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Abstract. We propose a new segmentation or clustering model that combines
Markov Random Field (MRF) and Normalized Cut (NC) objectives. Both NC
and MRF models are widely used in machine learning and computer vision, but
they were not combined before due to significant differences in the correspond-
ing optimization, e.g. spectral relaxation and combinatorial max-flow techniques.
On the one hand, we show that many common applications for multi-label MRF
segmentation energies can benefit from a high-order NC term, e.g. enforcing bal-
anced clustering of arbitrary high-dimensional image features combining color,
texture, location, depth, motion, etc. On the other hand, standard NC applications
benefit from an inclusion of common pairwise or higher-order MRF constraints,
e.g. edge alignment, bin-consistency, label cost, etc. To address NC+MRF energy,
we propose two efficient multi-label combinatorial optimization techniques, spec-
tral cut and kernel cut, using new unary bounds for different NC formulations.

1 Introduction

Let Ω be a collection of pixels/voxels or any other data points p that may also be referred
to as graph nodes. A segmentation can be equivalently represented either as a labeling
S := (Sp|p ∈ Ω) including integer node labels 1 ≤ Sp ≤ K or as a partitioning {Sk}
of set Ω into K segments Sk := {p ∈ Ω|Sp = k}. Our general energy formulation
combining Normalized Cut clustering and MRF regularization potentials is

E(S) = −
∑
k

assoc(Sk, Sk)

assoc(Ω,Sk)
+ γ

∑
c∈F

Ec(Sc) (1)

where the first term is the standard NC energy [1] with association

assoc(Si, Sj) :=
∑

p∈Si,q∈Sj

Apq ≡ Si′ASj for 1 ≤ i, j ≤ K (2)

based on affinity matrix or kernel A := [Apq] with Apq := A(fp, fq) defined by some
similarity function A(·, ·) for node features fp. The equivalent matrix expression in (2)
represents segments Sk as indicator vectors such that Sk

p = 1 iff Sp = k and symbol ′

means a transpose. The second term in (1) is a general formulation of arbitrary MRF
potentials [2,3,4]. Constant γ sets a relative weight of this term. Symbol c represent a
factor or subset of nodes c ⊂ Ω and Sc := (Sp|p ∈ c) is a restriction of labeling S
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to c. Energy terms or potentials Ec(Sc) for a given set of factors F represent various
forms of second or higher-order constraints. For example, common pair-wise factors
represent smoothness and contrast/edge alignment [2,5]. Popular higher-order factors
are superpixel/bin consistency [3,6], label cost [4], and many others. Section 2.2 details
several standard MRF potentials used in this paper’s example.

1.1 Motivation and Related Work

Due to significant differences in applicable optimization algorithms, Normalized Cut
(NC) and Markov Random Fields (MRF) techniques are used separately in many appli-
cations of vision and learning. They have complementary strengths and weaknesses.

For example, NC can find a balanced partitioning of data points from pairwise affini-
ties for high-dimensional features [1,7,8]. In contrast, discrete MRF as well as contin-
uous regularization methods commonly use model fitting to partition image features
[9,10,11,4]. Such probabilistic K-means clustering [12] is well justified when data sup-
ports low complexity models, e.g. Gaussians [9] or geometric lines/planes [4]. How-
ever, data clustering by fitting complex models like GMM or histograms [10,11] is
highly sensitive to local minima and over-fitting even for low dimensional color features
[6]. A similar point is made in [13] comparing [11] to a binary energy combining the
Potts model and average association. Our multi-label energy (1) allows a general MRF
framework to benefit from widely-known NC balanced clustering of high-dimensional
image features. We show potent results for basic formulations of NC+MRF segmenta-
tion with features like RGBXY, RGBD, RGBM where standard MRF methods fail.

