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Tracking regional heart motion and detecting the corresponding abnormalities play an essential role in
the diagnosis of cardiovascular diseases. Based on functional images, which are subject to noise and
segmentation/registration inaccuracies, regional heart motion analysis is acknowledged as a difficult
problem and, therefore, incorporation of prior knowledge is desirable to enhance accuracy. Given noisy
data and a nonlinear dynamic model to describe myocardial motion, an unscented Kalman smoother is
proposed in this study to estimate the myocardial points. Due to the similarity between the statistical
information of normal and abnormal heart motions, detecting and classifying abnormality is a challeng-
ing problem. We use the Shannon’s differential entropy of the distributions of potential classifier features
to detect and locate regional heart motion abnormality. A naive Bayes classifier algorithm is constructed
from the Shannon’s differential entropy of different features to automatically detect abnormal functional
regions of the myocardium. Using 174 segmented short-axis magnetic resonance cines obtained from 58
subjects (21 normal and 37 abnormal), the proposed method is quantitatively evaluated by comparison
with ground truth classifications by radiologists over 928 myocardial segments. The proposed method
performed significantly better than other recent methods, and yielded an accuracy of 86.5% (base),
89.4% (mid-cavity) and 84.5% (apex). The overall classification accuracy was 87.1%. Furthermore,
standard kappa statistic comparisons between the proposed method and visual wall motion scoring by
radiologists showed that the proposed algorithm can yield a kappa measure of 0.73.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Assessment of left ventricular (LV) function is of utmost
importance in the diagnosis of coronary heart disease, the leading
cause of death worldwide. The LV function can be assessed in part
using global indicators such as ejection fraction, stroke volume or
ventricular mass. Providing only an overall appraisal of the LV
function, such global indicators lack information about localized
ventricular function. Therefore, regional wall motion abnormality
analysis is preferred for a thorough clinical analysis. In clinical
practice, regional wall motion is commonly scored following a
standard issued by the American Heart Association (Cerqueira
et al., 2002), which suggests selecting representative 2D cardiac
slices to generate 17 standardized LV segments. Such analysis
relies on visual assessments and interpretations of the motions of
each of the 17 segments and, therefore, is subject to high interob-
server variability (Hoffmann et al., 2006; Redheuil et al., 2007),
ll rights reserved.
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subjective and nonreproducible. The difficulties come from the
subtle visual differences between normal- and abnormal-segment
motions. For example, the clinical study by Hoffmann et al. (2006)
shows that the mean kappa measure of detecting regional wall
motion abnormalities by three different radiologists could be as
low as 0.43. Alternatively, automating abnormality scoring
attracted a significant research effort in recent years.

Earlier studies of wall motion abnormality detection used
echocardiography (Bosch et al., 2005; Leung et al., 2007; Mansor
and Noble, 2008), with focus on techniques such as shape statistics
(Bosch et al., 2005; Leung et al., 2007) and hidden Markov models
(Mansor and Noble, 2008), among others. More recently, MRI-
based wall motion abnormality detection attracted a significant
research attention (Qian et al., 2008; Lu et al., 2009; Suinesiaputra
et al., 2009; Garcia-Barnes et al., 2010; Lekadir et al., 2011). The
work in (Lu et al., 2009) suggested normalizing the LV to the same
position, size and intensity level, and used a correlation-based
intra-segment classification to discriminate normal and abnormal
motions. This preliminary study was evaluated only on basal slices.
The study in (Suinesiaputra et al., 2009) used an independent
on abnormality detection: An information theoretic approach. Med. Image
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Nomenclature

AUC area under the receiver operating characteristic curves
DENSE displacement encoding with stimulated echoes
FIESTA fast imaging employing steady state acquisition
LV left ventricle
MR magnetic resonance

ROC receiver operating characteristic
SDE Shannon’s differential entropy
UKF unscented Kalman filter
UKS unscented Kalman smoother

2 K. Punithakumar et al. / Medical Image Analysis xxx (2013) xxx–xxx
component analysis classifier to detect and localize abnormally
contracting regions. The authors of (Lekadir et al., 2011) focused
on statistical modeling based on spatiotemporal interlandmark
relationships. The study in (Garcia-Barnes et al., 2010) used a
differentiable manifold based analysis. Most of the existing
algorithms are built on statistical shape analysis techniques
(Suinesiaputra et al., 2009; Lekadir et al., 2011) which may require
large training sets, with the results highly dependent on the choice
of the training data and, therefore, often biased towards a particu-
lar cardiac pathology. Moreover, in some cases, the existing algo-
rithms either use data that are not frequently available in regular
clinical routine (Garcia-Barnes et al., 2010; Qian et al., 2008), or
require extensive user interactions to define manually myocardial
boundaries in the training phase (Suinesiaputra et al., 2009;
Lekadir et al., 2011). For instance, the studies in (Garcia-Barnes
Fig. 1. The proposed regional heart a
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et al., 2010; Qian et al., 2008) used tagged MR images, which allow
extracting additional features, e.g., myocardial strain. However, in
clinical routine, most patients are scanned for cine MR, and only
a few of them have tagged MR images. Despite this impressive
research effort that has been recently devoted to automatic
detection and localization of regional abnormality, the problem is
still acknowledged challenging, with a large room for improve-
ments in regard to accuracy. For instance, a recent publication
(Suinesiaputra et al., 2009) reports an accuracy of 63.70% (base),
67.41% (middle), and 66.67% (apex) when visual wall motion
scoring is used as reference.

Our goal is to develop an automated tool to detect and localize
myocardial segments that show abnormal contractile behavior
using standard clinical magnetic resonance (MR) images, and to
do so with limited user interaction. Fig. 11 shows an example of
bnormality detection algorithm.

on abnormality detection: An information theoretic approach. Med. Image
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Fig. 2. An example comparison between filtering and fixed-interval smoothing. In
filtering, the estimation is based only on past observations, whereas in fixed-
interval smoothing, these estimates can be improved using observations received
afterwards.

Fig. 3. Classifier features corresponding to segment S at frame k. The following
features were used in our analysis: normalized radial distance rk,i, radial velocity vk,i,
segment arc length lk, segment area ak and wall thickness sk.

