, the mask is identi?ed as mo st 
similar to the rectangle approximation 208 of the reference 
vertebra. The example mask region labeler 316 receives the 
output from the example optimizer 304 a mask with regions 
(e.g., mask regions) of similar pixel intensities. The example 
mask region labeler 316 labels (e.g., identi?es) mask regions 
in the mask that are used by the example vertebra identi?er 
106 of FIG. 1 to identify additional vertebrae boundaries in 
the spine image. 

In the illustrated example of FIG. 3, the optimizer 304 
includes a mask generator 306, a distance calculator 308, a 
smoothing generator 310, a similarity calculator 312 and a 
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comparator 314. As described in detail below in connection 
with FIG. 4, the example mask generator 306 generates a new 
mask that will improve the similarity score of the current 
mask using the similarity score of the mask used in the pre 
vious iteration. For example, the mask generator 306 of FIG. 
4 calculates whether changing the status of a pixel in the mask 
from ON to OFF will increase or decrease the similarity score 
(e.g., the Bhattacharyya measure of similarity between two 
distributions). The example mask generator 306 repeats this 
calculation for every pixel in the image until a new mask is 
calculated. This new mask is output to the example distance 
calculator 308 and the example smoothing generator 310 and 
used to calculate a similarity score of the mask and the rect 
angle approximation 208. 

FIG. 4 illustrates an example implementation of the 
example mask generator 306 of FIG. 3. The example mask 
generator 306 generates a mask that is compared with the 
intensity distribution model of the rectangle approximation 
208 built by the example intensity distribution builder 3 02. As 
described below in connection to the example comparator 
314 of FIG. 3, when the mask is not identi?ed as the optimal 
mask (e. g., the mask mo st similar to the reference vertebrae in 
image intensity), the example mask generator 306 generates a 
new mask. Generating a new mask may include switching the 
status of one pixel (e.g., ON to OFF) or switching the status of 
any other number of pixels. Attempting to generate and com 
pare every possible combination of ON and OFF status for 
each pixel is a time-consuming and inef?cient method of 
identifying the optimal mask. Thus, the example mask gen 
erator 306 uses the previous iteration mask and calculates the 
impact switching a pixel has on a localized level before the 
overall mask is processed (e. g., compared to the image inten 
sity of the rectangle approximation 208). As a result, a rela 
tively faster comparison determining whether changing the 
status of a pixel increases the similarity score of the overall 
mask is performed and the status of the pixel stays the same or 
changes based on the comparison. In some examples, this 
comparison is performed on each pixel. Doing this compari 
son on a local level ensures the similarity score of each mask 
does not decrease. 

In the illustrated example of FIG. 4, the mask generator 3 06 
includes an iteration counter 402, an output generator 404, an 
OFF calculator 406, an ON calculator 408 and a comparator 
41 0. The example iteration counter 402 identi?es whether the 
example mask generator 306 has previously generated a 
mask. For example, when the mask generator 306 is initiated, 
the iteration counter 402 outputs to the example output gen 
erator 404 a negative indication (e.g., no, 0, false, etc.) indi 
cating that no previous masks have been generated. As the 
example mask generator 306 uses the mask and similarity 
score of the previous iteration to generate a new mask, when 
a negative indication from the example iteration counter 402 
is received, the example output generator 404 outputs a mask 
with all pixels in the ON status and a similarity score equal to 
zero (0). Alternatively, other pixel combinations are possible 
to use as an initial mask. As described above, the output from 
the example output generator 404 is received by the example 
distance calculator 308 and example smoothing generator 
310 of FIG. 3 to calculate a similarity score between the 
masks and the intensity distribution model of the rectangle 
approximation 208. 
On the other hand, when a previous iteration has already 

been calculated, the example iteration counter 402 outputs a 
positive indication (e.g., yes, 1, true, etc.) to the example 
output generator 404. The example output generator 404 out 
puts the mask calculated during the previous iteration to the 
example OFF calculator 406 and the example ON calculator 
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6 
408. In the illustrated example of FIG. 4, the OFF calculator 
406 calculates a scalar value MP 1(0) assuming the pixel is in 
the OFF status. In the illustrated example, the Mp 1(0) func 
tion is calculating a value of the image intensity (M) of a pixel 
(p) in the image (I) with the pixel value set at zero (0). This 
scalar value includes, from the previous iteration, the Bhat 
tacharyya score of the mask and the distribution of intensity 
corresponding to the image at that pixel. Similarly, a scalar 
value MP 1(1) assuming the pixel remains is in the ON status 
is calculated by the example ON calculator 408. 

In the illustrated example, the comparator 410 compares 
the output from the OFF calculator 406 and the ON calculator 
408 and determines whether the ON/OFF status of the pixel 
should be switched. In order to minimize the distance 
between the mask and the intensity distribution model of the 
rectangle approximation 208, the score at each pixel should 
be minimized. Thus, when the scalar value from the OFF 
calculator 406 (e.g., MP 1(0)) is less than the scalar value 
calculated by the ON calculator 408 (e.g., Mp 1(1)), the pixel 
status is switched to OFF. Otherwise, the pixel status remains 
in the ON status. In the illustrated example, the example 
output generator 404 records the optimal pixel status (e.g., 
ON or OFF) of the pixel and similar calculations are per 
formed for the remaining pixels in the image. Once the opti 
mal pixel status of each pixel is determined, the example 
mask generator 306 outputs the new mask to the example 
distance calculator 308 and the example smoothing generator 
310 to calculate a similarity score of the new mask and the 
rectangle approximation 208. 

The example distance calculator 308 illustrated in FIG. 3 
measures the amount of overlap (e.g., similarity) between two 
distributions. For example, the distance calculator 308 calcu 
lates the Bhattacharyya coef?cient measuring the overlap 
between the distribution of pixel values within the mask out 
put by the example mask generator 306 and the intensity 
distribution model of the rectangle approximation 208. The 
Bhattacharyya coef?cient ranges from zero (0) to one (1) 
wherein a zero indicates that there is no overlap and a one 
indicates a perfect match between the distributions. The Bhat 
tacharyya coef?cient of the similarity score ensures the mask 
is consistent with the intensity distribution model of the rect 
angle approximation 208. 
The example smoothing generator 310 generates a smooth 

ing factor used in calculating the similarity score. In the 
illustrated example, the generated smoothing factor removes 
small and/or isolated labels due to imaging noise. As a result, 
the example smoothing generator 310 ensures label consis 
tency of neighboring pixels. For example, the smoothing 
generator 310 receives a mask and reduces the noise in the 
mask by identifying irregular pixels. For example, a pixel in 
the ON status surrounded by pixels in the OFF status is likely 
the result of noise in the image data. Thus, the example 
smoothing generator 310 addresses the irregular pixel to 
improve the similarity score. The example similarity calcu 
lator 312 receives the Bhattacharyya coef?cient from the 
example distance calculator 308 and the smoothing factor 
from the example smoothing generator 310 and calculates a 
similarity score. For example, the similarity calculator 312 
adds the Bhattacharyya coef?cient and the smoothing factor. 
As a result, the optimal similarity score of a mask is obtained 
when an optimal Bhattacharyya coef?cient and an optimal 
smoothing factor are identi?ed. For example, a mask with 
increased similarity (e.g., a low Bhattacharyya coef?cient) 
but with increased noise may not be optimal compared to a 
mask with less similarity but with less noise. 
The similarity score output by the example similarity cal 

culator 312 is received by the example comparator 314. In the 


