On the other hand, standard NC applications can also benefit from an inclusion of
additional constraints [14,15,16]. We show how to add a wide class of standard MRF
potentials. For example, standard NC segmentation has weak alignment to contrast
edges [8]. While this can be addressed by post-processing, inclusion of the standard
pair-wise Potts term [2,5] offers a principled solution. We show benefits from combin-
ing NC with lower and higher-order constraints, such as sparsity or label costs [4]. In
the context of a general graph clustering, higher-order consistency terms based on a
Pn-Potts model [3] also give significant improvements.

The synergy of the general NC+MRF segmentation energy (1) can be illustrated by
juxtaposing the use of the pixel location information (XY) in standard NC and MRF
techniques. The basic pairwise MRF Potts model for images typically works on the
nearest-neighbor grids N4 or N8 where XY information allows accurate contrast edge
alignment and enforces “smooth” segment boundaries. Wider connectivity Potts leads
to denser graphs with slower optimization and poorer edge localization. In contrast,
common NC methods [1] augment pixel features, e.g. color, with XY information using
relatively wide kernels for the XY dimension. This encourages segments with spatially
“compact” regions. Narrower XY kernels may improve edge alignment [8], but weaken
regional color/feature consistency. On the other hand, an extremely large XY kernels
ignore spatial information producing color-only clustering with incoherent segments.
Combining regional color consistency with spatial coherence in a single NC energy
requires a compromise XY kernel width. Our general energy (1) can separate the re-
gional consistency (e.g. balanced NC clustering term) from the boundary smoothness
or edge alignment (e.g. Potts potential). Interestingly, it may still be useful to augment
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colors with XY in the NC term in (1) since given width XY kernel can separate similar
appearance objects at larger distances, see Sec.3.2.1.

Our experiments (Fig.2) also show that the standard pairwise edge-alignment MRF
(Potts) term may significantly improve the energy of the NC term compared to its inde-
pendent optimization via spectral relaxation. This suggests that powerful combinatorial
graph cut methods may reduce sensitivity of NC to local minima.

1.2 Summary of Contributions

This paper proposes a new joint NC+MRF model (1) for multi-label image segmenta-
tion and general clustering, efficient move-making bound optimization algorithms, and
demonstrates many useful applications. Our main contributions are outlined below:

– We propose a general multi-label segmentation or clustering energy combining
Normalized Cut (NC) objective with standard second or higher-order MRF regu-
larization potentials. NC term can enforce balanced partitioning of observed image
features and MRF terms can enforce many standard regularization constraints.

– We obtain kernel (exact) and spectral (approximate) bounds for NC providing two
auxiliary functions for our joint multi-label NC+MRF energy (1). In the context of
standard MRF potentials (e.g. Potts, robust Pn-Potts, label cost) we propose move-
making algorithms exploring new generalizations of α-expansions and αβ-swap
designed for multi-label bound optimization.1

– Our experiments demonstrate that typical NC applications benefit from extra MRF
constraints, as well as, MRF segmentation benefit from the high-order NC term en-
couraging balanced partitioning of image features. In particular, NC+MRF frame-
work works for higher-dimensional image features (e.g. RGBXY, RGBD, RGBM)
where standard model-fitting clustering [10,11,4] fails.

The rest of the paper is organized as follows. Section 2 presents our spectral and kernel
bounds for (1) and details combinatorial move making graph cut algorithms for its opti-
mization. Section 3 presents many proof-of-the-concept experiments where NC benefits
from the additional MRF constraints, Sec.3.1, and common MRF formulations benefit
from an additional balanced NC clustering term for high-dimensional features, Sec.3.2.

2 Our Algorithms

In this section we propose bound optimization and move-making algorithms for our
high-order NC+MRF functional (1). In particular, we derive bounds or auxiliary func-
tions for our problem2. Bound optimization have recently led to competitive algorithms
for different high-order binary segmentation functionals, e.g. distribution-matching con-
straints [17], entropy, or non-submodular pairwise energies [18]. These greedy proce-
dures iteratively minimize a sequence of auxiliary functions for a given energy E(S)

1Our kernel and spectral bounds for NC can be also integrated into auxiliary functions
with other standard regularization potentials (truncated, cardinality, TV) addressed by discrete
(e.g. message passing, relaxations) or continuous (e.g. convex, primal-dual) algorithms.