Fig. 4. User input to specify initial segmentation and anatomical landmarks on the
first frame. In subsequent frames, anatomical landmarks are obtained automatically
using the registration method (Chen et al., 2010).
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binary score results, i.e., normal or abnormal contractility, for the
segments of a myocardium. The proposed abnormality detection
system primarily consists of preprocessing and classification.
1 Typically, the number of images per subject is equal to 200.
1.1. Preprocessing

The main objective of this preprocessing step is to estimate re-
gional wall motion quantitatively. Many of the existing motion
tracking techniques rely on myocardial tagging (Arts et al., 2010;
Liu and Prince, 2010; Young, 1999) or other MR acquisition proto-
cols that provide velocity information such as phase-contrast
velocity or displacement encoding with stimulated echoes (DENSE)
(Bergvall et al., 2008; Gilliam et al., 2009; Pan et al., 2005; Spotti-
swoode et al., 2007). Unfortunately, these MR acquisition protocols
Please cite this article in press as: Punithakumar, K., et al. Regional heart moti
Anal. (2013), http://dx.doi.org/10.1016/j.media.2012.11.007
are still limited in routine clinical use due to their complex and
time-consuming post-processing and interpretation. Anatomical
cine MR is recognized as the reference MR standard to assess regio-
nal and global cardiac function. One can still use manual delinea-
tion of the myocardium on anatomical cine MR images, and
subsequently estimate the myocardial wall motion. However, cine
MR provides a large number of images1 and, therefore, tracking
based on manual delineation of the LV boundary in all these images
is prohibitively time consuming. Therefore, automating the process
can be of great interest (Petitjean and Dacher, 2011). Automatic
delineation of myocardium is difficult because of the low contrast
and photometric similarities between the connected cardiac regions
– for instance, the papillary muscles within the cavity and myocar-
dial wall have approximately the same intensity. Further, the sub-
stantial variations in size, shape and intensity between subjects,
particularly those with pathological patterns, makes geometric/pho-
tometric models hard to build from a finite training set. To tackle the
problem of delineation of the myocardium, we propose to use a non-
rigid registration method developed recently (Chen et al., 2010), gi-
ven anatomical landmarks on the first frame. Using registration is
advantageous in our study as it provides the sequence of corre-
sponding points over time, an essential attribute to analyze wall mo-
tion regionally. In contrast, using a segmentation algorithm, e.g.,
(Ben Ayed et al., 2008; Ben Ayed et al., 2009), would further require
additional computations to obtain the point-to-point
correspondences.

We can estimate the motion of the myocardial points quantita-
tively using the point-to-point correspondence obtained from the
registration algorithm. However, accurate characterization of the
dynamic behavior of the LV is essential in order to enhance the per-
formance of motion estimation. Such temporal characteristic of LV
motion can be incorporated by having a dynamic state-space mod-
el (Jacob et al., 2001; Liu and Shi, 2007; Moireau et al., 2009; Puni-
thakumar et al., 2010b). (Jacob et al., 2001) used a second-order
autoregressive model to describe the endocardial motion. This ap-
proach generally requires a training to determine coefficient matri-
ces of the autoregressive model. (Liu and Shi, 2007) used a
constant-velocity (linear) model, a well known state-space model
for target tracking applications. This model is designed for objects
moving on a straight line and, therefore, may not yield an accurate
characterization of cardiac motion.

In this study, we propose a cyclic dynamic model that is more
descriptive of the periodic motion of the myocardium than the
model with a fixed angular frequency in (Punithakumar et al.,
2010c). The model in (Punithakumar et al., 2010c) is insufficient
to describe the LV dynamics because: (1) The angular frequency
that characterizes the cyclic motion of an LV point for normal sub-
jects changes over time; (2) the dynamics of LV motion in systolic
and diastolic phases are significantly different; (3) the LV dynamics
of abnormal subjects differ significantly from those of normal sub-
jects. One approach to address the aforementioned problems is to
use a multiple-model description with different angular frequen-
cies to characterize different modes of the LV dynamics (Puni-
thakumar et al., 2010b). However, such an approach requires
multiple filters running in parallel and, therefore, more computa-
tional resources.

The model that we propose in this study embeds a time-varying
angular frequency that has to be estimated from the data along
with other state elements. Based on a more general description
of cyclic motion, a time-varying angular frequency would allow
to describe more accurately different phases of the cardiac cycle.
However, this is not straightforward because embedding time-
varying angular frequency within a cyclic dynamic model yields
on abnormality detection: An information theoretic approach. Med. Image
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Fig. 5. Representative examples of segmented endocardium using the proposed approach. Apical (first row), mid-cavity (second row) and basal (third row) frames were
segmented, respectively, into 4, 6 and 6 segments following the standard in Cerqueira et al. (2002). In the first frame, a cubic spline interpolation was used to obtain more
sample points along the endocardial boundary using a similar user input as in Fig. 4. These sample points were propagated in subsequent frames using a nonrigid registration
and UKS.
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Fig. 7. Estimation of angular frequency xk using UKS for three representative sample points on apical, mid-cavity and basal frames. The dotted lines show the value
calculated using the heart rate, 2p/(KDT). The xk value estimates are higher at the beginning of the cardiac cycle (systolic phase), and lower at the end (diastolic phase).
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Fig. 6. Raw values from nonrigid registration and the subsequent UKS estimates for three representative sample points respectively on apical (1st column), mid-cavity (2nd
column) and basal frames (3rd column).
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Fig. 8. Receiver operating characteristics of classifier features. The closer the curve
to the left hand top corner, the better the classification performance.
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a nonlinear estimation problem, which cannot be accurately solved
with the classical Kalman filter. The most common solution would
be to use an extended Kalman filter based on linearized approxi-
mations, but such solution is known to yield extremely poor re-
sults in practice (Julier and Uhlmann, 2004).

