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(57) ABSTRACT 

Example methods, apparatus and articles of manufacture to 
process cardiac images to detect heart motion abnormalities 
are disclosed. A disclosed example method includes adapting 
a state of a state-space model based on a plurality of cardiac 
images to characterize motion of a heart, computing an infor 
mation-theoretic metric from the state of the state-space 
model, and comparing the information-theoretic metric to a 
threshold to determine Whether the motion of the heart is 
abnormal. 
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METHODS, APPARATUS AND ARTICLES OF 
MANUFACTURE TO PROCESS CARDIAC 
IMAGES TO DETECT HEART MOTION 

ABNORMALITIES 

RELATED APPLICATION 

This patents claims bene?t from US. Provisional Patent 
Application Ser. No. 61/242,215, entitled “Methods, Appa 
ratus and Articles of Manufacture to Detect Heart Motion 
Abnormalities,” and ?led Sep. 14, 2009, Which is hereby 
incorporated by reference in its entirety. 

FIELD OF THE DISCLOSURE 

This disclosure relates generally to cardiac images and, 
more particularly, to methods, apparatus and articles of 
manufacture to process cardiac images to detect heart motion 
abnormalities. 

BACKGROUND 

A Widely used cardiac diagnostic technique involves the 
imaging of different portions of a heart during various phases 
of a heartbeat or cardiac cycle to detect or diagnose cardiac 
disease, abnormalities and/or damage. Example cardiac 
imaging tools are a magnetic resonance imaging (MRI) sys 
tem and a computed topography (CT) imaging system. 

BRIEF DESCRIPTION OF THE INVENTION 

In vieW of the following descriptions and ?gures, it should 
be clear that the present disclosure describes methods, appa 
ratus and articles of manufacture to process cardiac images to 
detect heart motion abnormalities. Coronary heart disease is 
the most common type of cardiovascular disease, and early 
detection of heart motion abnormality(-ies) may be used to 
diagnose and/or control heart disease. Accordingly, quantita 
tive scoring of heart Wall motion may be extremely useful in 
the clinical environment. HoWever, due to the vast amount of 
information and uncertainty associated With heart motion, 
early detection of heart motion abnormalities may be dif?cult 
via visual inspection of cardiac images. 

The example methods, apparatus and articles of manufac 
ture disclo sed herein provide certain advantages over existing 
heart motion classi?cation methods. For example, the subj ec 
tive evaluation of heart images by a radiologist can be reduced 
and/ or eliminated, thereby reducing inter and/ or intra-ob 
server variability. The examples disclosed herein also enabled 
automated analysis, Which can reduce the time required to 
obtain a diagnosis and/or begin treatment. 
As disclosed herein, left-ventricle heart motion abnormali 

ties may be detected by processing a sequence of cardiac 
images. The cardiac images may be segmented into one or 
more regions, and then processed or ?ltered With a cyclic 
model such as a recursive Bayesian ?lter or a Kalman ?lter. 
An example segmented region corresponds to the left-ven 
tricular heart cavity. The cyclic model may be adapted and/or 
adjusted to apply temporal smoothing to the segmented car 
diac images of the left-ventricular heart cavity. Such smooth 
ing may be used to reduce the effect of image noise and/or 
segmentation inaccuracies. States and/or coef?cients of the 
cyclic model may be used to characterize and/or represent the 
dynamics and/ or motion of the segment left-ventricular heart 
cavity. 
Due to statistical similarity betWeen normal and abnormal 

hearts, the classi?cation and/ or discrimination of heart 
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2 
motion based on distribution moments such as the mean 

systolic velocity may be di?icult and/or inaccurate. Instead, 
an information-theoretic measure or metric of left-ventricle 

Wall motion may be computed from the cyclic model states 
and/or coe?icients. An example information-theoretic metric 
comprises the Shannon differential entropy (SDE), Which 
provides a global theoretically-grounded measure of statisti 
cal distributions and, thus, may be used to accurately dis 
criminate betWeen different types of heart motion. Other 
example information-theoretic metrics include, but are not 
limited to, the Rényi entropy and Fisher information. The 
information-theoretic metric may be compared to decision 
criteria to determine Whether the heart motion depicted in the 
cardiac images is normal or abnormal. 

According to certain aspects of this disclosure, an example 
method includes adapting a state of a state-space model based 
on a plurality of cardiac images to characterize motion of a 
heart, computing an information-theoretic metric from the 
state of the state-space model, and comparing the informa 
tion-theoretic metric to a threshold to determine Whether the 
motion of the heart is abnormal. 

According to further aspects of this disclosure, an example 
apparatus includes a motion estimator to adapt a state of a 
state-space model based on a plurality of cardiac images to 
characterize motion of a heart, an information metric proces 
sor to compute an information-theoretic metric from the state 
of the state-space model, and a classi?er to compare the 
information-theoretic metric to a threshold to determine 
Whether the motion of the heart is abnormal. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic illustration of an example diagnostic 
imaging system Within Which the example methods, appara 
tus and articles of manufacture described herein may be 
implemented. 

