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1
AUTOMATIC DETECTION OF VERTEBRAE
BOUNDARIES IN SPINE IMAGES

FIELD OF THE DISCLOSURE

This disclosure relates generally to imaging solutions, and,
more particularly, to methods and systems to automatically
detect vertebrae boundaries in spine images.

BACKGROUND

Precise detection of the boundaries of spine vertebrae in
magnetic resonance images is useful in quantifying spinal
deformities and intervertebral disc diseases.

BRIEF SUMMARY

Certain examples provide methods and systems to detect a
vertebra in a spine image. An example method includes gen-
erating a rectangle approximation of a reference vertebra. The
example method includes identifying a mask with similar
characteristics to the rectangle approximation and labeling a
mask region in the mask. The example method includes com-
paring the mask region to the rectangle approximation and
detecting a vertebra in the spine image based on the compari-
son.

Another example method includes determining whether a
spine image is included in a series of images. The example
method includes generating a rectangle approximation of a
reference vertebra in the spine image. The example method
includes identifying a mask similar to the rectangle approxi-
mation based on a comparison of image intensity and labeling
mask regions in the mask based on a comparison of pixel
intensity. The example method includes generating a window
including a portion of the mask and comparing a plurality of
mask regions within the window to the rectangle approxima-
tion based on the shape of each mask region and the shape of
the rectangle approximation. The example method includes
identifying the mask region closest to the shape of the rect-
angle approximation as a vertebra and labeling the location of
the vertebra in the remaining images in the series of images
when the spine image is included in a series of images.

Another example includes a computer readable storage
medium including computer program code to be executed by
a processor, the computer program code, when executed, to
implement a method to detect a vertebra in a spine image. The
example method includes generating a rectangle approxima-
tion of a reference vertebra in the spine image. The example
method includes identifying a mask similar to the rectangle
approximation and labeling a mask region in the mask. The
example method includes generating a window including a
portion of the mask and comparing a mask region within the
mask to the rectangle approximation. The example method
includes determining whether the mask region is a vertebra
based on the comparison

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.11s a block diagram of a first example implementation
of a vertebra detector.

FIG. 2 is an example image of a sagittal view of a spine.

FIG. 3 is a block diagram of an example implemented of
the example mask region analyzer of FIG. 1.

FIG. 4 is a block diagram of an example implementation of
the example mask generator of FIG. 3.

FIGS. 5 and 6 are another example image of a sagittal view
of a spine.
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FIG. 7 is a block diagram of an example implementation of
the example shape analyzer of FIG. 1.

FIG. 8 is another example image of a sagittal view of a
spine.

FIG. 9 is a blown-up image of a sagittal view of a spine.

FIG. 10 is a block diagram of a second example implemen-
tation of a vertebra detector.

FIG. 11 is a block diagram of an example implementation
of the example propagator of FIG. 10.

FIGS. 12-14 are another example image of a sagittal view
of a spine.

FIG. 15 is a flowchart representative of example machine
readable instructions that may be executed to implement the
example vertebra detector of FIG. 1.

FIG. 16 is a flowchart representative of example machine
readable instructions that may be executed to implement the
example vertebra detector of FIG. 10.

FIG. 17 is a flowchart representative of example machine
readable instructions that may be executed to implement the
example propagator of FIG. 10.

FIG. 18 is a block diagram of an example processing plat-
form capable of executing the machine readable instructions
of FIGS. 15, 16 and 17 to implement the example vertebra
detector of FIGS. 1 and/or 10.

The foregoing summary, as well as the following detailed
description of certain embodiments of the present invention,
will be better understood when read in conjunction with the
appended drawings. For the purpose of illustrating the inven-
tion, certain embodiments are shown in the drawings. It
should be understood, however, that the present invention is
not limited to the arrangements and instrumentality shown in
the attached drawings.

DETAILED DESCRIPTION

Current clinical approaches to detect boundaries of spine
vertebrae in magnetic resonance images are based on visual
inspection and/or manual tracing. Manual tracing is prohibi-
tively time-consuming and, therefore, automatic or semi-au-
tomatic methods are highly desirable. The problem is difficult
because of 1) the similarity in intensity profiles between
vertebral regions and other irrelevant, non-vertebral regions,
2) the intensity inhomogeneity that occurs within the verte-
brae, and 3) a strong level of imaging noise in many instances.
Therefore, image (or intensity) information by itself is not
sufficient. Additionally, comparing images of a subject over a
period of time allows detecting changes, for example, of a
tumor. However, the number of images in a series of images of
the subject may be larger than 100 images. Labeling land-
marks in each of these images is too costly.

Vertebra boundary detection allows quantitative and repro-
ducible reporting of spinal diseases and/or deformities.
Detecting vertebrae boundaries is useful in calculating diag-
nosis measures such as vertebrae dimensions, disc dimen-
sions, disc intensity statistics, and benchmark points for disc
bulging. User input is sometimes used to identify the bound-
ary of a reference vertebra on a reference image of a spine. For
example, a healthcare practitioner (e.g., a radiologist, physi-
cian and/or technician) may utilize a computer mouse to
select corners on the boundary of a reference vertebra (e.g., a
T12 vertebra) in a displayed sagittal image of a spine. This
user input is used to approximate the boundary of the refer-
ence vertebra. For example, a rectangle is approximated trac-
ing the boundary of a reference vertebra based on the user
input corners.

Certain characteristics relating to the reference vertebra
may be calculated based on the approximated rectangle. For
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example, a statistical distribution model may be generated
describing the pixel intensity of the reference vertebra.
Regions in the sagittal image of the spine with similar pixel
intensities to the reference vertebra may be identified. Addi-
tionally and/or alternatively, a statistical model may be gen-
erated describing the shape of the reference vertebra. Com-
paring regions in the spine image with similar pixel intensities
and a similar shape may automatically identify additional
vertebrae displayed in the spine image.

Example methods and systems disclosed herein enable
automated, accurate, fast and reproducible detection of ver-
tebrae boundaries in spine images. Examples disclosed
herein are particularly useful in connection with automati-
cally detecting vertebrae boundaries in spine images based on
minimal user input. Additional example methods and systems
disclosed herein enable the automatic propagation of the
detected vertebrae boundaries through a series of images.

FIG. 11is ablock diagram of an example implementation of
an example vertebra detector 100. In the illustrated example,
the vertebra detector 100 is used to identify vertebrae bound-
aries in a spine image based on minimal user input on a
reference (e.g., an initial) vertebra in the spine image. As
described above, the identified vertebrae boundaries are used
to calculate several diagnosis measures relating to the spine in
the image, such as vertebrae dimensions, disc dimensions,
disc intensity and disc bulging benchmarks. User input
received by the example vertebra detector 100 is communi-
cated to an example rectangle approximator 102. FIG. 2 is an
example sagittal image of a spine 200. In the illustrated
example of FIG. 2, the user (e.g., a healthcare practitioner
such as a radiologist, a physician and/or a technician) has
selected first through third corners 202-206. The example
rectangle approximator 102 calculates a rectangle approxi-
mation along the boundary of the reference vertebra based on
the three points. In the illustrated example of FIG. 2, the
rectangle approximation 208 is generated by the example
rectangle approximator 102. Knowing the boundary of the
reference vertebra (e.g., the rectangle approximation) allows
calculating other characteristics of the reference vertebra. For
example, the distribution of pixel values within the reference
vertebra may be calculated. Additionally, the general shape of
the reference vertebra may be calculated using the boundary
of' the reference vertebra. This rectangle approximation (e.g.,
the example rectangle approximation 208) is communicated
to amask region analyzer 104 and a vertebra identifier 106. As
described in detail below in connection with FIG. 3, the
example mask region analyzer 104 uses the rectangle
approximation (e.g., the example rectangle approximation
208) of the reference vertebra to identify regions (e.g., mask
regions) in a mask of the spine image with similar pixel
intensities as the reference vertebra. These identified mask
regions are used to identify mask regions in the spine image.
For example, two adjacent pixels with similar pixel intensities
are identified (e.g., labeled) as a mask region. In some
examples, the example mask region analyzer 104 records the
labeled mask regions in an example storage device 108.