To address the aforementioned difficulties, we propose an un-
scented Kalman smoother (UKS), a smoothing algorithm developed
based on the Unscented Kalman filter (UKF) (Julier and Uhlmann,
2004), for state estimation. The UKF uses unscented transforma-
tion, a more direct and explicit mechanism for transforming mean
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Fig. 9. Distributions of normal and abnormal segments with corresponding Bhattach
myocardial segments.
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and covariance information, which addresses the deficiencies of
linearization inherent to other adaptive filters such as the ex-
tended Kalman filter. UKF propagates the second order properties
of the distribution with only a small amount of statistical informa-
tion by choosing sample points deterministically. Therefore, it pro-
vides sufficient accuracy for nonlinear filtering applications with a
computational cost of an order similar to the extended Kalman
filter.
1.2. Classification

The classification part is a difficult problem due to the similar-
ities associated with the normal and abnormal heart motions (Fung
et al., 2005; Qazi et al., 2007; Punithakumar et al., 2010c). In this
study, we use the Shannon’s differential entropy (SDE) of the distri-
butions of normalized radial distance, radial velocity, segment area
(endocardial), segment arc length (endocardial) and wall thickness
for regional wall motion abnormality detection. Rather than rely-
ing on elementary measurements or a fixed set of moments, the
SDE measures the whole distribution information. In the context
of global (not local) classification of normal and abnormal hearts,
the SDE has been shown to be more discriminative than commonly
used descriptors (Punithakumar et al., 2010c). In this study, we
investigate the SDE in the context of the more challenging and
complex task of regional classification.

The individual classification ability of features were measured
using receiver operating characteristic (ROC) curves with the cor-
responding area under the curves (AUCs), and the Bhattacharyya
distance metric (Comaniciu et al., 2003). Subsequently, a naive
Bayes classifier algorithm (Seber, 1984) is constructed from the
SDEs of classifier features with the best performance in order to
automatically detect abnormal functional regions of the
myocardium.
−1 0
DE

 

−4 −3 −2 −1 0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

SDE

Pr
ob

ab
ilit

y 
de

ns
ity

 

 

Normal
Abnormal

2 3 4
DE

 

aryya distance metric B, categorized using different classifier features over 928

on abnormality detection: An information theoretic approach. Med. Image

http://dx.doi.org/10.1016/j.media.2012.11.007


−2.5 −2 −1.5 −1
−2.5

−2

−1.5

−1

−0.5

SDE of segement area

SD
E 

of
 n

or
m

al
iz

ed
 ra

di
al

 d
is

ta
nc

e

 

 

Normal
Abnormal

−2.5 −2 −1.5 −1−2.5

−2

−1.5

−1

−0.5

SDE of segement area

SD
E 

of
 n

or
m

al
iz

ed
 ra

di
al

 d
is

ta
nc

e

 

 

Normal
Abnormal

−2.5 −2 −1.5 −1
−2.5

−2

−1.5

−1

−0.5

SDE of segement area

SD
E 

of
 n

or
m

al
iz

ed
 ra

di
al

 d
is

ta
nc

e

 

 

Normal
Abnormal

Fig. 10. Decision boundary for normal and abnormal regional myocardial functions constructed using a Bayesian classifier. The boundary was constructed separately for each
apical, mid-cavity and basal frames using a dataset of 58 subjects.

Fig. 11. Representative example of classification results of myocardial segments
following the standard issued by American Heart Association (Cerqueira et al.,
2002). The circumferential polar plots depict the results by the proposed method
and ground truth classifications by radiologist of 16 myocardial segments: 1. basal
anterior 2. basal anteroseptal 3. basal inferoseptal 4. basal inferior 5. basal
inferolateral 6. basal anterolateral 7. mid anterior 8. mid anteroseptal 9. mid
inferoseptal 10. mid inferior 11. mid inferolateral 12. mid anterolateral 13. apical
anterior 14. apical septal 15. apical inferior 16. apical lateral. The 17th segment,
apex, is not analyzed. Normal and abnormal motions are shown, respectively, by
green and red colors. Comparisons with ground truth classifications show that 15
out of 16 segments were correctly classified by the proposed method. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

6 K. Punithakumar et al. / Medical Image Analysis xxx (2013) xxx–xxx
1.3. Contributions of this paper

We can summarize the contributions of the current study as
follows:

� We propose to use a nonrigid registration algorithm (Chen et al.,
2010) to obtain a sequence of corresponding points over time,
given an initial set of points on the first frame.
� We propose a nonlinear state transition model constructed by

adding a time-varying angular frequency to the state-space
model in (Punithakumar et al., 2010c).
� We propose to use a naive Bayes classifier constructed from the

area and radial motion metrics.

Using 174 segmented short-axis magnetic resonance cines ob-
tained from 58 subjects (21 normal and 37 abnormal), the pro-
posed method is quantitatively evaluated by comparison with
ground truth classifications by radiologists over 928 myocardial
segments. The proposed method performed significantly better
than other recent methods, and yielded an accuracy of 86.5%
(base), 89.4% (mid-cavity) and 84.5% (apex). The overall classifica-
tion accuracy was 87.1%. Furthermore, standard kappa statistic
Please cite this article in press as: Punithakumar, K., et al. Regional heart moti
Anal. (2013), http://dx.doi.org/10.1016/j.media.2012.11.007
comparisons between the proposed method and visual wall mo-
tion scoring by radiologists showed that the proposed algorithm
can yield a kappa measure of 0.73.

A preliminary conference version of this work appeared in MIC-
CAI 2010 (Punithakumar et al., 2010a). This journal version ex-
pands on (Punithakumar et al., 2010a) with (1) a wider
experimental investigation that includes more patient data, radiol-
ogist assessments, and statistical validations; and (2) a much
broader, more informative/rigorous discussion of the subject.

2. Methods

Fig. 1 gives the components of the overall abnormality detection
algorithm. In this section, we describe the functionality of each
individual component.

2.1. Data preprocessing using nonrigid image registration

In order to obtain a sequence of points over time, we formulate
the point correspondence between the first image T1 and kth image
Tk defined over X � R2 as the optimization of similarity/dissimilar-
ity measure (Chen et al., 2010).

/̂ ¼ arg opt
/

EsðT1; Tk;/ðnÞÞ ð1Þ

for each pixel location n 2X, where /: X ? X is a transformation
function, and Es(�) a measure of similarity. This problem may not
have a unique solution. Therefore, a deformation field is introduced
with Jacobian transformation l and curl of end velocity field c,
where l : X! R and c : X! R (these will be described in more de-
tails later).

