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METHODS, APPARATUS AND ARTICLES OF 
MANUFACTURE TO TRACK ENDOCARDIAL 

MOTION 

RELATED APPLICATION 

This patents claims bene?t from US. Provisional Patent 
Application Ser. No. 61/242,215, entitled “Methods, Appa 
ratus and Articles of Manufacture to Detect Heart Motion 
Abnormalities,” and ?led Sep. 14, 2009, which is hereby 
incorporated by reference in its entirety. 

FIELD OF THE DISCLOSURE 

This disclosure relates generally to endocardial motion 
and, more particularly, to methods, apparatus and articles of 
manufacture to track endocardial motion. 

BACKGROUND 

A widely used cardiac diagnostic technique involves the 
imaging of different portions of a heart during various phases 
of a heartbeat or cardiac cycle to track endocardial motion, 
and/or to detect or diagnose cardiac disease, abnormalities 
and/or damage. Example cardiac imaging tools are a mag 
netic resonance imaging (MRI) system and a computed 
topography (CT) imaging system. 

BRIEF DESCRIPTION OF THE INVENTION 

In view of the following descriptions and ?gures, it should 
be clear that the present disclosure describes methods, appa 
ratus and articles of manufacture to track endocardial motion. 
Coronary heart disease is the most common type of cardio 
vascular disease, and early detection of heart motion abnor 
mality(-ies) may be used to diagnose and/or control heart 
disease. Accordingly, tracking and/or predicting heart wall 
motion can be extremely useful in the clinical environment. 
However, due to the vast amount of information and the 
uncertainties associated with heart motion, tracking and/or 
identifying heart motion abnormalities can be dif?cult via 
visual inspection of cardiac images. 

The example methods, apparatus and articles of manufac 
ture disclo sed herein provide certain advantages over existing 
heart motion tracking methods. For example, the subjective 
evaluation of heart images by a radiologist can be reduced 
and/or eliminated, thereby reducing inter and/or intra-ob 
server variability. The examples disclosed herein also enable 
automated analysis, which can reduce the time required to 
obtain a diagnosis and/or begin treatment. 
As disclosed herein, endocardial motion may be tracked by 

processing a sequence of cardiac images. The cardiac images 
may be segmented into one or more regions using a graph cut 
distribution process, which determines an initial segmenta 
tion of the left ventricle (LV) cavity within each frame to 
maintain a substantially consistent photometric and/or geo 
metric distribution of the LV cavity over the sequence of 
cardiac images. The segmented images may then be pro 
cessed or ?ltered using multiple models for temporal consis 
tency. A Markovian switching system, such an interacting 
multiple model (IMM) estimator, that has both continuous 
(noise) and discrete (model) uncertainties may be used to 
process the segmented images. Outputs of the multiple mod 
els may be combined based on respective probabilities of 
correct motion estimation to form an estimate and/ or predic 
tion of endocardial motion. One or more outputs of the IMM 
estimator may be processed to detect and/or identify heart 
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2 
motion abnormalities. In some examples, a forward IMM 
estimator and a backward IMM estimator may be computed 
and combined to form an estimate and/or prediction of 
endocardial motion. 

According to certain aspects of this disclosure, an example 
method includes segmenting a plurality of cardiac images of 
a left ventricle to form respective ones of a plurality of seg 
mented images, updating a plurality of models based on the 
plurality of segmented images to form respective ones of a 
plurality of motion estimates for the left ventricle, computing 
a plurality of probabilities for respective ones of the plurality 
of models, and computing a weighted sum of the plurality of 
motion estimates based on the plurality of probabilities, the 
weighted sum representing a predicted motion of the left 
ventricle. 

According to further aspects of this disclosure, an example 
apparatus includes a segmenter to segment a plurality of 
cardiac images of a left ventricle to form respective ones of a 
plurality of segmented images, a Kalman ?lter to update a 
plurality of models based on the plurality of segmented 
images to form respective ones of a plurality of motion esti 
mates for the left ventricle, an IMM estimator to compute a 
plurality of probabilities for respective ones of the plurality of 
models, and a motion tracker compute a weighted sum of the 
plurality of motion estimates based on the plurality of prob 
abilities, the weighted sum representing a predicted motion of 
the left ventricle. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic illustration of an example diagnostic 
imaging system within which the example methods, appara 
tus and articles of manufacture described herein may be 
implemented. 

FIG. 2 illustrates an example image lifecycle management 
?ow within which the example methods, apparatus and 
articles of manufacture described herein may be imple 
mented. 

FIG. 3 illustrates an example manner of implementing the 
example diagnostic workstation of FIG. 1. 

FIG. 4 illustrates an example manner of implementing the 
example image processing module of FIG. 3. 

FIGS. 5-7 are ?owcharts representative of example pro 
cesses that may be carried out to implement the example 
diagnostic workstation of FIGS. 1 and 3. 

FIG. 8 is a schematic illustration of an example processor 
platform that may be used and/ or pro grammed to carry out the 
example processes of FIG. 5-7 and/or to implement any or all 
of the example methods, apparatus and articles of manufac 
ture described herein. 

DETAILED DESCRIPTION 

In the interest of brevity and clarity, throughout the follow 
ing disclosure references will be made to an example diag 
nostic imaging workstation 105. However, the methods, 
apparatus and articles of manufacture described herein to 
track or predict endocardial motion may be implemented by 
and/or within any number and/or type(s) of additional and/or 
alternative diagnostic imaging systems. For example, the 
methods, apparatus and articles of manufacture described 
herein could be implemented by or within a device and/or 
system that captures diagnostic images (e.g., a computed 
tomography (CT) imaging system and/or a magnetic reso 
nance imaging (MRI) system), and/or by or within a system 
and/or workstation designed for use in viewing, analyZing, 
storing and/or archiving diagnostic images (e.g., the GE® 
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picture archiving and communication system (PACS), and/or 
the GE advanced workstation (AW)). Moreover, the example 
methods, apparatus and articles of manufacture disclosed 
herein may be used to process any number and/ or type(s) of 
other images, including other types of cardiac images, to 
track motion. 

