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Abstract

This study presents a semi-automated assessment of the left ventricular (LV) di-

astolic function using anatomical cine cardiovascular magnetic resonance (CMR)

imaging. Numerous clinical studies in echocardiography suggested that evalu-

ating the diastolic function is essential in the assessment of many cardiovascular

abnormalities including heart failure with preserved ejection fraction. However,

most of the existing LV assessment algorithms based on CMR focus only on the

systolic function, which essentially pertains to the analysis of global parame-

ters such as ejection fraction or regional wall motion abnormalities. Anatomical

cine CMR is widely used to assess the cardiac function because of its high soft

tissue contrast. Unlike with transthoracic echocardiography (TTE), CMR is

not limited by an acoustic window, and allows exhaustive myocardial imaging

with excellent spatial resolution. The proposed method is based on three main

steps: (1) non-rigid registration, which yields a sequence of endocardial bound-

ary points over the cardiac cycle based on a user-provided contour on the first

frame; (2) LV volume and filling rate computations over the cardiac cycle; and
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(3) automated detection of the peak values of early and late ventricular filling

waves. We report comprehensive experimental evaluations over CMR data sets

acquired from 47 subjects, including comparisons with independent reports for

the same subjects from TTE. The proposed algorithm yielded a Cohen’s kappa

measure of 0.70 and a Gwet’s AC1 coefficient of 0.70, a substantial agreement

with the TTE results.

Keywords: cardiac left ventricle, diastolic function, image registration, image

segmentation, magnetic resonance imaging.

1. Introduction1

Most of the existing left ventricle (LV) assessment algorithms using cine car-2

diac magnetic resonance (CMR) focus on the systolic function, and are often3

limited to the analysis of regional wall motion abnormalities or the estimation4

of the ejection fraction [1, 2, 3]. However, the diastolic function is essential in5

the evaluation of various heart diseases, and several studies suggested that the6

assessment of the diastolic function is also important [4, 5, 6, 7]. Heart fail-7

ure with a preserved left ventricular ejection fraction represents approximately8

40%–50% of all cases of heart failure [7, 8], and is increasing in prevalence among9

the senior population [9]. Furthermore, a distinction between systolic and di-10

astolic heart failure is essential, given the importance of the therapeutic and11

prognostic differences between these two subsets of heart failures [10]. There-12

fore, early and accurate diagnosis of abnormalities in diastolic filling is of the13

utmost importance.14

Although direct measurement of the LV filling pressures is preferable, the use15

of angiography is not ideal for routine clinical assessments as several non-invasive16

methodologies have become widely available [11]. Currently, 2D echocardiogra-17

phy using flow Doppler imaging is widely used to measure transmitral velocities.18

The existing echocardiography studies are based on Doppler measurements at19

the tips of the mitral valve leaflets to determine peak velocities of mitral inflow20

[9], Doppler echocardiography to estimate the mitral flow and pulmonary ve-21
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nous flow [12, 13], and a color M-mode Doppler to estimate information such22

as the ventricular relaxation or compliance from transmitral velocity profile,23

among others. Despite these advances, transthoracic echocardiography (TTE)24

has important disadvantages, including a limited field of view due to the acoustic25

window, dependence on sample volume location, cosine θ errors relative to the26

flow direction, and the inability to image approximately 15–20% of the patients27

[5, 11].28

Although multiphase computed tomography (CT) can also be used for the29

analysis of the LV function, only a few studies were devoted to the analysis of30

the diastolic function. Boogers et al. presented a comparison between CT and31

2D echocardiography using tissue Doppler imaging, noting good correlations32

for transmitral velocity, mitral septal tissue velocity, and estimation of the LV33

filling pressures [14].34

Alternatively, CMR imaging allows for an exhaustive myocardial evaluation35

with high spatial resolution, and has several important advantages. They re-36

lax the need for geometric assumptions and afford an excellent image quality.37

Unlike CT, CMR involves no radiation exposure which allow population-based38

screening and repeated scanning of the same patient. Some CMR studies relied39

on phase contrast for the evaluation of the diastolic function [15, 16, 17, 18, 11].40