2.1.1. Moving mesh generation
Let l(n) be a continuous monitor function constrained byZ

X
l ¼ jXj ð2Þ

The purpose of this step is to find a transformation /: X ? X,
@X ? oX, so that

J/ðnÞ ¼ lðnÞ ð3Þ

where J/ denotes the transformation Jacobian. The following com-
putations yield a transformation / which verifies (3).

Step 1: Compute a vector field q(n) which verifies
on abno
div qðnÞ ¼ lðnÞ � 1 ð4Þ
rmality detection: An information theoretic approach. Med. Image
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Step 2: Build a velocity vector field from q(n):
Please
Anal. (
mtðnÞ ¼
qðnÞ

t þ ð1� tÞlðnÞ ; t 2 ½0;1� ð5Þ
where t is an artificially introduced (algorithmic) time.
Step 3: Finally, / is obtained by solving the following ODE:
dwðn; tÞ
dt

¼ mtðwðn; tÞÞ; t 2 ½0;1�; wðn; t ¼ 0Þ ¼ n ð6Þ
and setting / equal to w evaluated at t = 1: /(n) = w(n, t = 1).

The above problem does not have a unique solution. However, a
unique solution can be obtained by adding to (4) an additional con-
straint on the curl of q(n), and solving the ensuing div-curl system
under the Dirichlet boundary condition:

div qðnÞ ¼ lðnÞ � 1 ð7aÞ
curl qðnÞ ¼ cðnÞ ð7bÞ

with null boundary condition q(n) = 0"n 2 oX, where c(n) is a con-
tinuous function over X. Hence, the transformation can be fully
parameterized by J/(n) and c(n). Note that the Dirichlet boundary
conditions are required to ensure the uniqueness of the solution
(Zhou, 2006). The Dirichlet boundary conditions may cause the mo-
tion errors to be high at the image boundaries. However, this can be
easily overcome by padding both images by zeros.

With the above parameterization, (1) can be reformulated as
the following constrained optimization problem (Chen et al.,
2010):

Problem 1. Given two images T1 and Tk, defined over X, find
the function pair {l(n),c(n)}, that optimizes the cost in (1), subject
to:Z

X
lðnÞdn ¼ jXj ð8aÞ

sh > lðnÞ > sl; n 2 X0 � X ð8bÞ

where 0 < sl ensuring that /l,c is a diffeomorphism, and X0 is a sub-
region of image domain X.

Constraint (8a) ensures the areas of the domain and
co-domain are equal after transformation, whereas (8b) enforces
the incompressibility constraint in sub-region X0. Note that a
diffeomorphism corresponds to a positive transformation
Jacobian. We enforce such a positiveness explicitly via the moni-
tor function (Liu, 2006).

The above problem is solved by a step-then-correct optimization
strategy as described in Algorithm 1. We refer the reader to (Chen
et al., 2010) for derivation and numerical implementation details.

Algorithm 1. Step-then-correct optimization (Chen et al., 2010)

Given image pair T1 and Tk, consider the following steps.
Step 1 Compute the gradients of l and c which we denote

respectively by rl(T1,Tk,/) and rc(T1,Tk,/)
Step 2 Terminate if step size d < dth or a maximum number of

iterations is reached; otherwise, update (l,c) by (i is
the iteration number):
ci
20
liþ1 ¼ li þ d
rlES

max jrlESj
and ciþ1

¼ ci þ d
rcES

max jrcESj
Step 3 For each pixel location n 2X0 �X, impose constraint
(8b) by
te this article in press as: Punithakumar, K., et al. Regional heart motion abnorm
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liþ1ðnÞ  maxðliþ1ðnÞ; slÞ and liþ1ðnÞ
 minðliþ1ðnÞ; shÞ
For each pixel location n 2X, impose constraint (8a) by
liþ1ðnÞ  liþ1ðnÞ jXjX
n2X

liþ1ðnÞ
Step 4 Find a vector field q(n) which satisfies:
div qðnÞ ¼ liþ1ðnÞ � 1 ð9aÞ
curl qðnÞ ¼ ciþ1ðnÞ ð9bÞ
with null boundary condition q(n) = 0, "n 2 oX. Compute the
transformation /(n) = w(n, t = 1) by finding the solution to the
ordinary differential equation
dwðn; tÞ
dt

¼ mtðwðn; tÞÞ t 2 ½0;1� ð10Þ
with w(n, t = 0) = n. The velocity vector field mt is given by
mtðnÞ ¼
qðnÞ

t þ ð1� tÞliþ1ðnÞ t 2 ½0;1� ð11Þ
Step 5 Compute cost ES. If it improves, i i + 1, go to Step 1;
otherwise, decrease d and go to Step 2.

2.2. Constructing information theoretic measures for classification

2.2.1. Dynamic model for temporal periodicity
Let (x,y) be the Cartesian coordinates of a point on the myocar-

dium with the origin corresponding to the lower left corner of the
image. Consider the state vector f ¼ ½�x x _x�T that describes the
dynamics of the point in x-coordinate direction, where _x and �x de-
note, respectively, velocity and the mean position over cardiac cy-
cle. We assume the heart motion is periodic. Then, we define a
continuous state-space model that describes the cyclic motion of
the point as follows:

_fðtÞ ¼
0 0 0
0 0 1
x2 �x2 0

2
64

3
75fðtÞ þ

1 0
0 0
0 1

2
64

3
75wðtÞ ð12Þ

where x is the angular frequency, and w(t) a vector-valued white
noise. For a constant value of x and w(t) = 0, model (12) amounts
to a simple harmonic oscillation in x-direction. However, cardiac
motion is much more complex than a single harmonic motion
and, therefore, we propose to embed (1) a time-varying x so as to
account for the rate of oscillation change and (2) a new variable
w(t) for unpredictable errors. We derive the discrete-time equivalent
of (12) as follows (refer to Appendix A for derivation details):

fkþ1 ¼ Fkfk þ wk ð13Þ

where k is the frame number (or time step), and Fk given by:

Fk ¼
1 0 0

1� cosðxkDTÞ cosðxkDTÞ 1
xk

sinðxkDTÞ
xk sinðxkDTÞ �xk sinðxkDTÞ cosðxkDTÞ

2
64

3
75 ð14Þ

wk is a discrete-time white noise sequence, DT the sampling inter-
val, and xk a discrete angular frequency. The covariance of process
noise Qk = cov (wk) is given by

Qk ¼ ½qij�3�3 ð15Þ

where qij’s are defined in (A.21)–(A.26) in Appendix A.
ality detection: An information theoretic approach. Med. Image
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Let sk ¼ ½�xk xk _xk �yk yk _yk xk�T be the state vector that describes
the corresponding dynamics at time step k. Elements _xk; �xk; _yk

and �yk denote, respectively, the velocity and mean position over
a cardiac cycle in x and y coordinate directions. We compute a

sequence of corresponding points in all the frames using transformation

function /̂ (Eq. (1)).

The discrete-time dynamic model that describes the cyclic mo-
tion of the point is given by:

skþ1 ¼ fkðskÞ þ vk ð16Þ

where

fkðskÞ ¼
Fk 03�3 03�1

03�3 Fk 03�1

01�3 01�3 1

2
64

3
75 ð17Þ

and {vk} denotes a Gaussian process noise sequence that accommo-
dates unpredictable errors due to modeling uncertainties, with
zero-mean and covariance given by blkdiag (Qk, Qk, q3), where blk-
diag (�) denotes block diagonal matrix (refer to Appendix A for fur-
ther details on the expressions and meanings of Qk and q3).

The measurement equation is given by

zk ¼ Hksk þ gk ð18Þ

where

Hk ¼
0 1 0 0 0 0 0
0 0 0 0 1 0 0

� �
ð19Þ

{gk} is a zero-mean Gaussian noise sequence with covariance

Rk ¼
r 0
0 r

� �
ð20Þ

We use parameter r to characterize the uncertainties associated
with the observations due to error. The measurement errors in
our study are mainly due to displacement inaccuracies arising from
nonlinear image registration as well as to the MR imaging noise. On
the one hand, smaller values of r enforces the conformity of the esti-
mation to the measurements, in which case erroneous measure-
ments may result in low estimation accuracy. On the other hand,
larger values of r may cause the measurements to be unreliable
for the filter. The observation zk = [zk,x zk,y]T corresponding to the
point (x,y) is obtained using the displacement vectors from the reg-
istration method.

2.2.2. The recursive Bayesian filtering
Our objective is to build a Bayesian estimation of the dynamics

of the LV, given model (12). Accurately estimating the state of such
model is extremely difficult. The optimal Bayesian solution to the
problem requires the propagation of the description of the full
probability density function of the state sk. Because of the form
of the density function is not restricted, we may not be able to de-
scribe it using a finite number of parameters, which requires
approximations in practice. The Kalman filter, which is the most
widely used estimation algorithm, uses only the mean and covari-
ance information of the density function in its update rule. The ex-
tended Kalman filter is the most common extension to nonlinear
systems; it uses a linearization of all nonlinear transformations.
Unfortunately, such linearized transformations are not always reli-
able, and often result in inaccurate estimations when the error
propagations cannot be approximated by a linear function. In this
study, we adopt a recursive nonlinear Bayesian algorithm, the UKS,
to estimate the state sk at each time step. The UKS is a smoothing
algorithm developed based on the UKF (Julier and Uhlmann, 2004).
The UKF uses unscented transformation, a more direct and explicit
mechanism for transforming mean and covariance information,
that addresses the deficiencies of linearization inherent to other
Please cite this article in press as: Punithakumar, K., et al. Regional heart moti
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adaptive filters. It propagates the second order properties of the
distribution with only a small amount of statistical information
by choosing sample points deterministically. Therefore, it provides
sufficient accuracy for nonlinear filtering applications with a com-
putational cost of an order similar to the extended Kalman filter.

To estimate the state Xk, the UKF uses only the set of observa-
tions z1:k from time step 1 to k. However, since the data in cardiac
MRI is available upfront, the performance of the filtering algorithm
can be further improved by smoothing (Sarkka, 2008) the estima-
tion of the state Xk using observations Zk:K, K > k, where K is the
number of frames in an image sequence. There are several variants
of smoothing, the most common being fixed-interval smoothing,
which we use here. Fig. 2 depicts a comparison between the filter-
ing approach and fixed-interval smoothing. Appendix B describes
the details of the UKS.

2.3. Filter initialization

In our problem, we do not have prior knowledge of the initial
value of s1. Therefore, we use two-point differencing method (Bar-
Shalom et al., 2002) to initialize position and velocity components
of the state. For instance, the initial position x̂1 and velocity _̂x1 in x-
coordinate direction are given by

x̂1 ¼ z1;x ð21Þ

_̂x1 ¼
ðz2;x � z1;xÞ

DT
ð22Þ

where {zk,x: k = 1, 2, . . ., K} is the observation in x-coordinate direc-
tion obtained from kth frame. The mean position over cardiac cycle
�̂x1 is initialized by taking the expectation over all corresponding
measurements

�̂x1 ¼
1
K

XK

k¼1

zk;x ð23Þ

The initial state elements in y-coordinate direction, ŷ1; _̂y1 and �̂y1,
can be computed similarly using {zk,y}. The angular velocity is ini-
tialized as x1 = 2p/(KDT), and the initial mean input as
m1 ¼ ½x̂1 _̂x1 �̂x1 ŷ1 _̂y1 �̂y1 x1�T . The corresponding covariance is given
by

P1 ¼

U1 03�3 03�1

03�3 U1 03�1

01�3 01�3 1

2
6664

3
7775 ð24Þ

where

U1 ¼
r r

K
r

KDT
r
K r r

DT
r

KDT
r

DT
2r

DT2

2
64

3
75 ð25Þ
2.4. Information theoretic measures and classifier

The state estimates from UKS are subsequently processed to-
wards the classification of normal or abnormal motions. In order
to measure the information associated with regional LV function,
the SDEs of a set of classifier features were evaluated. The SDE Sf

of a probability density function f(h) is defined as follows:

Sf ¼
Z

h2R
f ðhÞ ln f ðhÞdh; h 2 R ð26Þ
2.4.1. Classifier features
Let ŝk;i ¼ ½�̂xk;i x̂k;i _̂xk;i �̂yk;i ŷk;i _̂yk;i x̂k;i�T be the estimated state of ith

point by UKS at time step k. Let IN = {1, 2, . . ., N} and IS = {is, is + 1,
on abnormality detection: An information theoretic approach. Med. Image
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Table 1
Details of the datasets used in evaluation of the proposed method.