The example vertebra identifier 106 uses the rectangle
approximation (e.g., the example rectangle approximation
208) of the reference vertebra received from the example
rectangle approximator 102 and the mask regions identified
by the example mask region analyzer 104 to identify mask
regions in the mask with a similar shape as the reference
vertebra. The example vertebra identifier 106 compares the
shape of the reference vertebra to the shape of each mask
region received from the example mask region analyzer 104
and/or the example storage device 108. The mask regions
most similar in shape to the reference vertebra are identified
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as vertebrae and their boundaries are identified accordingly.
In some examples, the example vertebra identifier 106 stores
the detected vertebrae boundaries in the example storage
device 108.

FIG. 3 illustrates an example implementation of the
example mask region analyzer 104 of FIG. 1. The example
mask region analyzer 104 identifies a mask similar to the
rectangle approximation of the reference vertebra received
from the example rectangle approximator 102 based on
image intensity. In the illustrated example, a mask (e.g., a
binary mask) describes the ON/OFF status of each pixel inthe
image. For example, in a 3x3 pixel image, a first mask may
include all 9 pixels in the ON status. A second mask may
include the first pixel in the first row in an OFF status and the
remaining pixels in the ON status. In some examples, the
mask may be described by a matrix. Identifying the mask
similar to the rectangle approximation based on image inten-
sity allows mask regions within the spine image to be identi-
fied. These mask regions are then analyzed by the example
vertebra identifier 106 to find a mask region(s) similar to the
reference vertebra in shape.

In the illustrated example of FIG. 3, the mask region ana-
lyzer 104 receives the rectangle approximation (e.g., the
example rectangle approximation 208 of FIG. 2) of the ref-
erence vertebra from the rectangle approximator 102 and
builds a statistical distribution model based on the image
intensity. For example, the intensity distribution builder 302
builds a statistical distribution model using the pixel intensity
values inside the rectangle approximation. In the illustrated
example of FIG. 3, the intensity distribution model describing
the rectangle approximation 208 is a probability density func-
tion (e.g., kernel density estimation).

As an illustrative example, the intensity distribution model
of the rectangle approximation 208 (M) is a vector of size J,
where J is the number of bins (e.g., J=255) for intensity
values. The i value of the intensity distribution model of the
rectangle approximation 208 M is denoted M(j),j=1 ... J, and
is the probability of having an intensity value equal to j.
However, other statistical distribution models may be used.

The intensity distribution model M built by the example
intensity distribution builder 302 is compared to a mask gen-
erated by the example optimizer 304. The example optimizer
304 of FIG. 3 identifies the mask most similar to the rectangle
approximation 208 based on the image intensity (e.g., the
distribution of pixels). The example optimizer 304 calculates
a similarity score including a Bhattacharyya distance and a
smoothing factor. In the illustrated example, the Bhatta-
charyya distance describes the overlap between two distribu-
tions. For example, the Bhattacharyya distance describes the
overlap between a distribution describing the rectangle
approximation and a distribution describing the mask. The
smoothing factor attempts to reduce noise in the mask. For
example, the smoothing factor improves the similarity score
of the mask by reducing (or eliminating) noisy data (e.g.,
small scale mask regions) in the mask. When the similarity
score reaches a minimum value, the mask is identified as most
similar to the rectangle approximation 208 of the reference
vertebra. The example mask region labeler 316 receives the
output from the example optimizer 304 a mask with regions
(e.g., mask regions) of similar pixel intensities. The example
mask region labeler 316 labels (e.g., identifies) mask regions
in the mask that are used by the example vertebra identifier
106 of FIG. 1 to identify additional vertebrae boundaries in
the spine image.

In the illustrated example of FIG. 3, the optimizer 304
includes a mask generator 306, a distance calculator 308, a
smoothing generator 310, a similarity calculator 312 and a
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comparator 314. As described in detail below in connection
with FIG. 4, the example mask generator 306 generates a new
mask that will improve the similarity score of the current
mask using the similarity score of the mask used in the pre-
vious iteration. For example, the mask generator 306 of FI1G.
4 calculates whether changing the status of a pixel in the mask
from ON to OFF will increase or decrease the similarity score
(e.g., the Bhattacharyya measure of similarity between two
distributions). The example mask generator 306 repeats this
calculation for every pixel in the image until a new mask is
calculated. This new mask is output to the example distance
calculator 308 and the example smoothing generator 310 and
used to calculate a similarity score of the mask and the rect-
angle approximation 208.

FIG. 4 illustrates an example implementation of the
example mask generator 306 of FIG. 3. The example mask
generator 306 generates a mask that is compared with the
intensity distribution model of the rectangle approximation
208 built by the example intensity distribution builder 302. As
described below in connection to the example comparator
314 of FIG. 3, when the mask is not identified as the optimal
mask (e.g., the mask most similar to the reference vertebrae in
image intensity), the example mask generator 306 generates a
new mask. Generating a new mask may include switching the
status of one pixel (e.g., ON to OFF) or switching the status of
any other number of pixels. Attempting to generate and com-
pare every possible combination of ON and OFF status for
each pixel is a time-consuming and inefficient method of
identifying the optimal mask. Thus, the example mask gen-
erator 306 uses the previous iteration mask and calculates the
impact switching a pixel has on a localized level before the
overall mask is processed (e.g., compared to the image inten-
sity of the rectangle approximation 208). As a result, a rela-
tively faster comparison determining whether changing the
status of a pixel increases the similarity score of the overall
mask is performed and the status of the pixel stays the same or
changes based on the comparison. In some examples, this
comparison is performed on each pixel. Doing this compari-
son on a local level ensures the similarity score of each mask
does not decrease.

Inthe illustrated example of FIG. 4, the mask generator 306
includes an iteration counter 402, an output generator 404, an
OFF calculator 406, an ON calculator 408 and a comparator
410. The example iteration counter 402 identifies whether the
example mask generator 306 has previously generated a
mask. For example, when the mask generator 306 is initiated,
the iteration counter 402 outputs to the example output gen-
erator 404 a negative indication (e.g., no, 0, false, etc.) indi-
cating that no previous masks have been generated. As the
example mask generator 306 uses the mask and similarity
score of the previous iteration to generate a new mask, when
a negative indication from the example iteration counter 402
is received, the example output generator 404 outputs a mask
with all pixels in the ON status and a similarity score equal to
zero (0). Alternatively, other pixel combinations are possible
to use as an initial mask. As described above, the output from
the example output generator 404 is received by the example
distance calculator 308 and example smoothing generator
310 of FIG. 3 to calculate a similarity score between the
masks and the intensity distribution model of the rectangle
approximation 208.

On the other hand, when a previous iteration has already
been calculated, the example iteration counter 402 outputs a
positive indication (e.g., yes, 1, true, etc.) to the example
output generator 404. The example output generator 404 out-
puts the mask calculated during the previous iteration to the
example OFF calculator 406 and the example ON calculator
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408. In the illustrated example of FIG. 4, the OFF calculator
406 calculates a scalar value M,, ,(0) assuming the pixel is in
the OFF status. In the illustrated example, the M,, (0) func-
tion is calculating a value of the image intensity (M) of a pixel
(p) in the image (1) with the pixel value set at zero (0). This
scalar value includes, from the previous iteration, the Bhat-
tacharyya score of the mask and the distribution of intensity
corresponding to the image at that pixel. Similarly, a scalar
value M, (1) assuming the pixel remains is in the ON status
is calculated by the example ON calculator 408.

In the illustrated example, the comparator 410 compares
the output from the OFF calculator 406 and the ON calculator
408 and determines whether the ON/OFF status of the pixel
should be switched. In order to minimize the distance
between the mask and the intensity distribution model of the
rectangle approximation 208, the score at each pixel should
be minimized. Thus, when the scalar value from the OFF
calculator 406 (e.g., M, (0)) is less than the scalar value
calculated by the ON calculator 408 (e.g., M,, (1)), the pixel
status is switched to OFF. Otherwise, the pixel status remains
in the ON status. In the illustrated example, the example
output generator 404 records the optimal pixel status (e.g.,
ON or OFF) of the pixel and similar calculations are per-
formed for the remaining pixels in the image. Once the opti-
mal pixel status of each pixel is determined, the example
mask generator 306 outputs the new mask to the example
distance calculator 308 and the example smoothing generator
310 to calculate a similarity score of the new mask and the
rectangle approximation 208.