In another study, a finite element based technique is used to estimate the dias-41

tolic dysfunction using tagged CMR images [19]. However, these CMR acquisi-42

tion protocols are not commonly used in routine clinical practices due to their43

complex and time-consuming post processing and interpretation. Among other44

magnetic resonance sequences, anatomical cine CMR remains the most widely45

used sequence to assess the cardiac function [20]. Few notable exceptions that46

used the anatomical cine MR to assess the diastolic function include Wu et al.47

[21] who used long-axis views to compute mitral annulus sweep volume, and48

Mendoza et al.[22] who used short-axis view to compute LV volumes and filling49

rates. Analysis of the diastolic function using short-axis view of the anatomical50
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cine CMR requires delineation of LV from hundreds of images2, making manual51

segmentation impractical for standard clinical applications. Therefore, auto-52

mated segmentation is important for the assessment of the diastolic function53

[23].54

This study proposes a method to assess the LV impaired relaxation us-55

ing short-axis cine CMR images. The proposed method consists of a semi-56

automated LV segmentation approach and an automated detection of peak57

values of early and late ventricular filling waves. Given a user-provided seg-58

mentation of a single frame in a cardiac sequence, the proposed segmentation59

approach delineates endocardial borders of the LV via point-to-point correspon-60

dences. The moving mesh framework proposed in this study is fundamentally61

different from previous approaches [24, 25]. Based on the concept of equivalent62

volume elements of a compact Riemannian manifold [26] and yielding a unique63

solution by solving a div-curl system, the proposed point-to-point approach pre-64

vents mesh folding, i.e., grid lines of the same grid family will not cross each65

other, an essential attribute in tracking cardiac tissues from a sequence of im-66

ages.67

We report comprehensive experimental evaluations over CMR data sets ac-68

quired from 47 subjects, including comparisons with independent reports for the69

same subjects from TTE. The proposed algorithm and TTE findings yielded a70

Cohen’s kappa measure [27] of 0.70 and a Gwet’s AC1 coefficient [28] of 0.70.71

2. Method72

The proposed diastolic function analysis algorithm consists of preprocessing73

and detection of the E and A waves, the early and late (atrial) ventricular filling74

velocities, based on the computation of the LV filling rate curve. The proposed75

approach allows for evaluating the diastolic function for all the patients who76

undergo an CMR scan, including those who may not be primarily referred for77

2Typically 200 images per subject
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a diastolic function evaluation. The method is based on three main steps: (1)78

non-rigid registration, which yields a sequence of points over time, given a user-79

provided contour on the first frame; (2) computations of the LV filling rate and80

volume over the cardiac cycle; and (3) automatic detections of the maxima of81

the E and A waves.82

2.1. Preprocessing83

Given a user-provided segmentation of a single frame in a cardiac sequence,

the proposed method segments endocardial borders of the LV via point-to-point

correspondences (Refer to Fig. 1). We propose to use a moving mesh (or grid

generation) framework [26] to compute point-to-point correspondences between

the kth image Tk and (k + 1)th image Tk+1 (for k = 1, . . . ,K − 1) defined over

Ω ⊂ R
2 (K is the total number of frames in a cardiac cycle), thereby obtaining

a sequence of points over time (Refer to Fig. 2). We state the problem as the

optimization of a similarity/dissimilarity measure [29]:

φ̂ = arg opt
φ

Es(Tk, Tk+1, φ(ξ)) (1)

where ξ ∈ Ω denotes pixel location, φ : Ω → Ω a transformation function and84

Es(·) a measure of similarity. As this problem may not have a unique solution,85

we introduce in the following a deformation field using a monitor function µ and86

curl of end velocity field υ, where µ : Ω → R and υ : Ω → R.87

2.1.1. Moving Mesh Generation88

Let µ(ξ) be a continuous monitor function constrained by:

∫

Ω

µ = |Ω|. (2)

The purpose of this step is to find a transformation φ : Ω → Ω, ∂Ω → ∂Ω, so

that

Jφ(ξ) = µ(ξ), (3)
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where Jφ denotes the Jacobian determinant of the transformation. The following

computations yield a transformation φ, which verifies (3).

Step 1: Compute a vector field ρ(ξ), which verifies

div ρ(ξ) = µ(ξ)− 1. (4)

Step 2: Build a velocity vector field from ρ(ξ):

νt(ξ) =
ρ(ξ)

t+ (1− t)µ(ξ)
, t ∈ [0, 1], (5)

where t is an artificially introduced (algorithmic) time.