FIG. 2 illustrates an example image lifecycle management 
?oW Within Which the example methods, apparatus and 
articles of manufacture described herein may be imple 
mented. 

FIG. 3 illustrates an example manner of implementing the 
example diagnostic Workstation of FIG. 1. 

FIG. 4 illustrates an example manner of implementing the 
example image processing module of FIG. 3. 

FIG. 5 is a ?owchart representative of example process that 
may be carried out to implement the example diagnostic 
Workstation of FIGS. 1 and 3. 

FIG. 6 is a schematic illustration of an example processor 
platform that may be used and/ or programmed to carry out the 
example process of FIG. 5 and/or to implement any or all of 
the example methods, apparatus and articles of manufacture 
described herein. 

DETAILED DESCRIPTION 

In the interest of brevity and clarity, throughout the folloW 
ing disclosure references Will be made to an example diag 
nostic imaging Workstation 105. HoWever, the methods, 
apparatus and articles of manufacture described herein to 
process cardiac left-ventricle images to detect heart motion 
abnormalities may be implemented by and/or Within any 
number and/or type(s) of additional and/or alternative diag 
nostic imaging systems. For example, the methods, apparatus 
and articles of manufacture described herein could be imple 



US 8,478,012 B2 
3 

mented by or Within a device and/or system that captures 
diagnostic images (e. g., a computed tomography (CT) imag 
ing system and/or magnetic resonance imaging (MRI) sys 
tem), and/or by or Within a system and/or Workstation 
designed for use in vieWing, analyzing, storing and/or 
archiving diagnostic images (e. g., the GE® picture archiving 
and communication system (PACS), and/or the GE advanced 
Workstation (AW)). Moreover, the example methods, appa 
ratus and articles of manufacture disclosed herein may be 
used to process any number and/or type(s) of other images, 
including other types of cardiac images, to detect motion 
abnormalities. 

FIG. 1 illustrates an example diagnostic imaging system 
100 including the example diagnostic imaging Workstation 
105 to process cardiac left-ventricle images to detect heart 
motion abnormalities. The cardiac left-ventricle images may 
be captured by any number and/ or type(s) of image acquisi 
tion system(s) 110, and stored in any number and/or type(s) of 
image database(s) 115 managed by any number and/or 
type(s) of image manager(s) 120. The processing of cardiac 
left-ventricle images by the example diagnostic imaging 
Workstation 105 may be scheduled by any number and/or 
type(s) of scheduler(s) 125. Example image acquisition sys 
tems 110 include, but are not limited to, a CT imaging system 
and/ or an MRI system. Images may be stored and/or archived 
in the example image database 115 of FIG. 1 using any 
number and/or type(s) of data structures, and the example 
image database 115 may be implemented using any number 
and/or type(s) of memory(-ies), memory device(s) and/or 
storage device(s) such as a hard disk drive, a compact disc 
(CD), a digital versatile disc (DVD), a ?oppy drive, etc. 

FIG. 2 illustrates an example image lifecycle management 
How 200 that may be implemented by the example diagnostic 
imaging system 100 of FIG. 1. Images (e.g., left-ventricle 
images) are acquired, created and/or modi?ed by the image 
acquisition system(s) 110. The image manager(s) 120 repli 
cate, distribute, organiZe and/or otherWise manage the cap 
tured images. The example diagnostic imaging Workstation 
105 of FIG. 1 processes a sequence of replicated, distributed, 
organiZed and/ or otherWise managed images to, among other 
things, detect heart motion abnormalities. Information cre 
ated, computed and/ or otherWise determined during the clas 
si?cation and/ or detection of heart motion by the diagnostic 
imaging Workstation 105 can be used to reduce the number of 
image(s) and/or the amount of data that must be stored, 
archived and/or otherWise maintained for future recall. 

FIG. 3 is a schematic illustration of an example diagnostic 
imaging Workstation Within Which the example methods, 
apparatus and articles of manufacture to detect heart motion 
abnormalities described herein may be implemented. To 
alloW a user (not shoWn) to interact With the example diag 
nostic imaging Workstation 105 of FIG. 3, the diagnostic 
imaging Workstation 105 includes any number and/or type(s) 
of user interface module(s) 305, any number and/or type(s) of 
display(s) 310 and any number and/or type(s) of input 
device(s) 315. The example user interface module(s) 305 of 
FIG. 3 implements an operating system to present informa 
tion (e. g., images, WindoWs, screens, interfaces, dialog boxes, 
etc.) at the display(s) 310, and to alloW a user to control, 
con?gure and/or operate the example diagnostic imaging 
Workstation 105. The user provides and/or makes inputs and/ 
or selections to the user interface module 305 and/or, more 
generally, to the example diagnostic imaging Workstation 1 05 
via the input device(s) 315. Example input devices 315 
include, but are not limited to, a keyboard, a touch screen 
and/or a mouse. In an example, a patient search WindoW is 
presented at the display 310, and the input device(s) 315 are 
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4 
used to enter search criteria to identify a particular patient. 
When a patient is identi?ed and selected, the example user 
interface 305 presents a list of available diagnostic images for 
the patient at the display 310, and the user selects one or more 
sequences of diagnostic images using the input device(s) 315. 
The user interface 305 then obtains the selected image 
sequence(s) from the example image manager 120. An 
image-processing module 325 processes the selected image 
sequence(s) to determine Whether any heart motion abnor 
malities are present, and presents information related to the 
presence or absence of heart motion abnormalities at the 
display 310 for vieWing by the user. An example manner of 
implementing the example image processing module 325 is 
described beloW in connection With FIG. 4. 