FIG. 1 illustrates an example diagnostic imaging system 
100 including the example diagnostic imaging workstation 
105 to process cardiac left-ventricle images to track endocar 
dial motion. The cardiac left-ventricle images may be cap 
tured by any number and/or type(s) of image acquisition 
system(s) 110, and stored in any number and/or type(s) of 
image database(s) 115 managed by any number and/or 
type(s) of image manager(s) 120. The processing of cardiac 
left-ventricle images by the example diagnostic imaging 
workstation 105 may be scheduled by any number and/or 
type(s) of scheduler(s) 125. Example image acquisition sys 
tems 110 include, but are not limited to, a CT imaging system 
and/ or an MRI system. Images may be stored and/or archived 
in the example image 115 of FIG. 1 using any number and/or 
type(s) of data structures, and the example image database 
115 may be implemented using any number and/or type(s) of 
memory(-ies), memory device(s) and/or storage device(s) 
such as a hard disk drive, a compact disc (CD), a digital 
versatile disc (DVD), a ?oppy drive, etc. 

FIG. 2 illustrates an example image lifecycle management 
?ow 200 that may be implemented by the example diagnostic 
imaging system 100 of FIG. 1. Images (e.g., left-ventricle 
images) are acquired, created and/or modi?ed by the image 
acquisition system(s) 110 (block 205). The example image 
manager(s) 120 replicate, distribute, organize and/or other 
wise manage the captured images (block 210). The example 
diagnostic imaging workstation 105 of FIG. 1 processes a 
sequence of replicated, distributed, organized and/or other 
wise managed images to, among other things, track endocar 
dial motion (block 215). Information created, computed and/ 
or otherwise determined during the tracking, estimation and/ 
or prediction of endocardial motion by the diagnostic 
imaging workstation 105 can be used to reduce the number of 
image(s) and/or the amount of data that must be stored, 
archived and/or otherwise maintained for future recall (block 
220). 

FIG. 3 illustrates an example manner of implementing the 
example diagnostic imaging workstation 105 of FIG. 1. The 
example diagnostic imaging workstation 105 of FIG. 3 may 
implement any or all of the example methods, apparatus and 
articles of manufacture disclosed herein to track endocardial 
motion. To allow a user (not shown) to interact with the 
example diagnostic imaging workstation 105, the diagnostic 
imaging workstation 105 of FIG. 3 includes any number 
and/or type(s) of user interface module(s) 305, any number 
and/or type(s) of display(s) and/or output device(s) 310 and 
any number and/or type(s) of input device(s) 315. The 
example user interface module(s) 305 of FIG. 3 implements 
an operating system to present information (e.g., images, 
windows, screens, interfaces, dialog boxes, etc.) at the 
display(s) and/ or output device(s) 310, and to allow a user to 
control, con?gure and/or operate the example diagnostic 
imaging workstation 105 via the input device(s) 315. The user 
provides and/or makes inputs and/or selections to the user 
interface module 305 and/or, more generally, to the example 
diagnostic imaging workstation 105 via the input device(s) 
315. Example input devices 315 include, but are not limited 
to, a keyboard, a touch screen, a trackball and/or a mouse. In 
an example, a patient search window is presented at the dis 
play 310, and the input device(s) 315 are used to enter search 
criteria to identify a particular patient. When a patient is 
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4 
identi?ed and selected, the example user interface 305 pre 
sents a list of available diagnostic images for the patient at the 
display 310, and the user selects one or more diagnostic 
images and/ or sequences of diagnostic images using the input 
device(s) 315. An image-processing module 320 obtains the 
selected image sequence(s) from the example image manager 
120, processes the selected image sequence(s) to track 
endocardial motion, and presents information related to the 
tracked, estimated and/ or predicted endocardial motion and/ 
or identi?ed probable heart motion abnormalities at the dis 
play 310 for viewing by the user. Such information may be 
used in the diagnosis of the selected patient. An example 
manner of implementing the example image processing mod 
ule 320 of FIG. 3 is described below in connection with FIG. 
4. Example processes that may be carried out to implement 
the example image processing module 320 and/ or, more gen 
erally, the example diagnostic imaging workstation 105 are 
described below in connection with FIGS. 5-7. 

While an example manner of implementing the example 
diagnostic imaging workstation 105 of FIG. 1 has been illus 
trated in FIG. 3, one or more of the interfaces, data structures, 
elements, processes and/or devices illustrated in FIG. 3 may 
be combined, divided, re-arranged, omitted, eliminated and/ 
or implemented in any other way. For example, the example 
user interface(s) 305, the example display(s) and/or output 
device(s) 310, the example input device(s) 315, the example 
image processing module 320 and/or, more generally, the 
example diagnostic imaging workstation 105 of FIG. 3 may 
be implemented by hardware, software, ?rmware and/ or any 
combination of hardware, software and/or ?rmware. Thus, 
for example, any of the example user interface(s) 305, the 
example display(s) and/or output device(s) 310, the example 
input device(s) 315, the example image processing module 
320 and/or, more generally, the example diagnostic imaging 
workstation 105 may be implemented by one or more 
circuit(s), programmable processor(s), application speci?c 
integrated circuit(s) (ASIC(s)), programmable logic 
device(s) (PLD(s)) and/ or ?eld programmable logic device(s) 
(FPLD(s)), etc. When any apparatus claim of any patent 
resulting from this application is read to cover a purely soft 
ware and/or ?rmware implementation, at least one of the 
example user interface(s) 305, the example display(s) and/or 
output device(s) 310, the example input device(s) 315, the 
example image processing module 320 and/or, more gener 
ally, the example diagnostic imaging workstation 105 are 
hereby expressly de?ned to include a tangible computer 
readable medium such as a memory, a DVD, a CD, etc. 
storing the ?rmware and/or software. Further still, the 
example diagnostic imaging workstation 105 may include 
interfaces, data structures, elements, processes and/or devices 
instead of, or in addition to, those illustrated in FIG. 3 and/or 
may include more than one of any or all of the illustrated 

interfaces, data structures, elements, processes and/or 
devices. 