Description Value

Number of subjects 58
Scanner protocol FIESTA
Patient ages 16–79 years
Short-axis image resolution (256 � 256) or (512 � 512) pixels
Number of frames (K) 20
Temporal resolution (DT) 29–76 ms
Pixel spacing (0.7 � 0.7 � 10.0)–(1.7 � 1.7 � 12.0) mm
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. . ., is + Ns � 1} � IN be, respectively, the set of points on the endo-
cardium, and endocardial wall of segment S, where N and NS de-
note the corresponding number of points. This study uses fixed
number of points over the cardiac cycles using subsampling the
image space if needed, and therefore, IN and IS are constants. Sim-
ilarly, we can define a new set of points, fŝ0k;ig, which corresponds
to the endocardial boundary.

The center (cx,k, cy,k) of the endocardium at time step k is given
by

cx; k ¼
1
N

X
i2IN

x̂k;i; cy; k ¼
1
N

X
i2IN

ŷk;i ð27Þ

We propose to use the following classifier features (see Fig. 3 for an
illustration).

2.4.1.1. Normalized radial distance. The normalized radial distance
rk,i between the center (cx,k, cy,k) and a point (xk,i, yk,i) on the endo-
cardial boundary is computed as follows:

rk;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̂k;i � cx; k

p
Þ2 þ ðŷk;i � cy;kÞ2

maxj2IS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̂k;j � cx;kÞ2 þ ðŷk;j � cy;kÞ2

q 8i 2 IS ð28Þ
2.4.1.2. Radial velocity. We compute the radial velocity vk,i of an
endocardial point (xk,i, yk,i) as follows:

vk;i ¼ ~vk;i �
~rk;i

k~rk;ik

� �
8i 2 IS ð29Þ

where ~vk;i ¼ ½ _̂xk;i; _̂yk;i�T and~rk;i ¼ x̂k;i � cx;k; ŷk;i � cy;k

� �T

2.4.1.3. Segment arc length. An approximation of the arc length of
an endocardial boundary described with a set of points,
fðx̂k;i; ŷk;iÞ : i ¼ is; . . . ; is þ Ns � 1g, is computed as follows:

lk ¼
XisþNs�2

i¼is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̂k;iþ1 � x̂k;iÞ2 þ ðŷk;iþ1 � ŷk;iÞ2

q
ð30Þ

In the above equation, the end index is equal to is + Ns � 2 since we
start the computation with index i + 1.

2.4.1.4. Segment area. Let ak denotes the area of the region enclosed
within the endocardial boundary of segment S. We assume ak

corresponds to a convex polygon with vertices fðcx;k; cy;kÞ;
ðx̂k;i; ŷk;iÞ : i ¼ is; . . . ; is þ Ns � 1g. The segment area is then com-
puted as:

ak ¼
1
2

cx;kŷk;is � cy;kx̂k;is

	 

þ x̂k;isþNs�1cy;k � ŷk;isþNs�1cx;k

	 
�
þ
XisþNs�2

i¼is

x̂k;iŷk;iþ1 � x̂k;iþ1ŷk;i
	 
#

ð31Þ
2 As suggested by Cerqueira et al. (2002), the attachment of the right ventricular
wall to the LV is used to identify and separate the septum from the LV anterior and
inferior free walls.
2.4.1.5. Wall thickness. The wall thickness of segment S is computed
as follows:

sk ¼
2 a0k � ak

	 

ðl0k þ lkÞ

ð32Þ

where a0k is the area and l0k the arc length of epicardial of segment S.
The epicardial area a0k and arc length l0k can be computed similar to
ak and lk using endocardial boundary points fŝ0k;ig.

2.4.2. Shannon’s differential entropy and Bayesian classifier
We used all time points in computing the SDEs in this study.

The kernel density estimate of a classifier element vn 2 {rk,i, vk,i,
lk, ak, sk} for k = 1, . . ., K is given by
Please cite this article in press as: Punithakumar, K., et al. Regional heart moti
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fvn
ðhÞ ¼

Pnv
n¼1Kðvn � hÞ

nv
h 2 R ð33Þ

where nv = KNs for vn 2 {rk,i, vk,i} and nv = K for vn 2 {lk, ak, sk}. Typ-
ical choices of Kð�Þ are the Dirac function and the Gaussian kernel.
Using the definition (26), the SDE is derived as follows:

Sfvn
ðhÞ ¼ �

Z
h2R

�
P
Kðvn � hÞ

nv
ln
X
Kðvn � hÞ � ln nv

� �
dh; h

2 R ð34Þ

It is advantageous to use multiple SDE measures towards the clas-
sification as they measure different information associated with
the myocardial function. A naive Bayesian classifier (Seber, 1984)
that provides a quadratic decision boundary is constructed from
the SDEs of classifier features.