In the illustrated example of FIG. 3, selected image 
sequence(s) are pre-processed by an image pre-processing 
module 320 before processing by the example image-pro 
cessing module. Using any number and/or type(s) of 
method(s) and/or algorithm(s), the example image pre-pro 
cessing module 320 of FIG. 3 processes the selected images 
to detect the boundary of the left-ventricle heart cavity in each 
selected image. In other Words, the example pre-processing 
module 320 processes the selected images to identify the 
endocardium in each of the selected images. Example sys 
tems and methods for pre-processing images are described in 
Us. patent application Ser. No. 12/325,226, noW U.S. Pat. 
No. 8,144,930, ?led on Nov. 30, 2008, and entitled “Systems 
and Methods For Tracking Images,” Which is hereby incor 
porated by reference in its entirety. 

Let I represent a cardiac sequence containing K frames 
lkzQ C ER ZQiR +, ke[1, . . . , K]. The example pre-processing 

module 320 of FIG. 3 preprocesses the set of images I to 
detect the boundary of the left-ventricle cavity of the heart 
(the endocardium) in each frame ke[2, . . . , K]. The example 
pre-processing module 320 determines the boundary of the 
endocardium by evolving a closed planar parametric curve 

?k(s): [0,1]—>Q toWard the endocardium. In some examples, 

the parametric curve E1“ is evolved by minimiZing a cost 
function F“ that includes, among other things, an overlap 
prior term or constraint that prevents the papillary muscles of 
the left-ventricle cavity from being included erroneously in 
the heart myocardium. HoWever, because the papillary 
muscles and the myocardium are connected and have almost 
the same intensity pro?le their separation may be dif?cult. 
Minimization of the cost function Fk results in each frame k 
being segmented into tWo regions: the left-ventricle cavity Ck 

a 

corresponding to the interior of the parametric curve F k 

CKIRFk' (1) 
~ % 

Where R? denotes the region enclosed by curve I“, and the 
background Bk corresponding to the region outside the para 

. a)‘: 
metric curve F 

BkIRFkC (2) 
An example cost functional Fk includes three terms: an over 
lap-prior term, a mean-matching term and a regulariZation/ 
gradient term, Which are de?ned as folloWs. 
An example overlap-prior term is de?ned using the folloW 

ing de?nitions. P R J is the nonparametric (kemel-based) esti 
mate of the intensity distribution Within region R in frame 
Ie{Ik,k:1, . . . , K} 
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NZ — I(x)) dx (3) 

V z e 91*, PR,I(Z) = R 
61R 

Where aR is the area of region R 

61,; : fdx (4) 
R 

Example kernels N (') include, but are not limited to, the 
Dirac function and the Gaussian kernel. B(f/ g) is the Bhatta 
charyya coef?cient representing the amount of overlap 
betWeen tWo statistical samples f and g 

B(f/g)= 2 Wow (5) 
zeR+ 

In the examples described herein, the values of B are selected 
from [0,1], Where 0 indicates that there is no overlap, and 1 
indicates a perfect match. 

In some examples, the cavity and myocardium regions in 
the ?rst frame I1, denoted respectively by C1 and M, are 
provided by a user of the example diagnostic imaging Work 
station 105. Based on the example de?nitions of EQNS (3) 
(5), an example cavity/myocardium overlap measure is 
expressed mathematically as 

(6) 

Where Bk represents the amount of overlap betWeen the inten 
sity distribution Within the heart cavity region Ck in frame Ik 
and the myocardium model learned from the ?rst frame I1. In 
most instances, Bk is approximately constant over the cardiac 
sequence I. Consequently, the value of B1 estimated from the 
segmentation of the ?rst frame I1 in the sequence I can be used 
as an overlap-prior to constrain the tracking of the boundary 
cavity in the subsequent frames I2, . . . , IK. To embed prior 
information about the overlap betWeen the intensity distribu 
tion Within the cavity and myocardium, the example image 
pre-processing module 320 of FIG. 3 minimiZes the folloW 
ing constraint for each frame ke[2, . . . , K] 

Where Ok represents the overlap betWeen the intensity distri 
butions Within the cavity and prior myocardium ?ts BIZ-n. 
An example mean-matching term, Which represents con 

formity of an intensity mean computed for the left-ventricle 
cavity in the current frame Ik to a mean computed for the ?rst 
frame I1, is de?ned by the folloWing mathematical expres 
s1on: 