FIG. 4 illustrates an example manner of implementing the 
example image processing module 320 of FIG. 3. To segment 
selected image sequence(s), the example image processing 
module 320 of FIG. 4 includes a segmenter 405. Using any 
number and/or type(s) of method(s) and/or algorithm(s), the 
example segmenter 405 of FIG. 4 processes selected images 
and/or image sequences to detect, identify, determine and/or 
estimate the boundary of the left-ventricle heart cavity in each 
selected image. In other words, the example segmenter 405 
processes the selected images to identify the endocardium in 
each of the selected images. 
The segmentation of the LV within any particular cardiac 

image may be dif?cult due to low contrast and/ or photometric 
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similarities between connected cardiac regions. The example 
segmenter 405 of FIG. 4 implements a graph cut distribution 
method, algorithm and/ or process to determine an initial LV 
cavity segmentation for each selected cardiac image frame. 
The graph cut distribution method implemented by the 
example segmenter 405 substantially maintains the photo 
metric and/or geometric distributions of the LV cavity over a 
sequence of cardiac images. 

Letting 1P”:l”(p): P C 1R 2%1, ne[1 . . . N] represent a 
cardiac image sequence, with N being the number of frames 
in the sequence, P represent the positional array, and l repre 
sent the space of photometric variables, the example seg 
menter 405 of FIG. 4 partitions P for each frame ne[2 . . . N] 
into two regions: the heart cavity and the its complement in P. 
The example segmenter 405 partitions P by minimizing a 
discrete cost function with respect to a binary variable or 
labeling L”(p): PQ{0, 1 }, which represents the partitioning of 
P. P is partitioned into a heart cavity C” corresponding to 
region {peP/L”(p):1} and its complement, the background 
B” corresponding to region {peP/L”(p):0}. An example cost 
function includes an intensity or photometric matching term 
and a distance or geometric matching term. For any particular 
labeling L: PQ{0,1}, any particular image I: P C 1R 2%1, and 
any space of variables 1, example matching terms can be 
de?ned based on a kernel density estimate (KDE) and a 
Bhattacharyya coef?cient. 
An example KDE P L J] , which represents the distribution of 

image data 1 within region RL:{peP/L(p):1}, can be 
expressed mathematically as 

(1) 
. . PERL 

V161, PLIU) = AL , where 

1 a.in (2) 
K01) = eXP 2” 

V 27r0'2 

AL represents the number of pixels within the region RL 
de?ned by ALIZRL 1., and 0 represents the width of the Gaus 
sian kernel. 
An example Bhattacharyya coe?icient B(f,g), which rep 

resents the amount of overlap (similarity) between two dis 
tributions f and g, can be expressed mathematically as 

In some examples a segmentation of an initial or learning 
frame I1 (i.e., a labeling Ll de?ning a partition {C1,Bl}) is 
provided by a user of the example diagnostic imaging work 
station 105. Starting with the segmentation of the initial frame 
11, the example segmenter 405 of FIG. 4 computes and/or 
adjusts photometric and geometric model distributions and/or 
constraints to segment subsequent frames 1”, ne[2 . . . N]. 
An example photometric constraint may be computed as 

follows. Starting from an intensity model MIIPLl 11’ learned 
for a previous frame, the example segmenter 405 of FIG. 4 
?nds for each subsequent frame I” a region C” whose intensity 
distribution most closely matches MI. The example seg 
menter 405 identi?es the region C” by minimizing the follow 
ing intensity matching function with respect to L 

An example geometric constraint, which constrains the 
segmentation based on prior geometric information (shape, 
scale, and position of the cavity) obtained from a previously 
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6 
segmented image, can be computed as follows. Let c repre 
sent the centroid of cavity C1 in the initial or learning frame 11, 
and let 

mp) 

represent a distance image measurement or metric at each 
point peP representing the normalized distance between p and 
c, where D represents the space of distance variables and ND 
comprises a normalization constant. Letting MD :P L1 DD rep 
resent the model distribution of distances within the cavity C1 
in the learning frame 11, the example segmenter 405 of FIG. 4 
identi?es the region C” whose distance distribution most 
closely matches MD. The region C” may be identi?ed by 
minimizing the following mathematical expression 

An example segmentation cost function includes the 
example photometric and geometric matching terms 
described above as well as a smoothness term. For each 

ne[2 . . . N], example segmenter 405 of FIG. 4 computes a 
labeling Lopt” by minimizing the following mathematical 
expression 

where S(L) represents the length of the partition boundary, 
which can be expressed as 

ln EQN (7), N represents a neighborhood system representing 
all unordered pairs {p,q} of neighboring elements of P, and 7» 
comprises a positive constant that balances the relative con 
tribution of S. In general, optimization of the distribution 
matching terms F(L,l”) in EQN (6) is NP-hard and does not 
afford an analytical form amenable to graph cut optimization. 
Furthermore, gradient-based optimization procedures are 
computationally very expensive and may be dif?cult to apply. 

To overcome at least these problems, the example seg 
menter 405 of FIG. 4 computes a ?rst-order approximation of 
the example Bhattacharyya measure in F(L,l”) of EQN (6) by 
introducing an auxiliary labeling that corresponds to an arbi 
trary ?xed partition. For any labeling L, the intensity match 
ing term minus a constant can be expressed as: 

Variations of B' 

peP iel 

where GBPLQLI and 6Pp a,L1(i)) represent elementary varia 
tions of, respectively, B (L“,l”) and PLa, [11(i), and each corre 
spond to changing the label of pixel p from L“(p) to L(p). The 
example segmenter 405 computes the elementary variation 
GBPLQLI in the rightmost equality of EQN (9) using the ?rst 
order expansion of the Bhattacharyya measure BI(L,I”). The 
segmenter 405 computes the elementary 6PP ’La ,L’ (i) iel using 
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the kernel density estimate in EQN (1), which after some 
mathematical manipulations can be expressed as 

K(i - 1;) - Pitt,” (i) (10) 