The example distance calculator 308 illustrated in FIG. 3
measures the amount of overlap (e.g., similarity) between two
distributions. For example, the distance calculator 308 calcu-
lates the Bhattacharyya coefficient measuring the overlap
between the distribution of pixel values within the mask out-
put by the example mask generator 306 and the intensity
distribution model of the rectangle approximation 208. The
Bhattacharyya coefficient ranges from zero (0) to one (1)
wherein a zero indicates that there is no overlap and a one
indicates a perfect match between the distributions. The Bhat-
tacharyya coefficient of the similarity score ensures the mask
is consistent with the intensity distribution model of the rect-
angle approximation 208.

The example smoothing generator 310 generates a smooth-
ing factor used in calculating the similarity score. In the
illustrated example, the generated smoothing factor removes
small and/or isolated labels due to imaging noise. As a result,
the example smoothing generator 310 ensures label consis-
tency of neighboring pixels. For example, the smoothing
generator 310 receives a mask and reduces the noise in the
mask by identifying irregular pixels. For example, a pixel in
the ON status surrounded by pixels in the OFF status is likely
the result of noise in the image data. Thus, the example
smoothing generator 310 addresses the irregular pixel to
improve the similarity score. The example similarity calcu-
lator 312 receives the Bhattacharyya coefficient from the
example distance calculator 308 and the smoothing factor
from the example smoothing generator 310 and calculates a
similarity score. For example, the similarity calculator 312
adds the Bhattacharyya coefficient and the smoothing factor.
As aresult, the optimal similarity score of a mask is obtained
when an optimal Bhattacharyya coefficient and an optimal
smoothing factor are identified. For example, a mask with
increased similarity (e.g., a low Bhattacharyya coefficient)
but with increased noise may not be optimal compared to a
mask with less similarity but with less noise.

The similarity score output by the example similarity cal-
culator 312 is received by the example comparator 314. In the
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illustrated example of FIG. 3, the comparator 314 calculates
the difference between the similarity score of the current
mask and the similarity score of a previous mask (e.g., the
mask analyzed during the previous iteration). In some
examples, the comparator 314 stores the similarity score from
the previous iteration in a local memory or register. When the
difference between the two similarity scores is greater than a
threshold, the example comparator 314 outputs an indication
to generate a new mask. For example, when the difference
between the similarity score of the current mask and the
similarity score of the mask from the previous iteration is
greater than 1*107> (0.001), the example comparator 314
outputs to the example mask generator 306 an indication to
generate a new mask.

On the other hand, when the difference is less than (or equal
to) the threshold (0.001), the example comparator 314 deter-
mines the optimal mask (e.g., the mask most similar to the
intensity distribution model of the rectangle approximation
208 based on the distribution of pixel values) is identified and
the mask is further analyzed for mask regions. For example,
when the difference between the similarity score received
from the example similarity calculator 312 (e.g., the similar-
ity score of the current mask) and the similarity score of the
mask from the previous iteration is less than (or equal to) the
threshold (0.001), the example comparator 314 outputs the
mask to the example mask region labeler 316. A typical
example of the result obtained by the example optimizer 304
is shown in FIG. 5. In the illustrated example of FIG. 5,
portions of the image with similar image intensity to the
reference vertebra are identified by the boundary 502. While
a threshold of 1*1073 is used in the example, other thresholds
are also possible. Additionally and/or alternatively, the
example comparator 314 may compare the similarity score of
the current mask to a minimal value and determine the opti-
mal mask is identified when the similarity score is greater
than the threshold. In some examples, the optimal mask is
identified when the similarity score is less than a threshold.

As the image intensity of the mask, which represents the
entire spine image, is compared to the intensity distribution
model of the rectangle approximation 208 of only the refer-
ence vertebra, irrelevant and/or non-vertebral regions within
identified boundaries that have image intensities similar to the
reference vertebra may be identified. For example, a region
identified within another region is known as a hole. In the
illustrated example of FIG. 5, the boundary of region 504 is
within the boundary of region 506. Thus, while identifying
boundaries within the spine image is helpful in identifying
additional vertebrae, knowing only the boundaries is insuffi-
cient to do so.

Intheillustrated example of FIG. 3, the mask region labeler
316 receives the optimal mask from the example optimizer
304 and labels mask regions in the mask. For example, two
adjacent pixels with similar pixel intensities are identified
(e.g., labeled) as a mask region. In some examples, each label
is identified by a different color. In the illustrated example of
FIG. 6, similarly labeled mask regions are indicated through
shades of gray. For example, mask regions labeled 602 are a
different shade of gray than mask regions labeled 604 and
mask regions labeled 606. As it is known that vertebrae do not
contain holes (e.g., hole 504 in FIG. 5), the example mask
region labeler 316 also removes holes in the mask. For
example, there is no mask region in FIG. 6 labeled within the
mask region identified by boundary 506 (shown by the arrow
608). Removing holes addresses the problem of noise and
intensity inhomogeneity within the vertebrae regions. Identi-
fying mask regions within a binary mask and removing holes
may be done based on standard image processing techniques.
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Therefore, it is not explained in greater detailed here. In the
illustrated example of FIG. 3, the example mask region
labeler 316 of FIG. 3 stores information regarding the iden-
tified mask regions in a local memory, a register and/or a
storage device such as the example storage device 108 of FIG.
1. For example, the boundary coordinates of each mask
region may be stored.

FIG. 7 illustrates an example implementation of the
example shape analyzer 106 of FIG. 1. In the illustrated
example of FI1G. 7, the shape analyzer 106 analyzes the shape
of'labeled mask regions to determine whether a mask region
is a vertebra. As described above, the example shape analyzer
106 of FIG. 7 receives a rectangle approximation (e.g., the
example rectangle approximation 208 of FIG. 2) of the ref-
erence vertebra from the example rectangle approximator
102. Using the boundaries of the rectangle approximation, the
example shape analyzer 106 builds a statistical distribution
model describing the shape of the rectangle approximation.
As described below in connection with the example window
generator 704, the example shape analyzer 106 generates a
“sliding” window that limits the number of mask regions
analyzed. Using known anatomical information about the
overall shape of the spine as well as the shape of individual
vertebrae, the shape analyzer 106 traverses the spine image
from top to bottom. By doing so, a large set of irrelevant mask
regions in the image are removed from analysis. The example
shape analyzer 106 also receives information regarding mask
regions labeled in the spine image by the example mask
region analyzer 104. For example, the shape analyzer 106
receives information describing the location of each mask
region and/or information describing the boundary of each
mask region located within the window. Information regard-
ing the boundary of each mask region is used by the example
shape analyzer 106 to build a statistical distribution model
describing the shape of each labeled mask region. Based on
the results of a comparison of the statistical distribution mod-
els of the rectangle approximation and the mask regions, a
determination is made regarding whether the mask regionis a
vertebra.

Intheillustrated example of FIG. 7, the shape analyzer 106
includes a shape distribution builder 702, a window generator
704 and a similarity calculator 706. As described above, the
example shape analyzer 106 receives a rectangle approxima-
tion (e.g., the example rectangle approximation 208) of the
reference vertebra from the example rectangle approximator
102. The example shape distribution builder 702 of the illus-
trated example builds a statistical distribution model describ-
ing the rectangle approximation. For example, the shape dis-
tribution builder 702 builds a statistical distribution model
describing the rectangle approximation 208 using the dis-
tances between the centroid of the rectangle approximation
208 and all the pixels located on the boundary of the rectangle
approximation 208. In some examples, the centroid of the
rectangle approximation is located at the mid-point of the
length and width of the rectangle approximation. Knowing
the centroid and the boundary of the rectangle approximation
208, the example shape distribution builder 702 calculates the
distance between the centroid and each pixel on the boundary
of'the rectangle approximation 208. For example, the Euclid-
ean distance between the centroid and each pixel on the
boundary of the rectangle approximation may be calculated.
Similar to the example intensity distribution builder 302
described in connection with FIG. 3, the example shape dis-
tribution builder 702 builds a probability density function
describing the shape of the rectangle approximation based on
the calculated distances. However, the use of other statistical
distribution models is also possible.
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The example window generator 704 of the illustrated FIG.
7 generates a window in which all of the mask regions within
that window are compared to the rectangle approximation
208 based on the similarity of shapes. When the example
window generator 704 receives an indication to generate a
window, the example window generator 704 determines
whether the bottom of the spine image was reached. The
bottom of the spine image may be detected by, for example,
determining whether the previous window overlapped with
the bottom of the spine image based on the known dimensions
of'the spine image. If the previous window is at the bottom of
the screen image, the example window generator 704 stops
generating windows. When the window is not at the bottom of
the spine image, the example window generator 704 gener-
ates a new window and “slides” the window downward rela-
tive to the previous window based on the location of the
previously identified vertebra. Sliding the window downward
based on the previously identified vertebra is valid because of
the known anatomical information regarding the shape of the
spine. Thus, mask regions located outside the path of the
sliding window are known not to be vertebrae and do not need
to be analyzed, which saves processing power and improves
the time needed to automatically detect the vertebrae in the
spine image.