M”:(u”—ul)2, (8) 

Where pk the estimate of intensity mean Within C“ for ke 
[1, . . . , K], Which is expressed mathematically as 

f 1'‘ dx (9) 
k : ck 

Lick I 

An example regulariZation/ gradient term, Which may be 
used to bias the curve toWard a high intensity gradient and/or 
to enforce curve smoothness, is de?ned mathematically as 
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Where c is a positive constant and gk is an edge indicator 
function, Which is de?ned as 

(11) 

Based on the example terms de?ned above in EQNS (3) 
(11), an example cost function Fk that may be mimiZed to 
identify, compute and/ or otherWise determine the parametric 

curve T31“ is de?ned by 

Where the variables or Weights 0t, [3 and 7», are selected to 
adjust the relative importance or contribution of the three 
terms described above in connection With EQNS (3)-(11). 
The example image pre-processing module 320 of FIG. 3 

solves for the parametric curve T>k by minimiZing the 
example cost function Pk of EQN (12) using, for example, 
Euler-Lagrange descent minimiZation. In some examples, the 
example image pre-processing module 320 embeds the curve 
% ~ ~ % 

F in a one-parameter family of curves: I“(s,t):[0,1]>< 
iR +—>Q, and solves the partial differential equation 

(13) 

denotes the functional derivative of F With respect to The 
example expression of EQN (13) can be reWritten as: 

Q 

Where KK is the mean curvature function of F k and kk is the 

outWard unit normal to TT“, and assuming that the function 
R (') used in the kernel density estimation is the Dirac func 
tion. The example image pre-processing module 320 solves 
and/or converges the example expression of EQN (14) for 
each frame Ik, With the left-ventricle cavity boundary for 

frame k given by the thus obtained curve Bk. 
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While level-set formalisms are used to derive the example 
curve evolution method described above, any number and/or 
type(s) of alternative and/or additional method(s), 
algorithm(s) and/or formalisms may be used to obtain the 

a 

curve F k for each image lk. 

While an example manner of implementing the example 
diagnostic imaging workstation 105 of FIG. 1 has been illus 
trated in FIG. 3, one or more of the interfaces, data structures, 
elements, processes and/or devices illustrated in FIG. 3 may 
be combined, divided, re-arranged, omitted, eliminated and/ 
or implemented in any other way. The example user 
interface(s) 305, the example display(s) 310, the example 
input device(s) 315, the example image pre-processing mod 
ule 320, the example image processing module 325 and/or, 
more generally, the example diagnostic imaging workstation 
105 of FIG. 3 may be implemented by hardware, software, 
?rmware and/or any combination of hardware, software and/ 
or ?rmware. Thus, for example, any of the example user 
interface(s) 305, the example display(s) 310, the example 
input device(s) 315, the example image pre-processing mod 
ule 320, the example image processing module 325 and/or, 
more generally, the example diagnostic imaging workstation 
105 may be implemented by one or more circuit(s), program 
mable processor(s), application speci?c integrated circuit(s) 
(ASlC(s)), programmable logic device(s) (PLD(s)) and/or 
?eld programmable logic device(s) (FPLD(s)), etc. When any 
apparatus claim of any patent resulting from this provisional 
application is read to cover a purely software and/ or ?rmware 
implementation, at least one of the example user interface(s) 
305, the example display(s) 310, the example input device(s) 
315, the example image pre-processing module 320, the 
example image processing module 325 and/or, more gener 
ally, the example diagnostic imaging workstation 105 are 
hereby expressly de?ned to include a tangible computer 
readable medium such as a memory, a DVD, a CD, etc. 
storing the ?rmware and/or software. Further still, the 
example diagnostic imaging workstation 105 may include 
interfaces, data structures, elements, processes and/or devices 
instead of, or in addition to, those illustrated in FIG. 3 and/or 
may include more than one of any or all of the illustrated 

interfaces, data structures, elements, processes and/or 
devices. 

FIG. 4 illustrates an example manner of implementing the 
example image processing module 325 of FIG. 3. To compute 
?lter coef?cients and/or parameters of a state model that 
predicts the future position and/ or movement of left ventricu 
lar cavity points, the example image processing module 325 
of FIG. 4 includes a motion estimator 405. The example 
motion estimator 405 of FIG. 4 predicts left-ventricular cav 
ity points by applying a Bayesian ?lter, such as the Kalman 
?lter to a sequence of segmented left-ventricle cardiac 
images. 