Step 3: Finally, φ is obtained by solving the following ODE:

dψ(ξ, t)

dt
= νt(ψ(ξ, t)), t ∈ [0, 1], ψ(ξ, t = 0) = ξ, (6)

and setting φ equal to ψ evaluated at t = 1: φ(ξ) = ψ(ξ, t = 1).89

We add an additional constraint on the curl of ρ(ξ) to (4). Then, we solve

the ensuing div-curl system under the Dirichlet boundary condition to obtain a

unique solution, as the above problem may have multiple solutions, i.e.,

{

div ρ(ξ) = µ(ξ)− 1 (7a)

curl ρ(ξ) = υ(ξ) (7b)

with null boundary condition ρ(ξ) = 0∀ξ ∈ ∂Ω, where υ(ξ) is a continuous90

function over Ω. Hence, the transformation can be fully parametrized by Jφ(ξ)91

and υ(ξ). We ensure the uniqueness of the solution using the Dirichlet boundary92

condition [30]. The Dirichlet boundary conditions may cause the motion errors93

to be higher at the image boundaries, and therefore, we pad both images by94

zeros.95

With the above parametrization, we reformulate (1) as the following con-96

strained optimization problem:97

Problem: Given two images Tk and Tk+1, defined over Ω, find a function
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pair {µ(ξ), υ(ξ)} that optimizes cost (1) s.t.:







∫

Ω

µ(ξ)dξ = |Ω| (8a)

τh > µ(ξ) > τl, ξ ∈ Ω′ ⊂ Ω (8b)

where 0 < τl ensuring that φµ,υ is a diffeomorphism, and Ω′ is a sub-region of98

image domain Ω.99

Constraint (8a) ensures that the areas of the domain and co-domain are equal100

after transformation, and constraint (8b) limits the amount of compressibility,101

which is controlled by parameters τl and τh, within sub-region Ω′. Note that a102

diffeomorphism corresponds to a positive transformation Jacobian determinant,103

which is enforced explicitly via the monitor function [26].104

The above problem can be solved by a step-then-correct optimization strat-105

egy. We compute a sequence of corresponding points on the endocardial border106

in all the frames of a cardiac sequence using transformation function φ̂, given107

the segmentation on the first frame.108

Figure 1: The proposed semi-automated delineation of the left ventricle

2.2. Detection of E and A waves109

In order to detect the E and A waves, we need to compute the LV filling110

rate. The computation of the LV filling rate measurements is based on several111

processing steps. First, the LV volumes {Vk} were computed for all k in the112
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Figure 2: Computation of moving mesh correspondences

cardiac cycle, where Vk denotes the LV volume at kth cardiac phase. For each113

cardiac phase, the contours for the LV cavities were automatically identified114

using the registration step above, given manual contours on the first frame.115

The papillary muscles were regarded as part of the LV cavity and were included116

in the LV volume computation. We used the short-axis image sequences that117

contain the LV cavity, and applied the Simpson’s rule as well as the LV areas118

and slice spacing in computing volume Vk. This give us Vk as a function of time119

step k (Refer to Fig. 3(a) and (c)). We further compute the first derivative120

of the LV volumes with respect to time, thereby obtaining the LV filling rate121

dVk/dt (Refer to Fig. 3(b) and (d)).122

E and A are the early and late (atrial) ventricular filling velocities, which123

can be computed using the LV filling rate. In normal subjects, the LV inflow124

velocity is at its highest point during early diastole (E wave), with a smaller125

LA contraction (A wave), which results in E/A > 1. In patients with impaired126

relaxation, the LV pressure rises at early diastole, which yields a decrease in127

the E wave. Furthermore, the left atrium contraction highly contributes to the128

LV filling, which yields an increase in the A wave. Therefore, the impaired129

relaxation yields E/A < 1.130

In order to detect the peak values of the E and A waves, we first identify131
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all the local maxima of the LV filling rate curve based on a first derivative test.132

Then, we select the highest and second highest local maxima. The start of133

the diastolic phase is identified by detecting the time at which Vk is minimum.134

Among the two maxima, we take the one closer to the start of the diastolic135

phase as the E wave, and the other one as the A wave.136
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Figure 3: LV volume vs. time curves for: (a) typical normal relaxation; (b) typical impaired
relaxation. Corresponding LV filling rate (dVk/dt) curves are given by (c) and (d). The
proposed method used LV volume curve to identify the start of the diastolic phase, and
automatically detect the maximum values of E and A waves.
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3. Experiments137