The example window generator 704 determines a rectangle
approximation of the previously detected vertebra and calcu-
lates a rectangular window using the previously detected
vertebra. In the instance of the first window generation, when
no vertebrae have been previously detected, the example win-
dow generator 704 uses the rectangle approximation 208 of
the reference vertebra as a starting point to generate the win-
dow.

FIG. 8 illustrates an example output generated during the
third window generation iteration. In the illustrated example
of FIG. 8, vertebra 802 is the reference vertebra, vertebrae
804 and 806 have been previously detected (e.g., identified)
and a mask region 808 is within a window 810. To generate
window 810, the example window generator 704 uses the
previously detected vertebra (e.g., vertebra 806) as a starting
point to generate the window. In the illustrated example, the
upper (horizontal) line segment of window 810 is parallel to
the lower (horizontal) line segment of a rectangle approxima-
tion of the previously identified vertebra (vertebra 806). The
mid-point (e.g., centroid) of the upper line segment of win-
dow 810 coincides exactly with the centroid of the lower line
segment of the rectangle approximation of vertebra 806. The
length of the upper line segment of window 810 is calculated
by multiplying the length of the lower line segment of the
rectangle approximation of vertebra 806 and a multiplier. In
the illustrated example, the multiplier is equal to two (2). The
example window generator 704 generates the side (vertical)
line segments of window 810 by multiplying the width of the
previously detected vertebra (vertebra 806) by the same mul-
tiplier (2). Thus, in the illustrated example, the window gen-
erator 704 generates a window 810 with four (4) times the
area of vertebra 806. However, generating a window using
other multipliers and dimensions of the previously detected
vertebra are also possible. For example, the example window
generator 704 may generate the side (vertical) lines segments
of' a window and the lower (horizontal) line segment of the
window with the same length as the upper line segment of
window. As a result, the example window generator 704
generates a square window.

Once the window 810 is generated, the example shape
distribution builder 702 receives the boundary information
for each mask region within the window. In some examples,
the boundary information is stored in a storage device such as
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the example storage device 108 of FIG. 1. Additionally and/or
alternatively, the boundary information may be stored in a
local memory or register of, for example, the example mask
region labeler 316 of FIG. 3. In the illustrated example of F1G.
8, the shape distribution builder 702 receives the boundary
information corresponding to the mask region 808. Using the
boundary information of the mask region 808, the example
shape distribution builder 702 builds a statistical distribution
model (e.g., a probability density function) describing the
shape of the mask region 808. In the illustrated example, the
shape distribution builder 702 builds a shape distribution
model describing each mask region within the window gen-
erated by the example window generator 704.

In the illustrated example of FIG. 7, the example similarity
calculator 706 receives the shape distribution model describ-
ing the reference vertebra and the shape distribution model
describing the mask region 808. As described above in con-
nection with the example distance calculator B3 of FIG. 3, the
example similarity calculator 706 of FIG. 7 measures the
amount of overlap (e.g., similarity) between the two distribu-
tions. For example, the similarity calculator 706 calculates
the Bhattacharyya coefficient measuring the overlap between
the distributions of distances of the two received distribu-
tions. The example similarity calculator 706 repeats this cal-
culationuntil a Bhattacharyya coefficient measuring the simi-
larity of each mask region within the window and the
reference vertebra is calculated. The example similarity cal-
culator 706 detects (e.g., identifies) a new vertebra in the
window based on the highest Bhattacharyya coefficient. In
some examples, the similarity calculator 706 records the
boundary information of the new vertebra in a local memory,
a register and/or a storage device (e.g., the example storage
device 108 of FIG. 1). The example similarity calculator 706
indicates to the example window generator 704 to generate a
new window when the new vertebra is detected. In some
examples, the similarity calculator 706 annotates labels (or
text) corresponding to the detected vertebrae boundaries.

As described above, knowing the vertebrae boundaries
allows straightforward calculations of measures and/or
benchmarks useful in computer-aided diagnosis. FIG. 9 illus-
trates example measurements and benchmarks which may be
determined based on the vertebrae boundaries 902 and sub-
sequently detected inter-vertebral discs 906. For example,
once the vertebrae boundaries 902 are obtained, the vertebrae
dimensions, including vertebrae heights 904 and areas may
be calculated. Disc dimensions, including disc heights 908
and areas, and disc intensity statistics, including the mean of
intensity values within a disc 910, may also be found. Another
example includes identitying benchmark points for disc bulg-
ing, including the center of the segment joining corners of two
neighboring vertebrae 912.

FIG. 10 illustrates a second example implementation of the
example vertebra detector 100 of FIG. 1. As described above
in connection with the example vertebra detector 100 of FIG.
1, the example vertebra detector 1000 is used to automatically
detect vertebrae boundaries in a spine image with minimal
user input. In addition to the functionality described above in
connection with the example vertebra detector 100 of FIG. 1,
the example vertebra detector 1000 of FIG. 10 automatically
propagates the identified vertebrae boundaries in the spine
image to other images (e.g., slices) in a series of images of the
same subject (e.g., patient). For example, the number of
images in spine studies may be larger than 100 images. In
some such examples, labeling all of these images using the
standard approach of manually labeling each boundary, label
and/or text annotation is prohibitively time-consuming. The
example vertebrae detector 1000 of FIG. 10 automates propa-
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gating the boundaries of the vertebrae throughout all the
images in the series. However, automating propagation of
labels and/or text annotations of any anatomical landmarks of
the spine (e.g., disc centroids) is also possible. For example,
in addition to selecting the three user points used to approxi-
mate the reference rectangle (e.g., rectangle approximation
208 of FIG. 2), the healthcare practitioner may also select
additional anatomical landmarks in the reference spine
image. Alternatively, the healthcare practitioner may select
additional anatomical landmarks in the reference spine image
after the vertebrae boundaries are detected.

The example vertebra detector 1000 includes an example
rectangle approximator 1002, an example mask region ana-
lyzer 1004 and an example vertebra identifier 1006 that func-
tion similarly to the counterpart components of the example
vertebra detector 100 of FIG. 1 Additionally, the example
vertebra detector 1000 includes an example storage device
1008. Because of the similarity of the like numbered compo-
nents, those components from FIG. 1 are not re-described
here. A complete description of the system 100 is provided
above. To propagate the vertebrae boundaries detected in the
reference spine image throughout the other images in the
series, the example vertebra detector 1000 includes a series
checker 1010 and a propagator 1012.

The example series checker 1010 receives an image and
determines whether that image is part of a series. For
example, the series checker 1010 checks metadata appended
to the image to determine whether the image is part of a series
of'images. When the image is not part of a series, the example
series checker 1010 resets a flag (e.g., flag=0) in the example
shape analyzer 1006. On the other hand, when the image is
part of a series of images, the example series checker 1010
sets the flag (e.g., flag=1) in the example shape analyzer 1006
and indicates to the example propagator 1012 an image
included in a series is being processed.

While the following example methods and systems are
described in connection to vertebrae landmarks identified ina
spine image, the example methods and systems may be used
with any landmarks identified in an image. For example,
landmarks may be identified (automatically or by a healthcare
provider) on a heart image to describe myocardial motion.
For instance, tracking landmarks through a series of images
may identify regional mall motion abnormalities of the left
ventricle. This information may be used to better diagnose
coronary heart disease, for example.