Let (x, y) be a Cartesian point on the endocardial boundary 

?k(s) identi?ed and/or determined by the example image 
pre-processing module 320, as described above. Let E be an 
example state vector E:[x x x] T that represents the dynamics 
of the point in the x-coordinate direction, where x and x 
denote, respectively, the velocity and the mean position of the 
point over a cardiac cycle or heartbeart. Assuming motion of 
the heart is substantially periodic, an example continuous 
state-space model that describes the cyclic motion of the point 
can be expressed as 
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where u) is the angular frequency, and w(t) is white noise that 
represents the unpredictable modeling errors arising in heart 
motion detection. The example mathematical model of EQN 
(15) is linear for a given 00, and is an approximation of a 
temporal periodic model where higher-order terms of the 
Fourier expansion are neglected. A substantially equivalent 
discrete-time version of EQN (l 5) can be expressed as 

where the covariance of the process noise 
given by 

Qk:cov(wk) is 

Qk:|.qijJ3><3' (17) 

and the Qlj’s are de?ned to be 

‘111 = qiT (18) 

q?wT - 51mm) (19) 
21 = i ‘112 = 

a) 

[113 = [131 = [1%(1 — mum) (10> 

3wT — 4sin(wT) + wT — (21) #1 q%[ ] _ l cos(wT)sin(wT) cos(wT)sin(wT) 
‘I22 — 5 ' m3 

2 l — 2cos(wT) + 2 2 (22) 
+ ‘ T 1 £11 [ COSZWT) ] qzsln (w ) 

£123 — £132 — 5' m2 

q%w2(cos(wT)sin(wT) — wT) — (23) 

Letting s represent an example state vector s:[x x x y y y] T 
representing the dynamics of the left-ventricle cavity in the 
x-y plane, an example discrete state-space model for the 
motion of the left-ventricle in the x-y plane is given by 

Fcy(k) 03x3 (24) 

Using any number and/or type(s) of algorithm(s) and/or 
method(s), the example motion estimator 405 of FIG. 4 pro 
cesses the segmented images from the example image pre 
processing module 320 to obtain an estimate of the state 
vector s. For example, the example motion estimator 405 
applies a Bayesian ?lter such as a Kalman ?lter, which may be 
used as a state estimator for linear and/or Gaussian systems, 
to recursively update an estimate the state vector s. Letting 
Zk:[Zk’x ZkdJT represent an estimate of the point (x, y) on the 
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. aA: 
endocard1al boundary T (s) for frame ke[l, . . . , K], an 

example measurement equation is given by 

zk:H;,s‘k+vk (25) 

Where 

0 1 0 0 0 0 (26) 
Hk = 

O O O O l O 

and vk is a Zero-mean Gaussian noise sequence With covari 
ance 

(27) 

The example motion estimator 405 computes a predicted 
state using the example model of EQN (24) and by taking an 
expectation conditioned on Zl:k:{Zl, . . . , Zk}. Letting mkIE 
[sk] be the mean of the state vector, the motion estimator 405 
computes the predicted state using the folloWing mathemati 
cal expression 

mk+ITIFkmk (28) 

The corresponding state prediction covariance is given by 

The example motion estimator 405 of FIG. 4 computes the 
measurement residual or innovation by taking the expectation 
conditioned on Z M 

(29) 

With the corresponding innovation covariance de?ned by 

and the ?lter gain given by 

The motion estimator 405 computes the updated state esti 
mate using the folloWing expression 

The motion estimator 405 computes the updated state cova 
riance using the folloWing mathematical expression 

In some examples, the initial state vector sl may not be 
knoW a priori. In such examples, the example motion estima 
tor 405 of FIG. 4 implements a tWo-point differencing 
method to initialiZe position and velocity components of the 
state vector s. For instance, the motion estimator 405 may 
compute the initial position and velocity elements in x-coor 
dinate direction using the folloWing equations 

XAIIZIJ, (35) 

and 

(12,; — 11;) (36) 

The mean position x over the cardiac cycle may be computed 
by the motion estimator 405 by taking an expectation over all 
corresponding measurements: 
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K (37) 

The example motion estimator 405 likeWise computes the 
initial state elements in y-coordinate direction, 91, 91, and 7371 
using the measurements {zkiy}. The motion estimator 405 
computes the corresponding initial covariance by computing 
the folloWing mathematical expression 

(1)1 (3 3) P1 = [ 
03x3 

03x3 ] 
(1)1 

Where 

(39) 

In some instances, segmentation of the left-ventricle cavity 
may not be consistent over a cardiac cycle. The example 
motion estimator 405 of FIG. 4 detects such inconsistencies 
by gating the center of the segmented left-ventricle cavity. For 

' ii_i i~i_i i-iT/i example, lett1ng {sk *[xk xk xk yk yk yk] .1*l,...,N}bea 
sample point on the left-ventricle boundary in frame k, the 
center of the left-ventricle cavity (cLk cyak) may be computed 
by the motion estimator 405 using the folloWing: 

(40) 

If \/(cx,k+l— x,k)2+(cy,k+1—cy,k)2>g (Where g is a prede?ned 
constant), the motion estimator 405 ignores the segmentation 
results. In such instances, the motion estimator 405 only 
predicts the sample points using the model of EQN (24) 
Without updating the Kalman ?lter. 