2The MRF terms in (1) preclude the direct use of standard spectral methods for NC [1].
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assuming that they are easier to optimize. An auxiliary function at(S) at iteration t is
an upper bound for E(S) touching the original energy at the current solution St

at(S) ≥ E(S), E(St) = at(St).

To decrease E(S) one can minimize the auxiliary function at giving the next solution

St+1 = argmin
S

at(S).

This iterative process guarantees the original energy decrease: E(St+1) ≤ at(St+1) ≤
at(St) = E(St). Note that the bound does not have to be optimized globally. As long
as at(St+1) ≤ at(St), the original energy is guaranteed to decrease E(St+1) ≤ E(St).

2.1 Unary bounds for Normalized Cut

Below we derive two bounds for (1) and propose move-making algorithms such as ex-
pansion and swap [2] to optimize such multi-label auxiliary functions for our NC+MRF
energy. To the best of our knowledge, this is the first use of move-making algorithms in
the context of bound optimization. The existing high-order bound-optimization graph
cut techniques apply to binary segmentation [17,18]. The computation aspects of eval-
uating our bounds for large-scale problems are discussed in Sec.2.1.1.

Our first bound, called kernel bound, is an exact auxiliary function for the high-
order energy (1). It is expressed as a function of the pairwise affinities or kernels. Our
second bound, called spectral bound, can be viewed as an auxiliary function for the
K-means discretization step in standard spectral relaxation methods [1,19]. Unlike our
kernel bound, this approximate bound requires eigen vector computations.

The next lemma helps to derive our kernel bound for energy (1) in Proposition 1.

Lemma 1 (concavity) Equivalently rewrite the first (NC) term in (1) as

−
∑
k

assoc(Sk, Sk)

assoc(Ω,Sk)
≡

∑
k

e(Sk) for e(X) := −X ′AX

d′X
(3)

using the matrix notation in (2) with affinity matrix A := [Apq] and vector d := A1
of node degrees dp =

∑
q Apq . Function e : R|Ω| → R in (3) is concave over region

d′X > 0 assuming that affinity matrix A is positive semi-definite.

Proof. It follows from negative definiteness of the Hessian ∇∇e, see [20, Lemma 1].

The first-order Taylor expansion Tt(X) := e(Xt) + ∇e(Xt)
′ (X − Xt) at a current

solution Xt is an obvious bound for the concave function e(X) in (3). Its gradient
∇e(Xt) = d Xt

′AXt

(d′Xt)2
−AXt

2
d′Xt

implies bound Tt(X) ≡ ∇e(Xt)
′ X and Prop.1.

Proposition 1 (kernel bound) For positive semi-definite affinity matrix A and any cur-
rent solution St the following is an auxiliary function for NC+MRF energy (1)

at(S) =
∑
k

∇e(Sk
t )

′ Sk + γ
∑
c∈F

Ec(Sc). (4)
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Our kernel bound (4) for energy (1) combines a unary term and standard MRF regu-
larization potentials. This allows to develop efficient move-making graph cut techniques
for the general multi-label NC+MRF energy (1), see Sec.2.2. Interestingly, for the de-
generate case of (1) with no MRF potentials (γ = 0) iterative optimization of the first
unary term in bound (4) can be shown to be equivalent to the weighted kernel K-means
approach to NC in [21,22], see Sec.1.3.1 and Appendix A in [20]. Note that NC with
arbitrary affinity A can be converted to an equivalent NC objective with p.s.d. affinity
A + δD where D := diag(d) is a degree matrix, see [20, Sec.1.3.1]. Such diagonal
shift tricks were proposed by [23,24].