EQN (9) and after some mathematical manipulations, the 
intensity matching term can be approximated as the sum of 
unary penalties plus a constant, which can be expressed math 
ematically as 

BI(L,I")~constant+EP€PbPJnl(L(p)), (11) 

where bpall may be de?ned, for any image 1: PC 1R 2—>1 and 
any space of variables I, by 

6 a M! ' (12) Pita-.1 iel ' 

5La¢o MI ' 

bL’,(O) = K(i - 1p) 110,13), _ 31w, 1)]. 
is! ' 

Applying substantially similar mathematical manipula 
tions to the example distance matching term including utiliz 
ing the example notations of EQN (12) to the distance image 
D, and ignoring constants, the example optimization problem 
expressed in EQN (7) can be approximated by the following 
sum of unary and pairwise (submodular) penalties 

In combinatorial optimization, a global optimum of the 
sum of unary and pairwise (submodular) penalties can be 
computed e?iciently in low-order polynomial time by solving 
a mathematically equivalent max-?ow problem. The example 

segmenter 405 of FIG. 4 de?nes a weighted graph g :< N,E) , 
where N represents the set of nodes and E represents the set of 
edges connecting these nodes. N includes a node for each 
pixel peP and two additional terminal nodes, one representing 
the foreground region (i.e., the cavity) denoted TF, and the 
other representing the background denoted TB. Let WWI rep 
resent the weight of the edge connecting neighboring pixels 
{p,q} in N, and {wP,TF,wp,TB} represent the weights of the 
edges connecting each pixel p to each of the terminals. 
Example edge weights can be expressed as 

WM; = blunt» + #3an (14) 
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8 
-continued 

A 

The example segmenter 405 of FIG. 4 selects a minimum 

cut Copt” of graph 9, i.e., a subset of the edges in E whose 

removal divides the graph g into two disconnected sub 
graphs, each containing a terminal node, and whose sum of 
edge weights is minimal. The example segmenter 405 selects 
the minimum cut Capt” using the max-?ow algorithm 
described by Boykov and Kolmogorov in a paper entitled “An 
experimental comparison of min-cut/max-?ow algorithms 
for energy minimization in vision,” which was published in 
IEEE Transactions on Pattern Analysis and Machine Intelli 
gence 26(9): 1 124-1 137, 2004, and which is hereby incorpo 
rated by reference in its entirety. This minimum cut Capt” of 

graph g , which assigns each node (pixel) p in P to one of the 
two terminals, results in a labeling Lopt”(L0pt”(p):1 if p is 
connected to TF and Lopt”(p):0 if p is connected to TB) that 
substantially and/ or globally minimizes the example approxi 
mation of EQN (13). 

Additional and/or alternative methods and apparatus that 
may be implemented by the example segmenter 405 to seg 
ment images are described in Us. patent application Ser. No. 
12/325,226, which was ?led on Nov. 30, 2008, and which is 
hereby incorporated by reference in its entirety. 

Let (x,y) represent a Cartesian point on the boundary 
between the segmentation regions identi?ed and/ or deter 
mined by the example segmenter 405. Let E represent an 
example state vector g:[§ x x]T that represents the dynamics 
of a point in the x-coordinate direction, where x and x denote, 
respectively, velocity and the mean position over a cardiac 
cycle or heartbeat. Assuming motion of the heart is substan 
tially periodic, an example continuous state-space model that 
describes the cyclic motion of the point can be expressed as 

where u) is the angular frequency, and w(t) is white noise that 
represents the unpredictable modeling errors arising in heart 
motion tracking, estimation and/or prediction. The example 
mathematical model of EQN (15) is linear for a given (1), and 
is an approximation of a temporal periodic model where 
higher-order terms of the Fourier expansion are neglected. A 
substantially equivalent discrete-time version of EQN (15) 
can be expressed as 

l O O (16) 

§k+1 1 — cos(wT) cos(wT) isinhuT) 5k + Wk = FUD)ka + Wk, 

wsin(wT) —wsin(wT) cos(wT) 

where wk represents a discrete-time white noise sequence and 
T represents the sampling interval. The covariance of process 
noise Qk:c0v(wk) is given by 
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where the ql-j’s are de?ned to be 

Letting s represent an example state vector s:[x x x y y y] T , 
which represents the dynamics of the left-ventricle cavity in 
the x-y plane, an example discrete state-space model for the 
motion of the endocarium in the x-y plane is given by 

FM) 03x3 
03x3 FM) 

(24) 
Sk + Vk = FkSk +Vk. 

The example single Markovian model of EQN (24) may be 
insuf?cient to accurately describe endocardial dynamics and/ 
or motion because the angular frequency that characterizes 
the motion of a point on the endocardium for normal subjects 
changes over time, the dynamics of endocardial motion differ 
signi?cantly in systolic and diastolic phases of the heart beat, 
and/ or the endocardial dynamics of abnormal subjects differ 
signi?cantly from those of normal subjects. Endocardial 
dynamics can be better represented by a hybrid system, which 
has both continuous (noise) and discrete (model) uncertain 
ties. Such hybrid systems may be modeled using an IMM 
estimator. 

To predict and/or model the future position and/or move 
ment of left ventricular cavity points, the example image 
processing module 320 of FIG. 4 includes a motion tracker 
410. The example motion tracker 410 of FIG. 4 constrains the 
LV cavity segmentations identi?ed by the example segmenter 
405 for temporal consistency. The example motion tracker 
410 implements a Markovian switching system, such an IMM 
estimator 411, that has both continuous (noise) and discrete 
(model) uncertainties and may be used to process the seg 
mented images to develop a plurality of models of endocar 
dial motion, which may be used and/ or combined to compute, 
predict and/ or estimation endocardial motion. 