In order to identify a sequence of corresponding points 
over time, the example motion estimator 405 determines 
symmetric nearest-neighbor correspondences by sampling a 
set of equally-spacedpoints along the left-ventricle boundary. 
The selected sequence of points may be used to analyZe Wall 
motion regionally. For example, using spline interpolation, 
the motion estimator 405 samples NS, points along the left 
ventricle cavity in each frame, and N points are chosen as 
inputs for the Kalman ?lter. The motion estimator 405 com 
putes a kernel density estimation based on the Gaussian ker 
nel to obtain the probability density. The motion estimator 
405 may normalize the radial distance for each dataset With 
respect to maximum value, to analyZe different long-axis 
segments, namely, apical, mid and basal, Without additional 
processing. 

To characterize the motion of the heart, the example image 
processing module 325 includes an information metric pro 
cessor 410. The example information metric processor 410 of 
FIG. 4 processes the state model and/or ?lter coef?cients 
computed by the example motion estimator 405 to compute, 
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estimate and/or otherwise determine one or more informa 

tion-theoretic measures or metrics representative of heart 
motion. Consistent With industry usage, the terms “informa 
tion-theoretic metric” and “information-theoretic measures” 
used herein refer to any values that are computed based on one 
or more properties of information theory. As is Well known, 
the ?eld of information theory is based on probability theory 
and statistics, and is concerned With the quanti?cation of 
information and/ or the computation of measures of informa 
tion. Example information-theoretic metrics are entropy, 
Which is the information in a random variable, and mutual 
information, Which represents the amount of information in 
common betWeen tWo random variables. Additional example 
information-theoretic metrics include, but are not limited to, 
the Shannon differential entropy (SDE), Which provides a 
global theoretical ground measure of distributions, the Rényi 
entropy, and/ or Fisher information. 

The example information metric processor 410 of FIG. 4 
computes a normaliZed radial distance rki, Which can be 
expressed mathematically as 

(41) 

Where >2; and xyki are the estimates of xki and yki respectively. 
The values >2; and 9,; are computed using the Kalman ?lter 
described above. Letting reER be a random variable, the 
example information metric processor 410 computes a kernel 
density estimate of the normalized radial distance using the 
folloWing equation 

is the Gaussian kernel. 

An example SDE computed by the example information 
metric processor 410 of FIG. 4 is de?ned by the folloWing 
mathematical expression 

(44) 

will NK 

Other example information-theoretic metrics that may be 
computed by the example information metric processor 410 
include, but are not limited to, the Rényi entropy 
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NK 

0 (45) 

and Fisher information 

4P4 Le,“ lVg(r)l2dr 
Where 

To classify the motion of the heart, the example image pro 
cessing module 325 includes a classi?er 415. The example 
classi?er 415 of FIG. 4 compares the information-theoretic 
metrics computed by the information metric processor 410 to 
one or more thresholds. Based on the comparison(s), the 
motion of the heart is classi?ed as normal or abnormal. 

While an example manner of implementing the example 
image pre-processing module 325 of FIG. 3 is illustrated in 
FIG. 4, one or more of the interfaces, data structures, ele 
ments, processes and/ or devices illustrated in FIG. 4 may be 
combined, divided, re-arranged, omitted, eliminated and/or 
implemented in any other Way. The example motion estimator 
405, the example information metric processor 410, the 
example classi?er 415 and/or, more generally, the example 
image processing module 325 of FIG. 4 may be implemented 
by hardWare, softWare, ?rmWare and/or any combination of 
hardWare, softWare and/ or ?rmWare. Thus, for example, any 
of the example motion estimator 405, the example informa 
tion metric processor 410, the example classi?er 415 and/or, 
more generally, the example image processing module 325 
may be implemented by one or more circuit(s), program 
mable processor(s), ASlC(s), PLD(s) and/or FPLD(s), etc. 
Any apparatus claim of any patent resulting from this provi 
sional application is read to cover a purely softWare and/or 
?rmWare implementation, at least one of the example motion 
estimator 405, the example information metric processor 410, 
the example classi?er 415 and/or, more generally, the 
example image processing module 325 are hereby expressly 
de?ned to include a tangible computer-readable medium such 
as a memory, a DVD, a CD, etc. storing the ?rmWare and/or 
softWare. Further still, the example image processing module 
325 may include interfaces, data structures, elements, pro 
cesses and/or devices instead of, or in addition to, those 
illustrated in FIG. 4 and/or may include more than one of any 
or all of the illustrated interfaces, data structures, elements, 
processes and/or devices. 