We also develop an approximate spectral bound for our NC+MRF energy. Note that
standard spectral methods [1,19] optimize the normalized cut objective by relaxing the
original integer problem to a (generalized) eigenvalue problem of the form:

(D −A)u = λDu. (5)

Let U denote the matrix whose rows are the (unit) eigenvectors of the eigen system
(5) and UK be a matrix whose rows are the K top (unit) eigenvectors in U . To extract
integer labeling from the relaxed solutions produced by (5), spectral methods often
apply the basic K-means to some ad hoc data embedding ϕp ≡ ϕ(fp) based on UK .
For instance, [1,19] use the columns of UK , i.e. ϕp = UK

p , while [25,7] use a weighted
version ϕp = [Σ− 1

2U ]Kp where Σ is a diagonal matrix of eigenvalues in (5). We did not
observe much difference in practice.

Similar embeddings can also be derived in a principled fashion. Consider kernel
K = D−1AD−1 for weighted (w = d) kernel K-means [22] equivalent to NC with
affinity A. Similarly to multi-dimensional scaling (MDS) [26], we obtain rank-m ap-
proximate kernel K̃ minimizing weighted Frobenius error

∑
pq wpwq(Kpq−K̃pq)

2 and
deduce embedding ϕ̃p ∈ Rm satisfying isometry ϕ̃′

pϕ̃q = K̃pq , see details in [20, Sec.3]

ϕ̃p =
√

Λ
m
/dpV

m
p for eigen decomposition V ′ΛV = D− 1

2AD− 1
2 . (6)

Weighted K-means over {ϕ̃p} corresponds to kernel K-means for kernel K̃ ≈ K and,
therefore, approximates NC. We can combine weighted K-means over {ϕ̃p} with MRF
regularization via minimizing the following spectral approximation of (1)

Ẽ(S) = Fw(S, µS) + γ
∑
c∈F

Ec(Sc) (7)

where Fw(S,m) :=
∑

k

∑
p∈Sk wp∥ϕ̃p − mk∥2 includes variable m = {mk}Kk=1

representing weighted segment means mk = µw
Sk :=

∑
p∈Sk wpϕ̃p

w′Sk in (7).

Proposition 2 (spectral bound) The following is an auxiliary function for (7) at cur-
rent segmentation St with the corresponding means µw

t := {µw
Sk
t
}Kk=1

ãt(S) = Fw(S, µw
t ) + γ

∑
c∈F

Ec(Sc). (8)

Proof. This bound follows from a simple fact that the standard block-coordinate de-
scent (weighted) K-means procedure is a bound optimizer, e.g. see [20, Theorem 1].



6 M.Tang, D.Marin, I.B.Ayed, Y.Boykov

Input : Affinity Matrix A of size |Ω| × |Ω|; initial labeling S1
0 , ..., S

K
0

Output: S1, ..., SK : partition of the set Ω
1 Set t := 0;
2 while not converged do
3 Set at(S) to be kernel bound (4) for NC at current partition St;
4 for each label α ∈ L = {1, ..., K} do
5 Find St := argmin at(S) within one α expansion of St;
6 Set t := t + 1;

Algorithm 1: α-Expansion for Kernel Cut

Input : Affinity Matrix A of size |Ω| × |Ω|; initial labeling S1
0 , ..., S

K
0

Output: S1, ..., SK : partition of the set Ω

1 Find top m eigen values/vectors Λm, V m for matrix D− 1
2 AD− 1

2 ;
2 Compute embedding ϕ̃p in (6) and set t := 0;
3 while not converged do
4 Set ãt(S) to be the spectral bound (8) at current partition St;
5 for each label α ∈ L = {1, ..., K} do
6 Find St := argmin ãt(S) within one α expansion of St;
7 Set t := t + 1;

Algorithm 2: α-Expansion for Spectral Cut

2.1.1 Bound evaluation for large-scale problems: Our kernel bound does not re-
quire eigen decomposition. The time complexity of evaluating this bound is linear with
respect to the number of non-zero entries in affinity (kernel) matrix A. Sampling heuris-
tics [27] can be used to derive an approximate bound efficiently for large scale problems.