Let M:{Ml, . . . , M”} represent an example system that 
includes n discrete models. Let uoj:P{MOj} represent the 
prior probability of model M’, and piJ-IP{Mkj le_ 1i} repre 
sent the probability of switching from model from i to model 
j, with representing the model M at time k. Example 
mathematical expressions for the model are given by 

5k = Fiskil + v1.11 and (25) 

1k = ij5k + where (26) 
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10 
-continued 

. B 0 X 27 Hi I [ k 3 3 ] ( ) 
03x3 Bk 

Bk = [0 1 0], (28) 

11 represents a zero-mean Gaussian noise sequence with 
covariance Rkj, and is de?ned above in connection with 
EQN (16). 
The example IMM estimator 411 of FIG. 4 computes mix 

ing probabilities for each model, and an example Kalman 
?lter 412 update state and/ or modeling equations for each 
model, and the example motion tracker 410 combines outputs 
of the updated models to form a prediction and/ or estimate of 
endocardial motion. The example IMM estimator 411 of FIG. 
4 computes the mixing probabilities uki‘j for each model Mi 
and NF using the following mathematical expressions 

” . (29) 

F] = Z Ply-#221 and 
[:1 

i . 1 ” . (30) 

#11] = Pij?iii 
J [:1 

where uk_li represents the model probability at k—1. The 
example IMM estimator 411 computes the inputs (mean and 
covariance) of each ?lter using the following mathematical 
expressions 

and 

The example Kalman ?lter 412 of FIG. 4 updates the 
mode-conditioned state estimates for each model. Example 
predictions and updates are expressed by the following math 
ematical expressions 

where KFP and KP” denote prediction and update equations of 
the Kalman ?lter 412, respectively. 
The example motion tracker 410 of FIG. 4 computes the 

probability of the model being correct (i.e., its mode 
probability) as a function of the likelihoods of the other mod 
els 

i AZ?! (34) 
#k = n 

Z All?! 
[:1 

where the likelihood of model Mi is given by 

we” (v.1: 051:). (35) 
where vki represents the measurement residual, and where S 1: 
represents the innovation covariance for model M1 in the 
Kalman ?lter update. 
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The example motion tracker 410 of FIG. 4 computes an 
estimate of the LV boundary location and/or endocardial 
motion at each time k by combining the individual mode 
conditioned ?lter estimates mki using the computed mode 
probabilities uki. An example LV boundary motion prediction 
is expressed mathematically as 

[:1 

and 

" (37) 

Because multiple cardiac images is available before pro 
cessing begins, the performance of the modeling methods 
described above may be improved via smoothing. While the 
example motion tracker 410 of FIG. 4 may implement and/or 
apply any number and/ or type(s) of smoothing algorithms, an 
example smoothing algorithm comprises ?xed-interval 
smoothing. An example ?xed-interval smoothing algorithm 
fuses the posterior distributions obtained from two IMM esti 
mators 411, one running forward and the other backward 
using an equivalent reverse-time Markov model. However, 
obtaining the equivalent reverse-time model and the optimal 
forward/backward IMM estimators may be dif?cult. To over 
come at least these dif?culties, the example IMM estimator 
411 of FIG. 4 approximates the backward IMM algorithm 
directly from the original Markov switching system with 
white Gaussian noise as described below. 

Using total probability theory, an example backward ?lter 
ing density P(sk|zk:N) can be expressed as 

where p.ka represents the model probability of the backward 
time ?lter . For the last image N, the forward and back 
ward-time ?lters’ model probabilities are the same, that is, 
uNbJIuNj. Example model-conditioned backward-?ltering 
densities can be expressed as 

where c comprises a normalizing constant. An example 
model-conditioned density p(sk] lzk+1 2N) given the future mea 
surements zk+lzN1s expressed as 

where the conditional mode probability ukHb’W may be com 
puted as 

An example normalization constant aj is given by 
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12 
An example density p(skj|Mk+lj,zk+l:N) may be approxi 

mated with a Gaussian distribution, where the mean and 
covariance are given by the Kalman ?lter prediction using the 
inverse of the state transition matrix, which can be expressed 
mathematically as 

The example density p(skj|zk+l:N) can be approximated by a 
Gaussian distribution 

The example Kalman ?lter 412 of FIG. 4 computes the 
mean mka and covariance Pka of the example updated back 
ward-time ?lter density p(skj|zk:N) as follows 

Example measurement likelihoods for each model may be 
computed as 

Akbr'IN Minsk“). (48) 
i where vkb’ represents the measurement residual and Skb’i 

represents the innovation covariance for model Mi in the 
Kalman ?lter update. 
The example motion tracker 410 of FIG. 4 updates the 

model probabilities p.ka at time step k using the following 
mathematical expression 

- 1 - (49) 

#Z'J = ELI/Aid, 

where an example normalizing constant a is given by 

An example Gaussian approximation of the updated back 
ward-time ?lter is given by 

where 

(51) 

1:1 
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The example motion tracker 410 ofFlG. 4 identi?es and/or 
determines an estimate for sk at time-step k using measure 
ments from 1 to N, where N>k. An example smoothing den 
sity can be expressed as 

Example model-conditioned smoothing distributions 
p(sk] lzlzN) are expressed as mixture of the Gaussian distribu 
tions 

where an example conditional probability is given by 

The example motion tracker 410 of FIG. 4 replaces future 
measurements kaSN with n model-conditioned backward 
time predicted means and covariances {mkb’l,Pkb’l}, and 
replaces ylzk with an n model-conditioned forward-time ?l 
tered means and covariances {mkl,Pkl}. Example likelihoods 
can be computed as 

The example terms d]. of (56) can be computed as 

Anexample smoothing distribution of the states matched to 
Mk] and Mk+ll over two successive sampling periods can be 
expressed as 

where p(Zk+l:N|Mk+li,sk) is the forward-time model-condi 
tioned distribution, p(skj|Zl:k) is the backward-time one-step 
predictive distribution, and c comprises a normalizing con 
stant. Thus, another example smoothing distribution can be 
expressed as 
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The example model-conditioned smoothing distributions 
may be approximated by a single Gaussian distribution via 
moment matching to yield 

pct/121w” chime”) (65) 

where 

s ' n xi ' s 'i W] = z #k’li’ W] 
[:1 

(67) 