FIG. 5 illustrates an example process that may be carried 
out to implement the example image processing module 325 
and/or, more generally, the example diagnostic Workstation 
105 of FIGS. 1, 3 and 4. The example process of FIG. 5 may 
be carried out by a processor, a controller and/or any other 
suitable processing device. For example, the example process 
of FIG. 5 may be embodied in coded instructions stored on a 
tangible computer-readable medium such as a ?ash memory, 
a CD, a DVD, a ?oppy disk, a read-only memory (ROM), a 
random-access memory (RAM), a programmable ROM 
(PROM), an electronically-programmable ROM (EPROM), 
and/or an electronically-erasable PROM (EEPROM), an 
optical storage disk, an optical storage device, magnetic stor 
age disk, a magnetic storage device, and/ or any other medium 
Which can be used to carry or store program code and/or 

(46) 

(47) 



US 8,478,012 B2 
13 

instructions in the form of computer-executable instructions 
or data structures, and which can be accessed by a processor, 
a general purpose or special purpose computer or other 
machine with a processor (e.g., the example processor plat 
form P100 discussed below in connection with FIG. 6). Com 
binations of the above are also included within the scope of 
computer-readable media. Computer-executable instructions 
comprise, for example, instructions and data that cause a 
processor, a general purpose computer, special purpose com 
puter, or a special purpose processing machine to perform one 
or more particular processes. Alternatively, some or all of the 
example process of FIG. 5 may be implemented using any 
combination(s) of ASlC(s), PLD(s), FPLD(s), discrete logic, 
hardware, ?rmware, etc. Also, some or all of the example 
process of FIG. 5 may be implemented manually or as any 
combination of any of the foregoing techniques, for example, 
any combination of ?rmware, software, discrete logic and/or 
hardware. Further, many other methods of implementing the 
example operations of FIG. 5 may be employed. For example, 
the order of execution of the blocks may be changed, and/or 
one or more of the blocks described may be changed, elimi 
nated, sub-divided, or combined. Additionally, any or all of 
the example process of FIG. 5 may be carried out sequentially 
and/or carried out in parallel by, for example, separate pro 
cessing threads, processors, devices, discrete logic, circuits, 
etc. 

The example process of FIG. 5 begins with the example 
diagnostic imaging workstation 105 collecting a sequence of 
left-ventricle cardiac images from the example image man 
ager 120 (block 505). The example image pre-processing 
module 320 segments the images (block 510). The example 
motion estimator 405 applies a Kalman ?lter to generate a 
model and/or ?lter representative of the motion of the seg 
mented imaged left-ventricle images (block 515). Based on 
the generated model and/or ?lters, the example information 
metric processor 410 computes one or more information 
theoretic metrics, such as the SDE, the Rényi entropy, and/or 
the Fisher information (block 520). Based on the computed 
information-theoretic metric(s), the example classi?er 415 
determines whether the motion of the imaged heart is normal 
or abnormal (block 525). Control then exits from the example 
process of FIG. 5. 

FIG. 6 is a schematic diagram of an example processor 
platform P100 that may be used and/or programmed to imple 
ment any or all of the example diagnostic imaging worksta 
tion 105, the example image pre-processing module 320, the 
example image processing module 325, the example motion 
estimator 405, the example information metric processor 410, 
and/or the example classi?er 415 of FIGS. 1, 3 and 4. For 
example, the processor platform P1 00 can be implemented by 
one or more general-purpose processors, processor cores, 

microcontrollers, etc. 
The processor platform P100 of the example of FIG. 6 

includes at least one general-purpose programmable proces 
sor P105. The processor P105 executes coded instructions 
P110 and/or P112 present in main memory of the processor 
P105 (e.g., within a RAM P115 and/or a ROM P120). The 
processor P105 may be any type of processing unit, such as a 
processor core, a processor and/or a microcontroller. The 
processor P105 may execute, among other things, the 
example process of FIG. 5 to implement the example cardiac 
left-ventricle image-processing methods and apparatus 
described herein. 

The processor P105 is in communication with the main 
memory (including a ROM P120 and/or the RAM P115) via 
a bus P125. The RAM P115 may be implemented by dynamic 
random access memory (DRAM), synchronous dynamic ran 
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dom access memory (SDRAM), and/or any other type of 
RAM device, and ROM may be implemented by ?ash 
memory and/or any other desired type of memory device. 
Access to the memory P115 and the memory P120 may be 
controlled by a memory controller (not shown). The example 
memory P115 may be used to implement the example image 
database 115 of FIG. 1. 
The processor platform P100 also includes an interface 

circuit P130. The interface circuit P130 may be implemented 
by any type of interface standard, such as an external memory 
interface, serial port, general-purpose input/output, etc. One 
or more input devices P135 and one or more output devices 
P140 are connected to the interface circuit P130. The input 
devices P135 may be used to, for example, implement the 
example input device(s) 315 of FIG. 3. The example output 
devices P140 may be used to, for example, implement the 
example display 310 of FIG. 3. 

Generally, computer-executable instructions include rou 
tines, programs, objects, components, data structures, etc., 
that perform particular tasks or implement particular abstract 
data types. Computer-executable instructions, associated 
data structures, and program modules represent examples of 
program code for executing the processes to implement the 
example methods and systems disclosed herein. The particu 
lar sequence of such executable instructions and/or associ 
ated data structures represent examples of corresponding acts 
for implementing the examples described herein. 
The example methods and apparatus described herein may 

be practiced in a networked environment using logical con 
nections to one or more remote computers having processors. 
Logical connections may include a local area network (LAN) 
and a wide area network (WAN) that are presented here by 
way of example and not limitation. Such networking environ 
ments are commonplace in of?ce-wide or enterprise-wide 
computer networks, intranets and the Internet and may use a 
wide variety of different communication protocols. Such net 
work computing environments may encompass many types 
of computer system con?gurations, including personal com 
puters, hand-held devices, multi-processor systems, micro 
processor-based or programmable consumer electronics, net 
work PCs, minicomputers, mainframe computers, and the 
like. The example methods and apparatus described herein 
may, additionally or alternatively, be practiced in distributed 
computing environments where tasks are performed by local 
and remote processing devices that are linked (either by hard 
wired links, wireless links, or by a combination of hardwired 
or wireless links) through a communications network. In a 
distributed computing environment, program modules may 
be located in both local and remote memory storage devices. 