Obtaining the spectral bound in Prop.2 for given ϕp has complexity O(|Ω|Km).
The eigen decomposition is also computationally expensive. Standard methods like [28]
can substantially accelerate it allowing applications to large scale problems.

2.2 Move-making NC+MRF bound optimization

As mentioned in the introduction, second and higher-order MRF potentials are widely
used for regularization in computer vision. We demonstrate a combined NC+MRF en-
ergy (1) in the context of several common MRF potentials outlined below and propose
combinatorial bound optimization algorithms using unary bounds for NC in the previ-
ous section. We observe that many standard discrete optimization methods [2,29,30,31]3

can be developed to work with such unary/linear bounds for NC. For simplicity, we fo-
cus on three standard MRF potentials below allowing efficient move-making graph cut
techniques for multi-label NC+MRF bound optimization.

Probably the most common MRF regularization potential corresponds to the second-
order Potts model [2] used for edge alignment∑

c∈F
Ec(Sc) =

∑
pq∈N

wpq · [Sp ̸= Sq] (9)

where a set of pairwise factors F = N includes all edges c = {pq} between pairs of
neighboring nodes. Weight wpq defines a penalty for discontinuity between p and q. It

3As well as related continuous methods, e.g. [32,33,34].
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could be a constant or may be set by a decreasing function of intensity difference Ip−Iq
in order to attract the segmentation boundary to the contrast edges in the image [5].

A useful bin consistency constraint corresponds to the Pn-Potts model [3] de-
fined over an arbitrary collection of high-order factors F . Factors c ∈ F correspond
to predefined subsets of nodes such as superpixels [3] or bins of pixels with the same
color/feature [35,6]. The model penalizes inconsistency in segmentation of each factor∑

c∈F
Ec(Sc) =

∑
c∈F

min{T, |c| − |Sc|∗} (10)

where T is some threshold and |Sc|∗ := maxk |Sk ∩ c| is the cardinality of the largest
segment inside c. Clearly, potential (10) has its lowest value (zero) when all nodes in
each factor are within the same segment. In this paper we use such MRF potential for
NC-based image collection clustering to enforce text-tag consistency.

A standard label cost corresponds to an MDL sparsity potential [4] defined for a
single high-order factor, the whole set of nodes. That is, F = {Ω}. In its simplest form
this potential penalizes the number of distinct labels supported by segmentation S

EΩ(S) =
∑
k

hk · [|Sk| > 0] (11)

where penalty hk could be a constant or a cost for each specific segment type (label).
All three MRF potentials reviewed above can be optimized by αβ-swap moves and

α-expansion moves. We combine these MRF terms with unary bounds for NC (Sec.2.1).
Our kernel cut and spectral cut methods are outlined in Alg.1 and2.

One should decide the order of iterative move making and bound evaluation. In the
case of α-expansion, there are at least three options: updating the bound after single
expansion step, or after single expansion loop, or after the convergence of α-expansion.
More frequent bound recalculation slows down the algorithm, but makes the bound
tighter. The particular choice generally depends on the trade-off between the speed and
solution quality. However, in our experiments more frequent update does not always
improve the energy, see Fig.1. We recommend updating the bound after a single loop of
expansion, see Alg.1 and 2. Further by replacing expansion with swap loops in the two
algorithm, we can have αβ-swap based version of kernel cut and spectral cut.

3 Experiments

This section is divided into two parts. The first part (Sec.3.1) shows the benefits of extra
MRF regularization for the normalized cut criterion. We consider pairwise Potts, label
cost and robust bin consistency term, as discussed in Sec.2.2. We compare to spectral
clustering [1,7] and kernel K-means [22], which can be seen as degenerated versions for
spectral and kernel cuts (respectively) without MRF terms. We show that MRF helps
normalized cut in segmentation and image clustering. In the second part (Sec.3.2) we
replace the log-likelihoods in model-fitting methods, e.g. GrabCut [11], by NC term.
This is particularly advantageous for high dimension features (location, depth, motion).