The moments of the example overall smoothing distribu 
tion can be matched to approximate it as a single Gaussian 
distribution 

where an example LV boundary motion prediction is 
expressed mathematically as 

In some examples, the initial state vector sl may not be 
know a priori. In such examples, the example motion tracker 
410 of FIG. 4 implements a two-point differencing method to 
initialize position and velocity components of the state vector 
s. For instance, the motion tracker 410 may compute the 
initial position and velocity elements in x-coordinate direc 
tion using the following equations 

X1 = 11;, (71) and 

(71) 
361: T 

The mean position x over the cardiac cycle or heartbeat may 
be computed by the example motion tracker 410 by taking an 
expectation over all corresponding measurements 

K (73) 

The example motion tracker 410 likewise computes the initial 
state elements in y-coordinate direction, yl, yl, and 3;, using 
the measurements {ZkSy}. The motion tracker 410 computes 
the corresponding initial covariance by computing the fol 
lowing mathematical expression 
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[(1)1 03%] (74) p = 
1 03x3 (1)1 

where 

r L L (75) 
K KT 

r r 

(1)1: K r T 

r r 2r 

W _ F 

To characterize the motion of the heart, the example image 
processing module 320 includes a classi?er 415. Using any 
number and/or type(s) of method(s) and/or algorithm(s), the 
example classi?er 415 of FIG. 4 processes the parameters 
representative of predicted and/ or estimated endocardial 
motion computed by the example motion tracker 410 to iden 
tify heart motion abnormalities. In some examples, the clas 
si?er 415 computes, estimates and/or otherwise determines 
one or more information-theoretic measures or metrics rep 

resentative of heart motion. Consistent with industry usage, 
the terms “information-theoretic metric” and “information 
theoretic measures” used herein refer to any values that are 
computed based on one or more properties of information 
theory. As is well known, the ?eld of information theory is 
based on probability theory and statistics, and is concerned 
with the quanti?cation of information and/ or the computation 
of measures of information. Example information-theoretic 
metrics are entropy, which is the information in a random 
variable, and mutual information, which represents the 
amount of information in common between two random vari 
ables. Additional example information-theoretic metrics 
include, but are not limited to, the Shannon differential 
entropy (SDE), which provides a global theoretical ground 
measure of distributions, the Renyi entropy, and/or Fisher 
information. Example methods, apparatus and articles of 
manufacture to compute information-theoretic metrics repre 
sentative of heart motion are described in Us. patent appli 
cation Ser. No. 12/633,519, which was ?led on Dec. 8, 2009, 
now U.S. Pat. No 8,478,012, and which is hereby incorpo 
rated by reference in its entirety. To classify heart as normal or 
abnormal, the example classi?er 415 of FIG. 4 compares the 
computed information-theoretic metrics computed to one or 
more thresholds. Based on the comparison(s), the motion of 
the heart is classi?ed as normal or abnormal. Results of the 
comparison(s), for example, whether the predicted and/or 
estimated endocardial motion is normal or abnormal, may be 
presented at the example display(s) and/or output device(s) 
310. 

While an example manner of implementing the example 
image processing module 320 of FIG. 3 is illustrated in FIG. 
4, one or more of the interfaces, data structures, elements, 
processes and/or devices illustrated in FIG. 4 may be com 
bined, divided, re-arranged, omitted, eliminated and/or 
implemented in any other way. Further, the example seg 
menter 405, the example motion tracker 410, the example 
IMM estimator 411, the example Kalman ?lter 412, the 
example classi?er 415 and/or, more generally, the example 
image processing module 320 of FIG. 4 may be implemented 
by hardware, software, ?rmware and/or any combination of 
hardware, software and/or ?rmware. Thus, for example, any 
of the example segmenter 405, the example motion tracker 
410, the example IMM estimator 411, the example Kalman 
?lter 412, the example classi?er 415 and/ or, more generally, 
the example image processing module 320 may be 
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16 
implemented by one or more circuit(s), programmable pro 
cessor(s), ASIC(s), PLD(s) and/or FPLD(s), etc. any appara 
tus claim of any patent resulting from this provisional appli 
cation is read to cover a purely software and/or ?rmware 
implementation, at least one of the example segmenter 405, 
the example motion tracker 410, the example IMM estimator 
411, the example Kalman ?lter 412, the example classi?er 
415 and/or, more generally, the example image processing 
module 320 are hereby expressly de?ned to include a tangible 
computer-readable medium such as a memory, a DVD, a CD, 
etc. storing the ?rmware and/or software. Further still, the 
example image processing module 320 may include inter 
faces, data structures, elements, processes and/or devices 
instead of, or in addition to, those illustrated in FIG. 4 and/or 
may include more than one of any or all of the illustrated 

interfaces, data structures, elements, processes and/or 
devices. 

FIGS. 5-7 illustrates example processes that may be carried 
out to implement the example image processing module 320 
and/or, more generally, the example diagnostic workstation 
105 ofFlGS. 1, 3 and 4. The example processes ofFlGS. 5-7 
may be carried out by a processor, a controller and/or any 
other suitable processing device. For example, the example 
processes of FIGS. 5-7 may be embodied in coded instruc 
tions stored on a tangible computer-readable medium such as 
a ?ash memory, a CD, a DVD, a ?oppy disk, a read-only 
memory (ROM), a random-access memory (RAM), a pro 
grammable ROM (PROM), an electronically-programmable 
ROM (EPROM), and/or an electronically-erasable PROM 
(EEPROM), an optical storage disk, an optical storage device, 
magnetic storage disk, a magnetic storage device, and/or any 
other medium which can be used to carry or store program 
code and/ or instructions in the form of computer-executable 
instructions or data structures, and which can be accessed by 
a processor, a general purpose or special purpose computer or 
other machine with a processor (e. g., the example processor 
platform P100 discussed below in connection with FIG. 8). 
Combinations of the above are also included within the scope 
of computer-readable media. Computer-executable instruc 
tions comprise, for example, instructions and data that cause 
a processor, a general purpose computer, special purpose 
computer, or a special purpose processing machine to per 
form one or more particular processes. Alternatively, some or 
all of the example processes of FIGS. 5-7 may be imple 
mented using any combination(s) of ASIC(s), PLD(s), 
FPLD(s), discrete logic, hardware, ?rmware, etc. Also, some 
or all of the example processes of FIGS. 5-7 may be imple 
mented manually or as any combination of any of the fore 
going techniques, for example, any combination of ?rmware, 
software, discrete logic and/or hardware. Further, many other 
methods of implementing the example operations of FIGS. 
5-7 may be employed. For example, the order of execution of 
the blocks may be changed, and/ or one or more of the blocks 
described may be changed, eliminated, sub-divided, or com 
bined. Additionally, any or all of the example processes of 
FIGS. 5-7 may be carried out sequentially and/or carried out 
in parallel by, for example, separate processing threads, pro 
cessors, devices, discrete logic, circuits, etc. 
The example process of FIG. 5 begins with the example 