Fifty three patients (out of 100 patients collected retrospectively as a part of138

computer assisted image based cardiac disease diagnosis and monitoring study)139

who had undergone cardiac CMR and TTE with tissue Doppler imaging between140

2007 and 2011 at London Health Sciences Centre University Hospital and St.141

Joseph’s Hospital, London, Canada were included in the study. Inclusion criteria142

were: (1) the time difference between CMR and TTE exams is less than one year;143

and (2) TTE assessments included the peak early and late ventricular filling144

velocity values. Six patients were removed since the time differences between145

MR and TTE studies were more than one year. No patients were excluded146

based on CMR image quality or post-processing results. The mean and standard147

deviation of the time difference between the CMR and TTE exams for the 47148

subjects included in the study is 1.7 ± 2.6 months. All patients participating149

in this study had a clinical indication for cardiac MRI. The indications were150

ischemia (13), valve disease (2), cardiomyopathy (7), myopericarditis (3), with151

the remainder of patients not having indications recorded. Although 9 patients152

were found to have global systolic dysfunction and 8 patients were found to153

have regional systolic abnormalities on MRI, a history of systolic dysfunction154

was provided in only one patient prior to MRI scanning. There were no healthy155

volunteers.156

The short-axis CMR image datasets consist of 20 – 25 functional 2D images157

per cardiac cycle. The CMR data were acquired on 1.5T CMR scanners with158

fast imaging employing steady state acquisition (FIESTA) mode. The data159

consists of images from 31 male and 16 female subjects, and the average age of160

subjects is 51.6± 16.7 years. The details of the datasets are presented in Table161

1.162

The size of the grid was selected automatically based on a bounding box163

containing the initial segmentation drawn on the first frame. A margin of 10164

pixels around the bounding box was added to allow deformations outside the165

bounding box. For the step-then-correct algorithm, we set the threshold for166
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the step-size to 0.01 and the maximum number of iterations to 25. The initial167

value of the step-size and the factor to reduce step-size were set to 0.5 and 2/3,168

respectively. Given the high variability in left ventricular motion, the following169

parameter values were used for all cases so to allow large tissue deformations:170

τh = 4 and τl = 0.1.171

Table 1: Details of the datasets used in evaluation of the proposed method.

Description Value

Number of patients 47
Patient age (mean ± std) 51.6± 16.7 years
Patient age range 16 — 79 years
Sex, m/f 31/16
Short-axis image size (144 × 192) — (512 × 512) pixels
Number of frames (K) 20 — 25
Pixel spacing (0.68 × 0.68) — (1.88 × 1.88) mm
Slice thickness 8 — 10 mm

In Fig. 4, we give a representative sample of the segmentation results for172

apical, mid-cavity and basal frames.173

Frame 1 Frame 4 Frame 7 Frame 10 Frame 13

Figure 4: Representative examples of the LV boundary tracking using the proposed method:
apical(1st row), mid-cavity (2nd row) and basal (3rd row) frames.
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Table 2 shows the parameters estimated using the proposed method. The174

parameters include ejection fraction (EF), End-diastolic volume (EDV), End-175

systolic volume (ESV) and stroke volume (SV). The table also reports mitral176

deceleration time which was computed using the LV filling rate for each subject.177

Table 2: Details of the global parameters computed using the proposed method.

Description Value Range

End-diastolic volume (ml) 121.4 ± 50.7 38.8 — 242.9
End-systolic volume (ml) 80.3 ± 47.1 18.1 — 205.3
Stroke volume (ml) 41.1 ± 14.9 20.6 — 83.5
Ejection fraction (%) 37 ± 13 13 — 61
Mitral deceleration time (ms) 141.1 ± 52.3 25.5 — 257.3

Comparisons between the proposed method and TTE reports on diastolic178

function are given in Table 3. The following criteria was used for the clas-179

sification: E/A < 1 corresponds to impaired relaxation; and E/A ≥ 1 cor-180

responds to normal, pseudonormal or Type 3 relaxation [5]. The proposed181

method and TTE findings agree that 18 and 22 subjects have impaired and182

normal/pseudonormal/Type 3 relaxations, respectively.183

Table 3: Detecting impaired relaxation in LV diastolic function using the proposed method
and TTE. The following criteria was used for the classification: E/A < 1 corresponds to
impaired relaxation; and E/A ≥ 1 corresponds to normal, pseudonormal or Type 3 relaxation
[5].