A naive Bayesian classifier (Seber, 1984) is constructed from the
SDEs of classifier features, assuming that the features are indepen-
dent. The Bayes classifier for a set of feature outcome fs1; . . . ; sng is
defined as follows:

classify ðs1; . . . ; s
nÞ¼arg max

c
pðC¼cÞ

Yn
i¼1

pðSi¼si jC¼cÞ

ð35Þ

where Si denotes the ith classifier feature computed using (34), C

denotes the set of classes fcg; c ¼ 1 for normal and c ¼ 2 for abnor-
mal. pðC ¼ cÞ denotes prior probability for class c, and
pðSi ¼ sijC ¼ cÞ the likelihood of feature si given class c.
pðSi ¼ sijC ¼ cÞ is assumed Gaussian with different variance values
along Si-direction which yields a quadratic decision boundary.
3. Experiment and validation

The data contains 58 � 3 short-axis image datasets (i.e., apical,
mid-cavity and basal), each consisting of 20 functional 2D images
acquired from 21 normal and 37 abnormal hearts. The data were
acquired on 1.5 T MRI scanners with fast imaging employing
steady state acquisition (FIESTA) mode. The details of the datasets
are presented in Table 1. The data consists of images from 41 male
and 17 female subjects, and the average age of subjects is
52.3 ± 15.0 years. The temporal resolution (DT) is equal to
45.1 ± 8.8 ms. For each subject, three slices were respectively cho-
sen from apical, mid-cavity and basal frames, and anatomical land-
marks were identified manually on the first frame2 (see Fig. 4 for an
illustration). A cubic spline interpolation was used to sample N = 120
points along each endo- and epi-cardial boundary. The higher N, the
better the estimation accuracy. However, the computational com-
plexity of the algorithm increases with the values of N. The apical,
on abnormality detection: An information theoretic approach. Med. Image
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Table 2
The area under the curve corresponding to Fig. 8 and the Bhattacharyya distance
metric (B) of normal/abnormal distributions. The higher the values the better the
discriminative ability of the classifier.

Classifier element AUC (%) Bhattacharyya distance metric (B)

The SDE of:
Normalized radial distance 91.6 0.60
Segment area 90.5 0.59
Wall thickness 86.6 0.49
Segment arc length 85.7 0.48
Radial velocity 80.0 0.38

Table 3
Classification accuracy of the proposed method among different cardiovascular
diseases.

Disease Classification accuracy (%)

Infarction 79.7
Dilated cardiomyopathy 87.5
Other cardiovascular diseases 82.9
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mid-cavity and basal slices were automatically partitioned, respec-
tively, into 4, 6 and 6 segments following the standard in (Cerqueira
et al., 2002), which results in 16 segments per subject. The 17th seg-
ment, apex, was not analyzed. We used the registration algorithm in
(Chen et al., 2010) to automatically propagate these segments in
subsequent frames. The dynamic model and UKS parameters are
chosen as q1 = 0.01, q2 = 0.1 q3 = 1 and r = 0.01 to accommodate noise
that accounts for modeling uncertainties. We used the Dirac function
for Kð�Þ and 20 sample points (bins) in the kernel density estimation
in (33).

The results of 928 myocardial segments (58 subjects � 16 seg-
ments) were compared with a single ground truth classification.3

We classify a segment as abnormal if that segment is hypokinetic,
akinetic or diskinetic. Among the 37 abnormal subjects, 12 were
diagnosed with infarction, 10 with dilated cardiomyopathy and 15
with various heart diseases including resuscitated cardiac arrest,
coronary artery occlusion, cardioembolic cerebrovascular accident
and pseudo-aneurysm.

4. Results

In Fig. 5, we give a representative sample of the segmentation
results for apical, mid-cavity and basal frames. We give the x and
y position estimates of UKS plotted against the raw values obtained
from the nonrigid registration for three representative sample
points respectively from apical, mid-cavity and basal frames in
Fig. 6. During the systolic phase, cardiac motion is at its peak,
which causes higher uncertainties in motion estimation. Fig. 6
shows that estimation accuracy is higher at the beginning and
end of the cardiac cycle, and lower in the middle. Fig. 7 shows
the estimation of angular frequency xk using UKS for three repre-
sentative sample points on apical, mid-cavity and basal frames.
Note that the change in angular frequency at the end of the cardiac
cycle in Fig. 7 could possibly be the result of the change in cardiac
oscillation induced by cardiac muscles at the beginning of the
systolic phase. We used two independent criteria to measure the
performance of each classifier features, namely, the ROC curves
(Zou et al., 2007) with corresponding AUCs (Hanley and McNeil,
1982), and Bhattacharyya measure (Comaniciu et al., 2003) to
assess the discriminative power of each classifier features.
Furthermore, we assessed the performance of the proposed ap-
proach via leave-one-subject-out method.

4.1. ROC, AUC and Bhattacharyya measure

The ROC curves for classifier features are shown in Fig. 8. We
used same threshold for all segments and all slices. The ROC curves
were obtained by varying such threshold. The figure shows that the
SDEs of segment area and normalized radial distance have better
classifying ability than other classifier features. The AUCs corre-
sponding to the ROC curves in Fig. 8 are reported in Table 2. We
used the Bhattacharyya distance metric to evaluate the overlap be-
tween the distributions of classifier features over normal and
abnormal motions. The Bhattacharyya metric (Comaniciu et al.,
2003) is given by

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

X
y2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fNðyÞfAðyÞ

qr
ð36Þ

where fN and fA are the distributions over, respectively, normal and
abnormal motions. The higher B, the lesser the overlap (refer to
Fig. 9 for an illustration) and, therefore, the better the discrimina-
3 Each myocardial segment was marked following a binary score, either normal or
abnormal. The ground truth was built by three experienced radiologists, each of
whom annotated a different portion of the data set. Among the 928 segments, 579
segments were marked as normal and 349 as abnormal by radiologists.
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tive ability of the classifier. The SDEs of segment area and normal-
ized radial distance yielded the higher B as reported in Table 2 and,
therefore, have the best discriminative ability. This is consistent
with the evaluations based on ROC/AUC.
4.2. Classification performance

A naive Bayes classifier algorithm is constructed from the SDEs
of the segment area and normalized radial distance, the features
with better classifier ability. Fig. 10 shows the quadratic decision
boundary for normal/abnormal classification with the proposed
method (with the UKS), where blue circles represent the normal
function and red triangles the abnormal. These boundaries were
constructed separately for apical, mid-cavity and basal frames, fol-
lowing a learning from all 58 subjects.