diagnostic imaging workstation 105 collecting a sequence of 
left-ventricle cardiac images from the example image man 
ager 120 (block 505). The example segmenter 405 segments 
the images, as described above in connection with FIG. 4 
(block 510). The example motion tracker 410, the example 
IMM estimator 411 and the example Kalman ?lter 412 gen 
erate a model representative of the motion of the segmented 
imaged left-ventricle images (block 515) by, for example, 
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carrying out one or more of the example processes of FIGS. 6 
and 7. Based on the motion predictions and/or estimations 
computed by the example motion tracker 410, the example 
IMM estimator 411 and the example Kalman ?lter 412, the 
example classi?er 415 computes one or more information 
theoretic metrics, such as the SDE, the Rényi entropy, and/or 
the Fisher information and determines whether the modeled 
motion of the imaged heart is normal or abnormal (block 
520). Control then exits from the example process of FIG. 5. 

The example process of FIG. 6 begins with the motion 
tracker 410 selecting one of a plurality of IMM models (block 
605). The example Kalman ?lter 412 updates the selected 
model to form a motion or state estimate for the left ventricle 
(block 610). The example IMM estimator 411 computes, 
estimates and/or updates the probability that the motion or 
state estimate is correct (block 615). 

If there are more models to process (block 620), control 
returns to block 605 to select the next IMM model. If there are 
no more models to process (block 620), the example motion 
tracker 410 computes overall motion and/or state estimate for 
the left ventricle as a weighted sum of the individual motion 
or state estimates based on the computed probabilities (block 
625). Control then exits from the example process of FIG. 6. 
The example process of FIG. 7 begins with the example 

motion tracker 410, the example IMM estimator 411 and the 
example Kalman ?lter 412 updating a forward IMM predic 
tion by, for example, carrying out the example process of FIG. 
6 (block 705). The example motion tracker 410, the example 
IMM estimator 41 1 and the example Kalman ?lter 412 update 
a backward IMM prediction by, for example, carrying out the 
example process of FIG. 6 (block 710). Left ventricle motion 
and/ or state estimates from the updated forward and back 
ward IMM predictions are combined as, for example, 
described above in connection with FIG. 4 (block 715). Con 
trol then exits from the example process of FIG. 7. 

FIG. 8 is a schematic diagram of an example processor 
platform P100 that may be used and/or programmed to imple 
ment any or all of the example diagnostic imaging worksta 
tion 105, the example image processing module 320, the 
example segmenter 405, the example motion tracker 410, the 
example IMM estimator 411, the example Kalman ?lter 412, 
and/or the example classi?er 415, of FIGS. 1, 3 and 4. For 
example, the processor platform P1 00 can be implemented by 
one or more general-purpose processors, processor cores, 

microcontrollers, etc. 
The example processor platform P100 of FIG. 8 includes at 

least one programmable processing core P105. The example 
processing core P105 executes coded and/ or machine-acces 
sible instructions P110 and/or P112 stored in the memory 
space ofthe processing core P105 (e.g., within a RAM P115 
and/ or a ROM P120). The example processing core P105 may 
be any type of processing unit, such as a processor core, a 
processor and/or a microcontroller. The processing core P105 
may execute, among other things, the example processes of 
FIGS. 5-7, and/or to implement any of the example methods, 
apparatus and articles of manufacture disclosed herein. 

The example processing core P105 is in communication 
with the memory (including the ROM P120 and/ or the RAM 
P115) via a bus P125. The RAM P115 may be implemented 
by dynamic random-access memory (DRAM), synchronous 
dynamic random-access memory (SDRAM), and/or any 
other type of RAM device, and the ROM P120 may be imple 
mented by ?ash memory(-ies) and/ or any other type of 
memory(-ies) and/or memory device(s). Access to the memo 
ries P115 and P120 may be controlled by a memory controller 
(not shown). The example memories P115 and/or P120 may 
be used to implement the example image database 115. 
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The processor platform P100 also includes an interface 

circuit P130. The interface circuit P130 may be implemented 
by any type of interface standard, such as an external memory 
interface, serial port, general-purpose input/output, etc. One 
or more input devices P135 and one or more output devices 

P140 are connected to the interface circuit P130. The input 
devices P135 and/or output devices P140 may be used to, for 
example, implement the example image acquisition 
system(s) 110. 

Generally, computer-executable instructions include rou 
tines, programs, objects, components, data structures, etc., 
that perform particular tasks or implement particular abstract 
data types. Computer-executable instructions, associated 
data structures, and program modules represent examples of 
program code for executing the processes to implement the 
example methods and systems disclosed herein. The particu 
lar sequence of such executable instructions and/or associ 
ated data structures represent examples of corresponding acts 
for implementing the examples described herein. 
The example methods and apparatus described herein may 

be practiced in a networked environment using logical con 
nections to one or more remote computers having processors. 
Logical connections may include a local area network (LAN) 
and a wide area network (WAN) that are presented here by 
way of example and not limitation. Such networking environ 
ments are commonplace in of?ce-wide or enterprise-wide 
computer networks, intranets and the Internet and may use a 
wide variety of different communication protocols. Such net 
work computing environments may encompass many types 
of computer system con?gurations, including personal com 
puters, hand-held devices, multi-processor systems, micro 
processor-based or programmable consumer electronics, net 
work PCs, minicomputers, mainframe computers, and the 
like. The example methods and apparatus described herein 
may, additionally or alternatively, be practiced in distributed 
computing environments where tasks are performed by local 
and remote processing devices that are linked (either by hard 
wired links, wireless links, or by a combination of hardwired 
or wireless links) through a communications network. In a 
distributed computing environment, program modules may 
be located in both local and remote memory storage devices. 