As described in further detail below in connection with
FIG. 11, the example propagator 1012 receives the vertebrae
boundaries from the example storage device 1008 and cap-
tures pixel coordinates of the reference vertebrae in the ref-
erence spine image. For example, the propagator 1012 iden-
tifies the pixel coordinates corresponding to a corner of each
of the reference vertebrae. Additionally and/or alternatively,
the example propagator 1012 may identify the pixel coordi-
nates of the respective boundaries of each reference verte-
brae. In the illustrated example of FIG. 10, the propagator
1012 identifies the displacement for each pixel in every image
in the series with respect to a neighboring image in the series.
The example propagator 1012 builds a displacement matrix
(e.g., a spatial mapping) between a reference image and any
other image in the series (e.g., a target image) by computing
a point-to-point mapping between two neighboring (e.g.,
consecutive) images in the series. For any image i in the
series, the example propagator 1012 retrieves the displace-
ment from the displacement matrix and the new vertebrae
boundaries of image i are displayed.

FIG. 11 illustrates an example implementation of the
example propagator 1012 of FIG. 10. The example propaga-
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tor 1012 receives a series of images such as images of a
patient taken at different moments in time. The example
propagator 1012 generates a statistical distribution model
describing each image and aligns two images. By doing so,
the displacement between any two images in the series may
be calculated. As described below in connection with the
example displacement matrix builder 1106, the example
propagator 1012 calculates the distance a reference image
needs to be offset in the x-axis and/or the y-axis (using the
Cartesian map) to align with a target image. The example
propagator 1012 repeats this for every image in the series and
generates a matrix to store the calculated displacement infor-
mation. Thus, by providing input indicating the location of
reference points on a reference image, the example propaga-
tor 1012 automatically identifies the location of the corre-
sponding points in any image in the series. This is helpful, for
example, when a healthcare practitioner is reviewing a series
of'images taken of the same subject over a period of time. For
example, a series of sagittal images of the spine taken while
the subject is breathing introduces movement of a reference
point(s) in each image due to inhalation and exhalation. Thus,
by being able to automatically locate and display the location
of'the reference point(s) in each image proves useful in reduc-
ing the time to identify the change in position of a reference
point(s) through a series of images.

The example propagator 1012 of FIG. 11 includes an
example storage checker 1102, an example distribution
model generator 1104, an example displacement matrix
builder 1106, an example landmark locator 1114, an example
landmark propagator 1116 and an example matrix storage
device 1118. When the example propagator 1012 is initiated,
the example storage checker 1102 determines whether the
series of images has been preprocessed and is stored in a
storage device such as the example matrix storage device
1118. If the series of images is stored in the storage device, the
example storage checker 1102 receives the preprocessed
information regarding the images. For example, the example
storage checker 1102 receives statistical distribution models
describing each image in the series from the example matrix
storage device 1118.

On the other hand, when the series of images is not stored
in the storage device, the example storage checker 1102 indi-
cates to the example distribution model generator 1104 to
generate statistical distribution models of the images. The
example distribution model generator 1104 generates a sta-
tistical distribution model based on image intensity similar to
the example intensity distribution builder 302 of FIG. 3. That
is, the example distribution model generator 1104 builds a
probability density estimation, such as a kernel density esti-
mation, describing the image based on the intensity (e.g., the
pixel distribution) of the image. The example distribution
model generator 1104 repeats this process for each image in
the series and stores the information (e.g., statistical distribu-
tion model information) in a storage device, such as the
example matrix storage device 1118.

The example displacement matrix builder 1106 receives
the generated statistical distribution models of the images and
calculates the distance (e.g., displacement) between corre-
sponding points in the images. This information is used by the
example landmark propagator 1116 to determine and display
the location of a reference point in a selected image (e.g., a
target image) in the series.

In the illustrated example of FIG. 11, the displacement
matrix builder 1106 includes an image selector 1108, a trans-
former 1110 and a displacement calculator 1112. When the
example displacement matrix builder 1106 receives the sta-
tistical distribution model information generated by the
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example distribution model generator 1104, the example
image selector 1108 determines the number of images in the
series and selects the middle image as the reference image.
For example, if a series of images includes 12 slices, slice 6 is
set as the reference image by the example image selector
1108. The example image selector 1108 selects a first neigh-
boring image from the reference image (e.g., slice 5) and a
second neighboring image from the reference image (e.g.,
slice 7) as first and second target images, respectively. The
example transformer 1110 uses the statistical distribution
model information to align the reference image (slice 6) with
the first target image (slice 5). The example transformer 1110
also aligns the reference image (slice 6) with the second target
image (slice 7). The example transformer 1110 of FIG. 11
continues to transform the reference image and the target
image until the maximum similarity is found. For example,
the transformer 1110 may use a Jacobian transformation to
maximize the correlation between the reference image
aligned with the target image. By doing so, the example
transformer 1110 generates a point-to-point mapping
between every point on the reference image to the points on
the target image. In the illustrated example of FIG. 11, each
“point” is a pixel. However, the use of other points, for
example, locations of interest points and/or geometrical fea-
tures (e.g., line segments, curves, etc.), is also possible.

Using the point-to-point mapping, the example displace-
ment calculator 1112 calculates the displacement (e.g., off-
set) between a pixel in the reference image and the target
image. For example, referring to the lower left corner of the
image as the origin in a Cartesian map, the pixel coordinates
(X, y) may be used to represent the location of a pixel in the
reference image. The example displacement calculator 1112
uses the point-to-point mapping generated by the example
transformer 1110 to calculate the displacement between the
pixel coordinates of a pixel in the reference image and the
pixel coordinates of the corresponding pixel in the target
image. That is to say, when a pixel located at (x, y) in the
reference image and the corresponding pixel in the target
image is at the pixel coordinates (x+dx, y+dy), the displace-
ment between the pixel coordinates is represented as (dx, dy).
In the illustrated example of FIG. 11, the displacement cal-
culator 1112 calculates the displacement between every pixel
in the reference image to the target image, and stores the
displacement in a storage device, such as the example matrix
storage device 1118. The example matrix storage device 1118
stores the displacements in a matrix from which the displace-
ment information may be recalled. FIG. 12 is an example
image generated by the example displacement matrix builder
1106 when the displacements are stored as displacement vec-
tors in the matrix stored in the example matrix storage device
1118. Slice 8 of FIG. 12 displays an output of the displace-
ment vectors when transforming from slice 7 to slice 8 (or
vice versa). Similarly, slice 12 of FIG. 12 displays an output
of the displacement vectors stored in the example matrix
storage device 1118 when transforming from slice 11 to slice
12 (or vice versa). For example, a healthcare practitioner may
look at the output displacement vectors over the series of
images to determine which areas of the image changed more
than other areas in the image between two consecutive
images. In some examples, the displacement calculator 1112
outputs to the example image selector 1108 to set the pro-
cessed target image as the new reference image and to calcu-
late a new target image. For example, the image selector 1108
sets slice Sand slice 7as the reference images and sets slice 4
and slice 8, respectively, as two new target slices.

As an illustrative example, the example displacement
matrix builder 1106 may include non-rigid image registra-
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tion. For example, rather than using a linear transformation to
align the target image and the reference image, an elastic
transformation using local warping to align the target image
and the reference image is used. In the illustrated example of
FIG. 11, a moving mesh generation algorithm including Jaco-
bian transformations is included to build the displacement
matrix.

The example landmark locator 1114 receives a land-
mark(s) (e.g., a reference point(s)) on a reference image, and
that landmark(s) is propagated from the reference image
throughout the series of images. In the illustrated example,
the example landmark located 1114 receives the reference
point automatically from the example storage device 1008 of
FIG. 10. Additionally and/or alternatively, the example land-
mark locator 1114 may receive the landmarks via user input
and/or a combination of automatic and manual user input. For
example, the vertebrae boundaries stored in the example stor-
age device 1008 by the example shape analyzer 1006 may be
displayed to the user via a user interface (e.g., a monitor). The
healthcare practitioner may then deselect a displayed vertebra
boundary and/or select an additional landmark such as an
inter-vertebral disc. The example landmark locator 1114 of
FIG. 11 identifies the pixel coordinates of the landmark in the
reference image. For example, using the Cartesian map with
the origin in the lower left corner of the image, the landmark
locator 1114 locates the pixel coordinates (x, y) of each iden-
tified landmark. In some examples, the landmark locater 1114
may record the pixel coordinates of each identified landmark
in a local memory, a register and/or a storage device (e.g., the
example storage device 1008 of FIG. 10).