TTE

Impaired Normal, Pseudonormal
Relaxation or Type 3 Relaxation Total

Cine CMR
Impaired Relaxation 18 1 19
Normal, Pseudonormal,

Type 3 Relaxation 6 22 28
Total 24 23 47
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3.1. Cohen’s Kappa184

We computed the Cohen’s kappa coefficient between the proposed method

and TTE findings as follows.

κ =
Pr(a)− Pr(e)

1− Pr(e)
(9)

The observed percentage agreement Pr(a) is given by

Pr(a) =
A+D

N
(10)

where A, D and N denote the number of times both methods classify a subject

into impaired relaxation, the number of times both methods classify a subject

into normal relaxation, and total number of subjects, respectively. The overall

probability of random agreement Pr(e) is given by

Pr(e) =

(

A1

N
×
B1

N

)

+

(

A2

N
×
B2

N

)

(11)

where A1 = A + C, A2 = B +D, B1 = A + B, and B2 = C +D. B denotes185

the number of subjects classified into normal relaxation by CMR and impaired186

relaxation by TTE, and C vice versa.187

The proposed method and TTE findings yielded a Cohen’s Kappa coefficient188

of 0.70, a substantial agreement[31].189

3.2. Gwet’s AC1190

Gwet’s AC1 is computed by [28]:

AC1 =
Pr(a) − e(γ)

1− e(γ)
(12)

where

e(γ) = 2P1(1− P1) (13)
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The approximate chance that a method (TTE or CMR) classifies a subject into

impaired relaxation P1 is given by

P1 =
A1 +B1

2N
(14)

The proposed method and TTE findings yielded a Gwet’s AC1 coefficient of191

0.70.192

3.3. Reproducibility193

Inter-observer and intra-observer variabilities were measured over a data set194

of 10 subjects. Two independent readers, blinded to TTE and each other’s195

contours, traced the manual endocardial contours on the first frame. Intra-196

observer variability was evaluated based on one of the readers. Table 4 reports197

the inter-observer and intra-observer variabilities in terms of Intra Class Corre-198

lation (ICC), Bland-Altman test, and Pearson correlation coefficient (R). The199

parameters estimated using the proposed approach demonstrated good consis-200

tency in terms of ICC and Pearson correlation coefficient.201

Table 4: Reproducibility of CMR diastolic function measurements.

Intra-observer (cases = 10) Inter-observer (cases = 10)

ICC Bias ICC Bias

(95% CI) (Limits of agreement) R (95% CI) (Limits of agreement) R

E (l/s) 1.00 0.00 1.00 1.00 0.019 0.99

(1.00, 1.00) (-0.08, 0.08) (0.99, 1.00) (-0.470, 0.508)

A (l/s) 1.00 0.02 1.00 0.97 0.635 0.98

(1.00, 1.00) (-0.06, 0.11) (0.89,0.99) (-0.480, 1.751)

E/A 1.00 -0.01 1.00 0.96 -0.24 0.99

(1.00, 1.00) (-0.05, 0.03) (0.84, 0.99) (-0.73, 0.26)

MDT (ms) 0.84 -16.6 0.89 0.83 3.9 0.84

(0.48, 0.96) (-90.5, 57.3) (0.46, 0.96) (-61.9, 69.7)

4. Discussion202

An important advantage of our semi-automated method is that it signifi-203

cantly reduces the amount of time required for segmenting the left ventricle.204
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This allows the user to analyse the function over the entire cardiac cycle in ad-205

dition to the computation of common clinical measures such as ejection fraction206

or stroke volume. Our algorithm has the following advantages over prior LV207

segmentation works: (1) it removes the need for a time-consuming, manually-208

built training set; (2) it does not make prior assumptions as to the distributions209

of intensity and shape.210

The proposed method relied on short-axis MR images to analyse the diastolic211

function which differs from the method proposed by Wu et al. using two-, three-212

, and four-chamber views of the cine MR sequences [21]. The method proposed213

by Wu et al. relied on the mitral annulus sweep volume to analyse the diastolic214

function and used only six points to estimate the mitral annulus using spline215

interpolation, whereas the proposed method relied on several points (around216

30 points per segmentation) from about 10 short-axis slices to estimate the217

volume of the LV. Further, the method proposed bu Wu et al. required manual218

correction of atrioventricular junction tracking of about 30% of the cases whereas219

no manual correction was employed for the proposed method. However, one of220

the disadvantages of using only the short-axis is that it is hard to include the221

effects of shortening of the heart along the long-axis. We are planning to address222

this problem by the fusing the information from long-axis slices in the future.223