Implementation details: The parameters of the algorithms were selected to mini-
mize the average error over datasets. For segmentation we use affinities Apq defined by
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Fig. 1: Typical energy evolution wrt different moves and frequency of bound updates.
α-expansion updates the bound after a round of expansions, α-expansion* updates the
bound after each expansion move. Initialization is a regular 5×5 grid of patches.
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Fig. 2: Left: typical evolution of the NC term during iterative optimization. Right:
adding MRF regularization helps both Spectral and Kernel clustering to escape local
minima and to achieve lower value of NC. Initialization is a regular 5×5 grid of patches.

KNN (K-Nearest-Neighbours) graph due to limitations of fixed-width Gaussian kernel
for multi-scale data [36]. Assuming KNN(fp) is the set of K-nearest-neighbors of fea-
ture vector fp, the KNN affinity is Apq = A(fp, fq) = [fp ∈ KNN(fq)] + [fq ∈
KNN(fp)]. The feature fp can be concatenation of RGB (color), XY (location) and M
(motion or optical flow [37]). We choose 400 neighbors and randomly sample 50 neigh-
bors for each pixel. Sampling does not degrade our segmentation but expedites bound
evaluation. We also experiment with popular mPb contour based affinities [8] for seg-
mentation. The window radius is set to 5 pixels. For image clustering, we extract GIST
[38] feature and use Gaussian kernel to build a dense affinities matrix. For GrabCut we
use histograms as models and try various bin size for spatial and depth channels.

3.1 MRF helps Normalized Cut

Here we add MRF regulation terms to typical normalized cut applications, such as unsu-
pervised multi-label segmentation [8] and image clustering [39]. Our kernel and spectral
cuts are used to optimize the joint energy of normalized cut and MRF (1) or (7).
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Fig. 3: Sample results on BSDS500 with mPb affinities [8]. Top row: Spectral Cluster-
ing; Middle and bottom rows: Kernel and Spectral Cuts giving better edge alignment.

3.1.1 Normalized Cut with Potts Regularization Spectral clustering [1,7] solves
a (generalized) eigen problem, followed by K-means on the (weighted) eigenvectors.
However, it was observed that such paradigm results in undesirable segmentation in
large uniform regions [8,7], see examples in Fig.3. Obviously such edge mis-alignment
can be penalized by contrast-sensitive Potts term. Our spectral cut and kernel cut get
better segmentation boundaries. As is in [22] we use spectral initialization.

method Covering PRI VOI
Spectral Relax. 0.34 0.76 2.76
Our Kernel Cut 0.41 0.78 2.44

Our Spectral Cut 0.42 0.78 2.34

The table on the right gives quantitative re-
sults on BSDS500 dataset. Number of segments
in ground truth is provided to each method. It
also shows that kernel and spectral cuts give better
covering, PRI (probabilistic rand index) and VOI
(variation of information) than spectral clustering.
Fig.3 gives sample results. Kernel K-means [22]
gives results similar to spectral clustering and hence are not shown.

3.1.2 Normalized Cut with Label Cost [4] Unlike spectral clustering, our kernel
and spectral cuts do not need the number of segments beforehand. We optimize a com-
bination of the normalized cut, Potts model and label costs terms. The label cost (11)
penalizes each label by constant hk. The energy is minimized by α-expansion and αβ-
swap moves in Sec.2.2. We sample initial models from patches, as in [4]. Results with
different label cost are shown in Fig.4. Due to sparsity prior for normalized cut, our
kernel and spectral cuts automatically prune weak models and determine the number of
segments, yet yield regularized segmentation. We use KNN affinity for normalized cut
and mPb [8] based Potts regularization.

3.1.3 Normalized Cut with High Order Consistency Term [3,35,6] It is common
that images come with multiple tags, such as those in Flickr platform or the LabelMe
dataset [38]. We study how to utilize tag-based group prior for image clustering [39].