The example landmark propagator 1116 receives a target
image from the user and generates the pixel coordinates ofthe
landmarks to display on the target image. For example, the
user (e.g., a healthcare practitioner) decides to track the loca-
tion of discs (e.g., inter-vertebral discs) in a spine image of a
subject over a time period including 12 images. The example
landmark propagator 1116 receives the pixel coordinates of
eachidentified landmark in the reference image. For example,
the landmark propagator 1116 receives the pixel coordinates
from the example landmark locator 1114 and/or the example
storage device 1008. The example landmark propagator 1116
also receives the displacement information of each pixel in
the series of images. For example, the landmark propagator
1116 receives the displacement matrix from the example
matrix storage device 1118. The example landmark propaga-
tor 1116 uses the pixel coordinates of each landmark from the
reference image and the pixel displacement information to
calculate the pixel coordinates of each landmark in each of the
target images. For example, to calculate the pixel coordinates
of a first landmark in slice 4 of the 12 slice series, the land-
mark propagator 1116 receives the pixel coordinates of the
first landmark in slice 6(x, y), the displacement of the first
landmark between slice 6 and slice 5 (dx,s, dyss) and the
displacement of the first landmark between slice 5 and slice 4
(dxs,, dys,). The example landmark propagator 1116 then
calculates the pixel coordinates of the first landmark on slice
4 (e.g., (X+dxXs5+dXs,, y+dyss+dys,). This calculated pixel
coordinate is displayed to the user.

FIGS. 13 and 14 are two example image series output by
the example propagator 1012. In the example output of FIG.
13, the user labeled the location of vertebrae in slice 6. The
vertebrae locations were propagated from slice 1 to slice 12
by the example propagator 1012. In the example out of FIG.
14, the example propagator 1012 propagated the location of
the labeled inter-vertebral discs in slice 6 from slice 1 to slice
12.
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In the illustrated example of FIG. 11, the displacement
matrix builder 1106 does not involve user input to build the
displacement matrix. Thus, this process may be performed
offline. For example, when the example propagator 1012
receives a series of images, the example propagator 1012 may
automatically build the displacement matrix describing the
displacement from one image to another image in the series
and store the displacement matrix in a storage device to be
used at a later time. As a result, the process of landmark
propagation through a series of images may be more effi-
ciently performed by recalling from the storage device the
necessary displacements rather than calculating the displace-
ments each time a user identifies a landmark.

While an example manner of implementing the vertebra
detector 100 has been illustrated in F1IGS. 1, 3, 4 and 7, one or
more of the elements, processes and/or devices illustrated in
FIGS. 1, 3, 4 and 7 may be combined, divided, re-arranged,
omitted, eliminated and/or implemented in any other way.
Further, the example rectangle approximator 102, the
example mask region analyzer 104, the example vertebra
identifier 106 and/or, more generally, the example vertebra
detector 100 of FIGS. 1, 3, 4 and 7 may be implemented by
hardware, software, firmware and/or any combination of
hardware, software and/or firmware. Thus, for example, any
of the example rectangle approximator 102, the example
mask region analyzer 104, the example vertebra identifier 106
and/or, more generally, the example vertebra detector 100
could be implemented by one or more circuit(s), program-
mable processor(s), application specific integrated circuit(s)
(ASIC(s)), programmable logic device(s) (PLD(s)) and/or
field programmable logic device(s) (FPLD(s)), etc. When any
of the apparatus or system claims of this patent are read to
cover a purely software and/or firmware implementation, at
least one of the example rectangle approximator 102, the
example mask region analyzer 104 and/or the example ver-
tebra identifier 106 are hereby expressly defined to include a
tangible computer readable medium such as amemory, DVD,
CD, Blu-ray, etc. storing the software and/or firmware. Fur-
ther still, the example vertebra detector 100 of FIGS. 1, 3, 4
and 7 may include one or more elements, processes and/or
devices in addition to, or instead of, those illustrated in FIGS.
1, 3, 4 and 7, and/or may include more than one of any or all
of the illustrated elements, processes and devices.

While an example manner of implementing the vertebra
detector 1000 has been illustrated in FIGS. 10 and 11, one or
more of the elements, processes and/or devices illustrated in
FIGS. 10 and 11 may be combined, divided, re-arranged,
omitted, eliminated and/or implemented in any other way.
Further, the example rectangle approximator 1002, the
example mask region analyzer 1004, the example shape ana-
lyzer 1006, the example series checker 1010, the example
propagator 1012 and/or, more generally, the example vertebra
detector 1000 of FIGS. 10 and 11 may be implemented by
hardware, software, firmware and/or any combination of
hardware, software and/or firmware. Thus, for example, any
of the example rectangle approximator 1002, the example
mask region analyzer 1004, the example vertebra identifier
1006, the example series checker 1010, the example propa-
gator 1012 and/or, more generally, the example vertebra
detector 1000 could be implemented by one or more
circuit(s), programmable processor(s), application specific
integrated circuit(s) (ASIC(s)), programmable logic
device(s) (PLD(s)) and/or field programmable logic device(s)
(FPLD(s)), etc. When any of the apparatus or system claims
of this patent are read to cover a purely software and/or
firmware implementation, at least one of the example rect-
angle approximator 1002, the example mask region analyzer
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1004, the example vertebra identifier 1006, the example
series checker 1010 and/or the example propagator 1012 are
hereby expressly defined to include a tangible computer read-
able medium such as a memory, DVD, CD, Blu-ray, etc.
storing the software and/or firmware. Further still, the
example vertebra detector 1000 of FIGS. 10 and 11 may
include one or more elements, processes and/or devices in
addition to, or instead of, those illustrated in FIGS. 10 and 11,
and/or may include more than one of any or all of the illus-
trated elements, processes and devices.

Flowcharts representative of example machine readable
instructions for implementing the vertebra detector 100 of
FIG. 1 and/or the vertebra detector 1000 of FIG. 10 are shown
in FIGS. 15, 16 and 17. In the illustrated examples, the
machine readable instructions comprise a program for execu-
tion by a processor such as the processor 1812 shown in the
example processing platform 1800 discussed below in con-
nection with FIG. 18. The program may be embodied in
software stored on a tangible computer readable medium
such as a CD-ROM, a floppy disk, a hard drive, a digital
versatile disk (DVD), a Blu-ray disk, or a memory associated
with the processor 1812, but the entire program and/or parts
thereof could alternatively be executed by a device other than
the processor 1812 and/or embodied in firmware or dedicated
hardware. Further, although the example program is
described with reference to the flowcharts illustrated in FIGS.
15, 16 and 17, many other methods of implementing the
example vertebra detector 100 and/or the example vertebra
detector 1000 may alternatively be used. For example, the
order of execution of the blocks may be changed, and/or some
of'the blocks described may be changed, eliminated, or com-
bined.

As mentioned above, the example processes of FIGS. 15,
16 and 17 may be implemented using coded instructions (e.g.,
computer readable instructions) stored on a tangible com-
puter readable storage medium such as a hard disk drive, a
flash memory, a read-only memory (ROM), a compact disk
(CD), a digital versatile disk (DVD), a cache, a random-
access memory (RAM) and/or any other storage media in
which information is stored for any duration (e.g., for
extended time periods, permanently, brief instances, for tem-
porarily buffering, and/or for caching of the information). As
used herein, the term tangible computer readable medium is
expressly defined to include any type of computer readable
storage medium and to exclude propagating signals. Addi-
tionally or alternatively, the example processes of FIGS. 15,
16 and 17 may be implemented using coded instructions (e.g.,
computer readable instructions) stored on a non-transitory
computer readable medium such as a hard disk drive, a flash
memory, a read-only memory, a compact disk, a digital ver-
satile disk, a cache, a random-access memory and/or any
other storage media in which information is stored for any
duration (e.g., for extended time periods, permanently, brief
instances, for temporarily buffering, and/or for caching of the
information). As used herein, the term non-transitory com-
puter readable medium is expressly defined to include any
type of computer readable storage medium and to exclude
propagating signals. As used herein, when the phrase “at
least” is used as the transition term in a preamble of a claim,
it is open-ended in the same manner as the term “comprising”
is open ended. Thus, a claim using “at least” as the transition
term in its preamble may include elements in addition to those
expressly recited in the claim.