Although certain example methods, apparatus and articles 
of manufacture have been described herein, the scope of 
coverage of this patent is not limited thereto. On the contrary, 
this patent covers all methods, apparatus and articles of 
manufacture fairly falling within the scope of the appended 
claims either literally or under the doctrine of equivalents. 

What is claimed is: 
1. A method comprising: 
adapting a state of a state-space model based on a plurality 

of cardiac images to characterize motion of a heart; 
computing, via a processor, an information-theoretic met 

ric from the state of the state-space model; and 
comparing the information-theoretic metric to a threshold 

to determine whether the motion of the heart is abnor 
mal. 

2. A method as de?ned in claim 1, wherein the state com 
prises a plurality of mean positions, a plurality of current 
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positions and a plurality of velocities for respective ones of a 
plurality of points on the heart. 

3. A method as de?ned in claim 1, Wherein the state is 
adapted by applying at least one of a Bayesian ?lter or a 
Kalman ?lter. 

4. A method as de?ned in claim 1, Wherein the information 
theoretic metric comprises a Shannon differential entropy. 

5. A method as de?ned in claim 1, Wherein the information 
theoretic metric comprises a Rényi entropy. 

6. A method as de?ned in claim 1, Wherein the information 
theoretic metric comprises Fisher information. 

7. A method as de?ned in claim 1, Wherein computing the 
information-theoretic metric comprises: 

computing a kernel density estimate of a normalized radial 
distance based on the state; and 

computing the information-theoretic metric from the ker 
nel density estimate. 

8. A method as de?ned in claim 1, further comprising 
segmenting the plurality of cardiac images to form respective 
ones of a plurality of segmented images, Wherein the state of 
the state-space model is adapted based on the plurality of 
segmented images. 

9. An article of manufacture storing machine-readable 
instructions that, When executed, cause a machine to: 

adapt a state of a state-space model based on a plurality of 
cardiac images to characterize motion of a heart; 

compute an information-theoretic metric from the state of 
the state-space model; and 

compare the information-theoretic metric to a threshold to 
determine Whether the motion of the heart is abnormal. 

10.An article of manufacture as de?ned in claim 9, Wherein 
the machine-readable instructions, When executed, cause the 
machine to adapt the state by applying at least one of a 
Bayesian ?lter or a Kalman ?lter. 

11 . An article of manufacture as de?ned in claim 9, Wherein 
the information-theoretic metric comprises a Shannon differ 
ential entropy. 

12.An article of manufacture as de?ned in claim 9, Wherein 
the machine-readable instructions, When executed, cause the 
machine to: 

segment the plurality of cardiac images to form respective 
ones of a plurality of segmented images; and 

adapt the state based on the plurality of segmented images. 
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13 . An article of manufacture as de?ned in claim 9, Wherein 

the machine-readable instructions, When executed, cause the 
machine to compute the information-theoretic metric by: 

computing a kernel density estimate of a normalized radial 
distance based on the state; and 

computing the information-theoretic metric from the ker 
nel density estimate. 

14. An apparatus comprising: 
a motion estimator to adapt a state of a state-space model 

based on a plurality of cardiac images to characterize 
motion of a heart; 

an information metric processor to compute an informa 
tion-theoretic metric from the state of the state-space 
model; and 

a classi?er to compare the information-theoretic metric to 
a threshold to determine Whether the motion of the heart 
is abnormal. 

15.An apparatus as de?ned in claim 14, further comprising 
an imaging device to capture the plurality of cardiac images 
of the heart. 

16.An apparatus as de?ned in claim 14, further comprising 
an image pre-processor to segment the plurality of cardiac 
images to form respective ones of a plurality of segmented 
images, Wherein motion estimator is con?gured to adapt the 
state of the state-space model based on the plurality of seg 
mented images. 

17. An apparatus as de?ned in claim 14, Wherein the 
motion estimator comprises at least one of a Bayesian ?lter or 
a Kalman ?lter. 

18. An apparatus as de?ned in claim 14, Wherein the infor 
mation-theoretic metric comprises a Shannon differential 
entropy. 

19. An apparatus as de?ned in claim 14, Wherein the infor 
mation metric processor is to compute the information-theo 
retic metric by: 

computing a kernel density estimate of a normalized radial 
distance based on the state; and 

computing the information-theoretic metric from the ker 
nel density estimate. 

* * * * * 