We experiment on the LabelMe dataset [38] which contains 2,600 images of 8 scene
categories (coast, mountain, forest, open country, street, inside city, tall buildings and
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Fig. 4: Segmentation using our kernel cut with label cost. We experiment with increas-
ing value of label cost hk for each label (from left to right).
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Fig. 5: Incorporating group prior achieves better NMI for image clustering. Here we use
tags-based group prior. Our method achieved better NMI when more images are tagged.
The right plot shows how the weight of bin consistency term affects our method.

highways). We use the same GIST feature, affinity matrix and group prior as used in
[39]. We found the group prior to be noisy. The dominant category in each group occu-
pies only 60%-90% of the group. The high-order consistency term is defined on each
group. For each group, we introduce an energy term that is akin to the robust Pn-Potts
[3], which can be exactly minimized within a single αβ-swap or α-expansion move.
Notice that here we have to use robust consistency potential instead of rigid ones.

Our kernel cut minimizes NC plus the robust Pn-Potts term. Spectral cut minimizes
energy of (7). Normalized mutual information (NMI) is used as the measure of cluster-
ing quality. Perfect clustering with respect to ground truth has NMI value of 1.

Spectral clustering and kernel K-means [22] give NMI value of 0.542 and 0.572
respectively. Our kernel cut and spectral cut significantly boost the NMI to 0.683 and
0.681. Fig.5 shows the results with respect to different amount of image tags used. The
left most points correspond to the case when no group prior is given. We optimize over
the weight of high order consistency term, see Fig.5. Note that it’s not the case the larger
the weight the better since the grouping prior is noisy.
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(a) seeds (b) ground truth (c) GrabCut (d) Our Kernel Cut

Fig. 6: Sample results on Berkeley dataset.

3.2 Normalized Cut helps MRF

In typical MRF applications we replace the log-likelihood terms by the normalized cut.
We test various applications including separating similar objects, RGBD and motion
segmentation.

3.2.1 Similar Objects Separation Even though objects may have similar appear-
ances or look similar to the background (e.g. the top row in Fig.6), we assume that
the objects of interest are compact and have different locations. This assumption mo-
tivates using XY coordinates of pixels as extra feature for distinguishing similar or
camouflaged objects4. Let fp ∈ R5 be the augmented color-location feature fp =
[Lp, ap, bp, βxp, βyp] at pixel p where [Lp, ap, bp] is its color, [xp, yp] are its image
coordinates, and β is a scaling parameter.

Note that the edge-based Potts model [5] also uses the XY information. Location
features in the clustering and regularization terms have complementary effect: the for-
mer solves appearance camouflage while the latter gets edge alignment. We report
quantitative results on 18 images with similar objects and camouflage selected from
the Berkeley database [41]. We set strokes to select one of the objects, see Fig.6.

We test the effect of adding XY into feature space for GrabCut and Kernel Cut. We
try various β for Kernel Cut. Fig.7a shows the effect of different β on KNNs of a pixel.
For histogram-based GrabCut we change spatial bin size for the XY channel, ranging
from 30 pixels to the image size. Fig.7a compares GrabCut and Kernel Cut.

We study the effect of MRF smoothness weight γ on the algorithms, see Fig.7. Ker-
nel Cut is more robust w.r.t. smoothness weight compared to GrabCut. If smoothness
term is omitted the Kernel Cut is significantly better (4.6% vs 24.6% errors in Fig.7b).
MRF benefits from having NC instead of log-likelihoods since model fitting gets highly
sensitive to local minima for higher dimensional features [13]. Fig.7c shows multi-label
segmentation of similar objects using our algorithm. We show energy convergence for
the swap moves discussed in Sec.2.2.