FIG. 15 illustrates a flow diagram for an example method
or process 1500 to automatically detect a vertebra in a spine
image. At block 1502, a rectangle approximation of a refer-
ence (e.g., initial) vertebra identified by a healthcare practi-
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tioner (e.g., a radiologist, physician and/or technician) is gen-
erated. In some examples, the healthcare practitioner
indicates three corners of a reference vertebra in a spine
image by selecting three points on a display of the spine
image. The example rectangle approximator 102 uses the
three known corners of the initial vertebra to approximate a
rectangle approximation of the reference vertebra. For
example, by knowing the location of three corners of the
reference vertebra, the rectangle approximator 102 approxi-
mates the location of the fourth corner of the reference ver-
tebra. The example rectangle approximator 102 uses the four
corners (e.g., the three known corners and the fourth approxi-
mated corner) to generate a rectangle approximation of the
reference vertebra by drawing lines from one corner to the
next. The example rectangle approximator 102 communi-
cates the approximated rectangle of the reference vertebra to
the example mask region analyzer 104 and the example shape
analyzer 106.

At block 1504, the example mask region analyzer 104
identifies a mask similar to the image intensity (e.g., distri-
bution of pixels) of the approximated rectangle of the refer-
ence vertebra. For example, the distance calculator 308 com-
pares the similarity between the image intensity of the
approximated rectangle to the image intensity of a mask. At
block 1506, the identified mask most similar to the rectangle
approximation in pixel intensity is used to label mask
region(s) within the mask. For example, two adjacent pixels
within the mask with similar distribution of pixels are labeled
as the same mask region.

At block 1508, the example shape analyzer 106 compares
the shape of the rectangle approximation to the shape of the
labeled mask regions. For example, the window generator
704 generates a window including a labeled mask region(s).
The mask region within the window closest in shape to the
rectangle approximation is detected as a vertebra. In some
examples, the shape analyzer 106 stores the boundary of the
identified vertebra in a storage device, such as the example
storage device 108.

FIG. 16 illustrates a flow diagram for an example method
orprocess 1600 to automatically detect a vertebra in the spine
image and whether the landmark (e.g., the vertebra boundary)
is to propagate through a series of images. At block 1602, the
example series checker 1010 of the example vertebra detector
1000 receives a reference image. At block 1604, the example
series checker 1010 determines whether the reference image
is one image in a series of images. For example, the series
checker 1010 may check metadata included with the refer-
ence image to see if the reference image is part of a series of
images. At block 1606, if the reference image is part of a
series, the example series checker 1010 outputs an indicator
to the example propagator 1012. As described below in con-
nection with FIG. 17, the example propagator 1012 checks
whether a displacement matrix describing the series of
images is stored in the matrix storage device 1118. At block
1608, the example series checker 1010 also sets a series flag
(e.g., flag=1) at the example shape analyzer 1006 indicating
the reference image is part of a series of images.

At block 1610 in the illustrated example of FIG. 16, the
example rectangle approximator 1002 receives user input
from a healthcare practitioner. For example, the healthcare
practitioner selects three corners of a reference vertebra in a
reference image of a spine. At block 1612, the example rect-
angle approximator 1002 generates a rectangle approxima-
tion of the reference vertebra based on the user input. The
example mask region analyzer 1004 builds a statistical distri-
bution model of the rectangle approximation based on the
pixel distribution within the rectangle approximation. The
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example mask region analyzer 1004 uses this distribution
model to identify a mask (e.g., a binary mask) similar to the
rectangle approximation based on image intensity. At block
1614, this mask is used to label mask regions within the mask.
Using the rectangle approximation of the reference vertebra,
the example shape analyzer 1006 compares the shape of the
labeled mask regions with the shape of the reference vertebra.
For example, the shape analyzer 1006 builds a statistical
distribution model describing the rectangle approximation
based on the distribution of distances from the centroid of the
rectangle approximation to each of the pixels on the border of
the rectangle approximation. At block 1616, the mask regions
most similar to the shape of the rectangle approximation are
labeled as vertebrae in the spine image and the boundary of
each identified (e.g., detected) vertebra is stored. At block
1618, once the example shape analyzer 1006 is done compar-
ing the mask regions, the example shape analyzer 1006
checks the status of the series flag. At block 1620, if the series
flag is set (e.g., flag=1), the boundaries and/or landmarks are
propagated through the series of images. If the series flag is
not set (e.g., flag=0), the process ends.

FIG. 17 illustrates a flow diagram for an example method
or process 1700 to propagate a landmark through a series of
images. At block 1702, the example propagator 1012 deter-
mines whether a displacement matrix describing the input
series of images is stored in a storage device. For example, the
storage checker 1102 checks the matrix storage device 1118
if a displacement matrix describing the input series of images
is stored. At block 1714, and as described in further detail
below, when the example storage checker 1102 determines
the displacement matrix is stored, the example propagator
1012 locates the pixel coordinates of each landmark in the
reference image. On the other hand, when no displacement
matrix describing the series of images is stored in the storage
device, at block 1704, the example distribution model gen-
erator 1104 generates probability density estimates describ-
ing each image in the series of images based on the distribu-
tion of pixels in the image (e.g., image intensity).

At block 1706, the example image selector 1108 selects a
reference image and a target image to align. In the illustrated
example, during the initial selection, the reference image is
selected by determining the mid-point image in the series of
images. On the other hand, if a reference image and target
image were previously selected, the previous target image is
selected as the new reference image and a neighboring image
is selected as the new target image. At block 1708, when the
reference image and target image are selected, the reference
image is aligned with the target image. For example, the
images are aligned based on the statistical distribution models
generated by the example distribution model generator 1104.
At block 1710, once aligned, the displacement between the
pixel coordinates in the reference image and the correspond-
ing pixel coordinates in the target image is calculated of each
pixel. At block 1712, each calculated displacement is stored
in a storage device such as the example matrix storage device
1118.

Atblock 1714, when the example propagator 1012 receives
a reference image with labeled landmarks (e.g., vertebrae
boundaries, text annotations, etc.), the example landmark
locator 1114 locates the pixel coordinates of each landmark in
the reference image. In some examples, the landmark loca-
tions are automatically detected. For example, the example
vertebra detector 1000 detects the vertebrae boundaries in a
reference image. Additionally and/or alternatively, the user
(e.g., a healthcare practitioner) manually selects/deselects
landmarks in the reference image. At block 1716, once the
landmark locations in the reference image are located, the
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example landmark propagator 1116 uses the displacements
stored in the displacement matrix to calculate the correspond-
ing landmark location in each of the target images. For
example, if the user decides to review images 1 through 12 of
a 12 image series, the example landmark propagator 1116
displays in images 1 through 12 the location of each landmark
located in the reference image.

FIG. 18 is a block diagram of an example processing plat-
form 1800 capable of executing the instructions of FIGS. 15,
16 and 17 to implement, for example, the vertebra detector
100 and/or the vertebra detector 1000 of FIGS. 1 and/or 10.
The processing platform 1800 can be, for example, a server, a
personal computer, an audience measurement entity, an Inter-
net appliance, a DVD player, a CD player, a digital video
recorder, a Blu-ray player, a gaming console, a personal video
recorder, a set top box, or any other type of computing device.

The processing platform 1800 of the instant example
includes a processor 1812. For example, the processor 1812
can be implemented by one or more microprocessors or con-
trollers from any desired family or manufacturer.

The processor 1812 includes a local memory 1813 (e.g., a
cache) and is in communication with a main memory includ-
ing a volatile memory 1814 and a non-volatile memory 1816
via a bus 1818. The volatile memory 1814 may be imple-
mented by Synchronous Dynamic Random Access Memory
(SDRAM), Dynamic Random Access Memory (DRAM),
RAMBUS Dynamic Random Access Memory (RDRAM)
and/or any other type of random access memory device. The
non-volatile memory 1816 may be implemented by flash
memory and/or any other desired type of memory device.
Access to the main memory 1814, 1816 is controlled by a
memory controller.

The processing platform 1800 also includes an interface
circuit 1820. The interface circuit 1820 may be implemented
by any type of interface standard, such as an Ethernet inter-
face, a universal serial bus (USB), and/or a PCI express inter-
face.