In contrast to the automated methods in [22] and [23], the proposed segmen-224

tation approach does not rely on intensity threshold for image segmentation. A225

major drawback of threshold-based segmentation approaches is that they of-226

fer a limited framework for strong prior incorporation [32], and often require a227

manual correction of the segmentation results. For example, 52% of the study228

population in [23] required manual correction of the LV contours. Segmentation229

of the LV is acknowledged as a challenging problem, and therefore, incorpo-230

ration of prior knowledge is essential to increase the robustness and accuracy.231

The proposed approach allows for the incorporation of a strong prior, a user232

defined contour of the LV on the first frame. The method has been shown to233

be robust, and yielded accurate segmentation results in comparison to manually234

drawn contours for both left and right ventricles under various heart conditions235
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[3, 29, 33]. Further, the proposed method demonstrated good consistency in236

reproducing similar results for inter-observer and intra-observer experiments.237

The proposed method relies on the LV volume curves to compute the LV238

filling rates, and the early and late fillings are expressed in millilitres per second.239

These measurements are different from the TTE findings which measure the240

velocity of the blood flow through the mitral valve in centimetres per second.241

The peak values of the early and late filling ratios for velocity and flow will242

be the same only if the size of the mitral valve does not change during the243

diastolic phase. As well, the proposed method ignores the effect of mitral valve244

regurgitation when computing the early and late filling rates.245

Another important MR measurement that can be used for the diagnosis of246

diastolic dysfunction is the phase contrast velocity measurement at the mitral247

valve. However, our data set was acquired retrospectively from the standard248

clinical scans, and therefore, only a small amount of subjects (8 out of 47)249

had a phase contrast velocity scan at the mitral valve. As a future study, we250

are planning to compare the proposed methods against the mitral valve flow251

measurements with a larger data set.252

5. Limitations of the proposed study253

One of the limitations of our method is that it requires manual contouring254

of one time frame for a given slice position. Although more time-consuming255

than automated methods, the proposed method allows for greater accuracy256

throughout the remainder of the cardiac cycle.257

The study analysed the CMR and TTE data retrospectively and none of258

the patients had both exams on the same day. Although the maximum time259

difference between MR and TTE exams was one year, it might have resulted260

in changes in cardiac function for some of the subjects. This could be one of261

the reasons for the difference in diastolic function estimated by the proposed262

method and TTE findings.263

We considered TTE exams as the reference standard to assess the perfor-264
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mance of the proposed method since invasive hemodynamic procedures are not265

used in standard clinical practice. TTE exams remain the generally accepted266

non-invasive reference method for diastolic function assessment [21]. The study267

did not also have the follow-up data to assess the prognostic significance of the268

proposed method.269

The algorithm was tested over a dataset of only 47 subjects. However, the270

proposed algorithm will allow testing over a larger data set since it only requires271

minimal user input.272

The LV volumes are computed based on short-axis slices of the MRI with273

8–10 mm slice thickness, which might have impacted the volumetric assessment.274

The proposed analysis based on short-axis images also ignores the descent of275

the mitral valve through the short-axis plane during systole and ascent during276

diastole. In the future, we are planning to address these problems by tracking277

the mitral valve over the cardiac cycle using long-axis cine MR sequences.278

6. Conclusions279

In this study, we proposed a semi-automated approach to estimate the left280

ventricular (LV) diastolic function parameters using anatomical cine cardiac281

magnetic resonance (CMR) imaging. Our method uses with a diffeomorphic282

nonrigid registration to obtain a sequence of points over time, given a manual283

contour on the first frame. Then, it computes the LV volume and filling rate284

over the entire cardiac cycle. Finally, it automatically detects the peak values of285

the E and A waves using the LV filling rate contour, thereby classifying the dias-286

tolic function into two categories: normal/pseudonormal/Type 3 and impaired.287

We performed experimental evaluations over CMR data sets acquired from 47288

subjects, including comparisons with independent reports for the same subjects289

from TTE. The proposed method correlated well with TTE, and yielded a Co-290

hen’s kappa measure of 0.70 and a Gwet’s AC1 coefficient of 0.70, a substantial291

agreement with the TTE results. The diastolic function parameters estimated292

using the proposed approach also demonstrated good consistency in terms of293
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Intra Class Correlation (ICC), Bland-Altman test, and Pearson correlation co-294

efficient.295
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