4XY feature has also been used in [40] to build space-variant color distribution. However,
such distribution used in MRF-MAP inference [40] would still overfit the data [13].
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(c) Sample results of our multi-label kernel cut and energy convergence

Fig. 7: (a) Average errors for multi-object dataset. We vary the spatial bin size for Grab-
Cut and β for Kernel Cut. The connection range is the average geometric distance be-
tween a pixel and its kth nearest neighbor. The right-most point of the curves cor-
responds to the absence of XY features. GrabCut does not benefit from XY features.
Kernel Cut achieves the best error rate of 2.9% for the connection range of 50 pixels.
(b) Our kernel cut is robust to smoothness weight γ. (c) Multi-objects segmentation.

3.2.2 Interactive RGBD Images Segmentation Depth sensor are widely used in vi-
sion for 3D modelling [44,45], semantic segmentation [46,47,42,48], motion flow [49].
We selected 64 indoor RGBD images from semantic segmentation database NYUv2 [42]
and provided bounding boxes and ground truth. In contrast to [11], the prepared dataset
consists of low-quality images: there are camera motion artifacts, underexposed and
overexposed regions. Such artifacts make color-based segmentation harder.

We compare GrabCut to Kernel Cut over joint features fp = [Lp, ap, bp, βDp] as
in Sec.3.2.1. Fig.8 shows the error statistics and segmentation examples. While Kernel
Cut takes advantage of the additional channel, GrabCut fails to improve.

3.2.3 Motion Segmentation Besides location and depth features, we also test seg-
mentation with motion features. Figs. 10, 11 and 9 compare motion segmentations us-
ing different feature spaces: RGB, XY, M (optical flow) and their combinations (RGBM
or RGBXY or RGBXYM). Abbreviation +XY means Potts regularization. Here we use
kernel cut (Alg.1) for the combination of normalized cut with the Potts term.
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Fig. 8: NYUv2 database [42] Left: The first two rows show original images with bound-
ing box and color-coded depth channel. The third row shows results of Grabcut, the
forth row shows results of Kernel Cut. Right: The average errors of GrabCut and Ker-
nel Cut methods over 64 images randomly selected and labeled.

Motion Flow∗ RGB+XY MXY+XY

Fig. 9: Kernel cut on image 000079 10 from KITTI [43]. The images show the motion
flow, color-based segmentation (RGB+XY), motion based segmentation with location
features (MXY+XY). ∗ Black color shows pixels that lack motion information.

Challenging video examples: For videos in FBMS-59 dataset [50], our algorithm
runs on individual frames instead of 3D volume. Segmentation of previous frame initial-
izes the next frame. The strokes are provided only for the first frame. We use the optical
flow algorithm in [37] to generate M features. Selected frames are shown in Figs.10
and 11. Instead of tracks from all frames in [51], our segmentation of each frame uses
only motion estimation between two consecutive frames. Our approach jointly opti-
mizes normalized cut and Potts model. In contrast, [51] first clusters semi-dense tracks
via spectral clustering [50] and then obtains dense segmentation via regularization.

Kitti segmentation example: We also experiment with Kitti dataset [43]. Fig.9
shows the multi-label segmentation using either color information RGB+XY (first row)
or motion MXY+XY (second row). The ground-truth motion field works as M channel.
Note that the motion field is known only for approximately 20% of the pixels. To build
an affinity graph, we construct a KNN graph from pixels that have motion information.
The regularization over 8-neighborhood on the pixel grid interpolates the segmentation
labels during the optimization procedure.
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(a) frames (b) optical flow [37] (c) M+XY (d) RGB+XY (e) RGBM+XY

Fig. 10: Motion segmentation using our framework for the sequence horses01 in FBMS-
59 dataset [50]. +XY means with Potts model. Motion feature alone (M+XY in (c)) is
not sufficient to obtain fine segmentation. Our framework successfully utilize motion
feature to separate the horse from the barn, which have similar appearances.

(a) frames (b) optical flow [37] (c) RGBXY+XY (d) RGBXYM+XY

Fig. 11: Multi-label motion segmentation for the sequence ducks01 in FBMS-59 dataset
[50]. This video is challenging since the ducks here have similar appearances and even
spatially overlap with each other. However, different ducks come with different motions,
which helps our framework to better separate individual ducks.
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