One or more input devices 1822 are connected to the inter-
face circuit 1820. The input device(s) 1822 permit a user to
enter data and commands into the processor 1812. The input
device(s) can be implemented by, for example, a keyboard, a
mouse, atouchscreen, a track-pad, atrackball, isopoint and/or
a voice recognition system.

One or more output devices 1824 are also connected to the
interface circuit 1820. The output devices 1824 can be imple-
mented, for example, by display devices (e.g., a liquid crystal
display, a cathode ray tube display (CRT), a printer and/or
speakers). The interface circuit 1820, thus, typically includes
a graphics driver card.

The interface circuit 1820 also includes a communication
device such as a modem or network interface card to facilitate
exchange of data with external computers via a network 1826
(e.g., an Ethernet connection, a digital subscriber line (DSL),
a telephone line, coaxial cable, a cellular telephone system,
etc.).

The processing platform 1800 also includes one or more
mass storage devices 1828 for storing software and data.
Examples of such mass storage devices 1828 include floppy
disk drives, hard drive disks, compact disk drives and digital
versatile disk (DVD) drives. The mass storage device 1828
may implement the local storage device.

The coded instructions 1832 of FIGS. 15,16 and 17 may be
stored in the mass storage device 1828, in the volatile memory
1814, in the non-volatile memory 1816, and/or on a remov-
able storage medium such as a CD or DVD.

From the foregoing, it will appreciate that disclosed meth-
ods and systems describe automated, accurate, fast and repro-
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ducible detection of vertebrae boundaries in spine images.
The methods and systems allow computing automatically
several diagnosis measures such as vertebraec dimensions,
disc dimensions, disc intensity statistics and disc bulging
benchmarks. The methods and systems allow quantitative and
reproducible reporting of spinal deformities/diseases, and
can improve significantly the accuracy and processing time of
spine-analysis procedures. The methods and systems allow
automatically propagating any label placed on a reference
image to the rest of the images in the series and to annotate the
corresponding anatomical landmarks accurately.

Although certain example methods, apparatus and articles
of manufacture have been described herein, the scope of
coverage of this patent is not limited thereto. On the contrary,
this patent covers all methods, apparatus and articles of
manufacture fairly falling within the scope of the claims of
this patent.

What is claimed is:

1. A method to detect a vertebra in a spine image, the
method comprising:

generating, using a processor, a rectangle approximation of

a reference vertebra in the spine image;

identifying, in the spine image, a mask similar to the rect-

angle approximation;

labeling a mask region in the mask;

comparing a shape of the mask region to the rectangle

approximation; and

detecting a vertebra in the spine image based on the com-

parison.

2. A method as defined in claim 1 wherein generating the
rectangle approximation further comprises:

identifying a plurality of points of the reference vertebra;

and

generating the rectangle approximation based on the plu-

rality of points.

3. A method as defined in claim 2 wherein the plurality of
points is input by a user.

4. A method as defined in claim 1 wherein the mask is a first
mask, and wherein identifying the mask similar to the rect-
angle approximation further comprises:

describing the rectangle approximation based on a distri-

bution of pixels corresponding to the rectangle approxi-
mation;

generating a second mask based on a status of each pixel

corresponding to pixels in the spine image;

calculating a similarity score between the description of

the rectangle approximation and the second mask; and
identifying the second mask as the first mask when the
similarity score exceeds a threshold.

5. A method as defined in claim 4 wherein describing the
rectangle approximation includes building a statistical distri-
bution model based on image intensity.

6. A method as defined in claim 4 wherein generating the
mask further comprises:

calculating a first value when a pixel is in an ON status;

calculating a second value when the pixel is in an OFF

status; and

storing the status of the pixel based on a difference between

the first value and the second value.

7. A method as defined in claim 4 wherein the similarity
score includes a similarity measure and a smoothing factor.

8. A method as defined in claim 4 wherein identifying the
mask further comprises:

calculating a first similarity score between the second mask

and the rectangle approximation;

calculating a second similarity score, the second similarity

score calculated prior to the first similarity score; and
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comparing the difference of the first similarity score and

the second similarity score to a threshold.

9. A method as defined in claim 1 wherein labeling the
mask region further comprises:

comparing a first pixel to a second pixel neighboring the

first pixel in the mask; and

labeling the first pixel and the second pixel based on the

comparison.

10. A method as defined in claim 9 wherein the comparison
of'the first pixel and the second pixel is based on pixel inten-
sity of the first pixel and the second pixel.

11. A method as defined in claim 1 wherein comparing the
labeled mask region to the rectangle approximation further
comprises:

describing a shape of the rectangle approximation;

describing the shape of the mask region; and

comparing the shape of the rectangle approximation to the

shape of the mask region.

12. A method as defined in claim 11 wherein describing the
shape of the rectangle approximation further comprises:

identifying a centroid of the rectangle approximation;

calculating a distance from the centroid to a pixel on a

boundary of the rectangle approximation; and

building a model based on the calculated distances.

13. A method as defined in claim 1 wherein labeling
respective mask regions in the mask further comprises iden-
tifying discs.

14. A method as defined in claim 1 further comprising:

locating a landmark on a reference image;

determining whether the reference image is included in a

series of images; and

when the reference image is included in the series of

images, locating the landmark in the remaining images
of the series of images.

15. A method as defined in claim 14 wherein the reference
image is the spine image.

16. A method as defined in claim 14 wherein the landmark
is a vertebra detected in the spine image.

17. A method as defined in claim 14 wherein non-rigid
image registration is used to locate the landmark in the
remaining images.

18. A method as defined in claim 14 wherein the landmark
is identified by a user.

19. A system to detect vertebra in a spine image, compris-
ing:

a processor coupled to a memory and programmed to:

determine whether the spine image is included in a series of

images;

generate a rectangle approximation of a reference vertebra

in the spine image;

identify a mask similar to the rectangle approximation

based on a comparison of image intensity;

label mask regions in the mask based on a comparison of

pixel intensity;
generate a window including a portion of the mask;
compare a plurality of mask regions within the window to
the rectangle approximation based on a shape of each
mask region and a shape of the rectangle approximation;

identify the mask region closest to the shape of the rect-
angle approximation as a vertebra; and
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propagate the location of the vertebra to the remaining
images in the series of images when the spine image is
included in the series of images.

20. A tangible computer readable storage medium includ-
ing computer program code to be executed by a processor, the
computer program code, when executed, to implement a
method to detect a vertebra in a spine image, the method
comprising:

generating a rectangle approximation of a reference verte-

bra in the spine image;

identifying, in the spine image, a mask similar to the rect-

angle approximation;

labeling a mask region in the mask;

generating a window including a portion of the mask;

comparing a shape of a mask region within the window to

the rectangle approximation; and

determining whether the mask region is the vertebra based

on the comparison.

21. A tangible computer readable medium as defined in
claim 20 wherein identifying the mask similar to the rectangle
approximation further comprises:

describing the rectangle approximation based on a distri-

bution of pixels corresponding to the rectangle approxi-
mation;

generating a mask based on a binary status of each pixel

corresponding to pixels in the spine image;

calculating a similarity score between the description of

the rectangle approximation and the mask; and

identifying the mask when the similarity score exceeds a

threshold.

22. A tangible computer readable medium as defined in
claim 21 wherein identifying the mask further comprises:

calculating a first similarity score between the mask and

the rectangle approximation;

calculating a second similarity score, the second similarity

score calculated prior to the first similarity score; and
comparing the difference of the first similarity score and
the second similarity score to a threshold.

23. A tangible computer readable medium as defined in
claim 20 wherein labeling the mask region in the mask further
comprises:

comparing a first pixel to a second pixel neighboring the

first pixel in the mask; and

labeling the first pixel and the second pixel based on the

comparison.

24. A tangible computer readable medium as defined in
claim 20 wherein comparing the shape of the mask region
within the mask to the rectangle approximation further com-
prises:

describing a shape of the rectangle approximation;

describing the shape of the mask region; and

comparing the shape of the rectangle approximation to the

shape of the mask region.

25. A tangible computer readable medium as defined in
claim 20 further comprising:

locating a landmark on a reference image;

determining whether the reference image is located in a

series of images; and

when the reference image is included in the series of

images, locating the landmark in remaining images of
the series of images.
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