Although certain example methods, apparatus and articles 
of manufacture have been described herein, the scope of 
coverage of this patent is not limited thereto. On the contrary, 
this patent covers all methods, apparatus and articles of 
manufacture fairly falling within the scope of the appended 
claims either literally or under the doctrine of equivalents. 

What is claimed is: 
1. A method comprising: 
segmenting a plurality of cardiac images of a left ventricle 

to form respective ones of a plurality of segmented 
images; 

updating a plurality of models based on the plurality of 
segmented images to form respective ones of a plurality 
of motion estimates for the left ventricle; 

computing a plurality of probabilities for respective ones of 
the plurality of models; and 

computing a weighted sum of the plurality of motion esti 
mates based on the plurality of probabilities, the 
weighted sum representing a predicted motion of the left 
ventricle. 

2. A method as de?ned in claim 1, wherein updating one of 
the plurality of models comprises updating a Kalman ?lter. 
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3. A method as de?ned in claim 1, further comprising: 
updating a second plurality of models based on the plural 

ity of segmented images to form respective ones of a 
second plurality of motion estimates for the left ven 
tricle; 

computing a second plurality of probabilities for respective 
ones of the second plurality of models; and 

computing a second weighted sum of the second plurality 
of motion estimates based on the second plurality of 
probabilities, the second weighted sum representing a 
second predicted motion of the left ventricle. 

4. A method as de?ned in claim 3, further comprising 
combining the ?rst and second weighted sums to form a third 
predicted motion of the left ventricle. 

5. A method as de?ned in claim 1, wherein a ?rst of the 
plurality of models represents a forward interacting multiple 
model (IMM) estimator, and a second of the plurality of 
models represents a backward IMM estimator. 

6. A method as de?ned in claim 1, further comprising 
computing the plurality of probabilities to apply a smoothing 
?lter to the predicted motion. 

7. A method as de?ned in claim 1, further comprising: 
determining whether the predicted motion of the left ven 

tricle is abnormal based on the weighted sum; and 
presenting a result of the determination to a user for use in 

diagnosis a patient associated with the left ventricle. 
8. An article of manufacture storing machine-readable 

instructions that, when executed, cause a machine to: 
segment a plurality of cardiac images of a left ventricle to 
form respective ones of a plurality of segmented images; 

update a plurality of models based on the plurality of seg 
mented images to form respective ones of a plurality of 
motion estimates for the left ventricle; 

compute a plurality of probabilities for respective ones of 
the plurality of models; and 

compute a weighted sum of the plurality of motion esti 
mates based on the plurality of probabilities, the 
weighted sum representing a predicted motion of the left 
ventricle. 

9. An article of manufacture as de?ned in claim 8, wherein 
the machine-readable instructions, when executed, cause the 
machine to update a Kalman ?lter to update a ?rst of the 
plurality of models. 

10.An article of manufacture as de?ned in claim 8, wherein 
the machine-readable instructions, when executed, cause the 
machine to: 

update a second plurality of models based on the plurality 
of segmented images to form respective ones of a second 
plurality of motion estimates for the left ventricle; 

compute a second plurality of probabilities for respective 
ones of the second plurality of models; and 

compute a second weighted sum of the second plurality of 
motion estimates based on the second plurality of prob 
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abilities, the second weighted sum representing a second 
predicted motion of the left ventricle. 

11. An article of manufacture as de?ned in claim 10, 
wherein the machine-readable instructions, when executed, 
cause the machine to combine the ?rst and second weighted 
sums to form a third predicted motion of the left ventricle. 

12 . An article of manufacture as de?ned in claim 8, wherein 
a ?rst of the plurality of models represents a forward inter 
acting multiple model (IMM) estimator, and a second of the 
plurality of models represents a backward IMM estimator. 

13 . An article of manufacture as de?ned in claim 8, wherein 

the machine-readable instructions, when executed, cause the 
machine to: 

determine whether the predicted motion of the left ven 
tricle is abnormal based on the weighted sum; and 

present a result of the determination to a user for use in 
diagnosis a patient associated with the left ventricle. 

14. An apparatus comprising: 
a segmenter to segment a plurality of cardiac images of a 

left ventricle to form respective ones of a plurality of 
segmented images; 

a Kalman ?lter to update a plurality of models based on the 
plurality of segmented images to form respective ones of 
a plurality of motion estimates for the left ventricle; 

an interacting multiple model (IMM) estimator to compute 
a plurality of probabilities for respective ones of the 
plurality of models; and 

a motion tracker to compute a weighted sum of the plurality 
of motion estimates based on the plurality of probabili 
ties, the weighted sum representing a predicted motion 
of the left ventricle, wherein at least one of the seg 
menter, the Kalman ?lter, the IMM estimator or the 
motion tracker is implemented via a processor. 

15.An apparatus as de?ned in claim 14, further comprising 
a second IMM estimator to compute a second plurality of 
probabilities for respective ones of a second plurality of mod 
els, wherein the motion tracker is to combine outputs of the 
?rst and second plurality of models based on the ?rst and 
second plurality of probabilities to compute the predicted 
motion of the left ventricle. 

16. An apparatus as de?ned in claim 14, further compris 
ing: 

a classi?er to determine whether a motion of the left ven 
tricle is abnormal based on the weighted sum; and 

an output device to present a result of the determination to 
a user for use in diagnosis a patient associated with the 
left ventricle. 

17. An apparatus as de?ned in claim 14, wherein the 
motion tracker is to compute the plurality of probabilities to 
apply a smoothing ?lter to the predicted motion for the left 
ventricle. 