The evaluations of classification performance in terms of accu-
racy, sensitivity and specificity are given by

accuracy ¼ TP þ TN

P þ N
; specificity ¼ TN

N
; sensitivity ¼ TP

P
ð37Þ

where TP is true positives (number of segments correctly classified
as ‘‘Abnormal’’) and TN true negatives (number of segments correctly
classified as ‘‘Normal’’). The total number of ‘‘Abnormal’’ and
‘‘Normal’’ segments are P and N, respectively. Table 4 compares
the classification performance of correctly classified hearts with
the proposed method with and without the UKS, using a leaving-
one-subject-out4 method. The overall classification accuracy for the
proposed method with UKS is equal to 87.1%, with a sensitivity of
86.8% and specificity of 87.2%. The method without temporal
smoothing yielded a lower overall classification accuracy of 84.7%,
with a sensitivity of 84.8% and Specificity of 84.6%. The results show
that UKS enhances significantly the accuracy of classification. The
highest performance of the proposed method was achieved for
mid-cavity frames, with an average accuracy of 89.4%, a sensitivity
of 87.8% and a specificity of 90.3%. The accuracy of correct classifica-
tion among different heart diseases are given in Table 3.

Table 5 reports comparisons of the obtained results to visual
scores by experienced radiologists. We computed the Kappa statis-
tics (Viera and Garret, 2005) between the proposed method and
4 In this approach, we constructed the decision boundaries separately for apical,
mid-cavity and basal slices learning from the rest of 57 subjects.
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Table 4
Comparison of the percentage of classification accuracy using leaving-one-subject-out method for the proposed method with UKS and without temporal smoothing. The proposed
method with UKS achieved an overall classification accuracy of 87.1%, whereas the method without temporal smoothing achieved 88.3%.

The proposed method (with UKS) Without UKS

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

Apex 84.5 85.3 83.8 82.8 84.3 81.5
Mid-cavity 89.4 87.8 90.3 87.1 84.0 88.9
Base 86.5 87.1 86.2 83.6 86.2 82.3
Overall 87.1 86.8 87.2 84.7 84.8 84.6

Table 5
Comparisons between the proposed method and visual wall motion scoring by
experienced radiologists in detecting regional wall motion abnormality. The proposed
method yielded a kappa measure of 0.73, a substantial agreement with radiologists’
results.

Visual wall motion scoring

Abnormal Normal Total

The proposed method
Abnormal 303 74 377
Normal 46 505 551
Total 349 579 928
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radiologists’ findings as follows. The observed percentage agree-
ment is:

pðaÞ ¼ 303þ 505
928

¼ 0:87 ð38Þ

The overall probability of random agreement is:

pðeÞ ¼ 349
928
� 377
928
þ 579

928
� 551
928

¼ 0:52 ð39Þ

Therefore, the Cohen’s kappa is:

j ¼ pðaÞ � pðeÞ
1� pðeÞ ¼ 0:73 ð40Þ

a value which indicates a substantial agreement (Viera and Garret,
2005) between the proposed method and visual scoring. The kappa
measure between the method without UKS and visual wall motion
scoring was 0.68.

A representative example of classification by the proposed
method and corresponding ground truth classification by radiolo-
gists are given in Fig. 11. The normal and abnormal motions are de-
picted by, respectively, green and red regions. Comparisons with
ground truth classifications show that 15 out of 16 segments were
correctly classified by the proposed method in this example.

5. Conclusions

In this study, we investigate the problem of detecting and local-
izing myocardial abnormal motion automatically. We proposed a
nonlinear state transition model to characterize myocardial mo-
tion and the unscented Kalman smoother for state estimation.
We also proposed to use a nonrigid registration method to obtain
sequence of points over time, given initial segmentation on the
first frame. We followed the standard issued by American Heart
Association to identify the myocardial segments, and the results
were analyzed using information theoretic measures based on
Shannon’s differential entropy (SDE). The SDE of normalized radial
distance, radial velocity, segment area, segment arc length and
wall thickness were evaluated for each myocardial segment, and
a naive Bayesian classifier is constructed from the SDEs. The exper-
imental analysis carried over apical, mid-cavity and basal se-
quences, each consisting of 20 frames of short-axis MR images
obtained from 58 subjects demonstrates that the proposed method
Please cite this article in press as: Punithakumar, K., et al. Regional heart moti
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performs significantly better than other recent methods, and can
lead to a promising diagnostic support tool to assists clinicians.

6. Limitations of the proposed study

The following lists the limitations of the proposed study.

� Although all frames contribute to the SDEs for each classifier
feature, the method uses density functions of classifier elements
and, therefore, it does not include the temporal characteristics
in classification.
� The algorithm requires a user input on the first frame to identify

the endo- and epicardial boundaries as well as the septal wall.
� Although our ground truth was built by three radiologists, it is

still considered a single ground truth because each radiologist
annotated a different portion of the data set.

Appendix A. Derivation of discrete dynamic model

Let us consider the continuous state-space model (12).

_fðtÞ ¼
0 0 0
0 0 1
x2 �x2 0

2
64

3
75fðtÞ þ

1 0
0 0
0 1

2
64

3
75wðtÞ ¼ AðxÞfðtÞ þ BwðtÞ

ðA:1Þ

The continuous-time state Eq. (A.1) has the following solution:

fðtÞ ¼ Fðt; t0Þfðt0Þ þ
Z t

t0

Fðt; sÞBwðsÞds ðA:2Þ

The transition matrix has the following properties:

dFðt; t0Þ
dt

¼ AðtÞFðt; t0Þ ðA:3Þ

Fðt2; t0Þ ¼ Fðt2; t1ÞFðt1; t0Þ 8t1 ðA:4Þ
Fðt; tÞ ¼ I ðA:5Þ

From (A.4) and (A.5), we obtain

Fðt; t0Þ ¼ Fðt0; tÞ�1 ðA:6Þ

The transition matrix has no explicit form unless it satisfies the fol-
lowing commutative property.

AðtÞ
Z t

t0

AðsÞds ¼
Z t

t0

AðsÞdsAðtÞ ðA:7Þ

Then,

Fðt; t0Þ ¼ exp
Z t

t0

AðsÞds

 �

ðA:8Þ

For a time-invariant system, assuming t0 = 0

FðtÞ , Fðt;0Þ ¼ expðAtÞ ðA:9Þ

The transition matrix A of the continuous state-space model (A.1) is
given by
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A ¼

0 0 0

0 0 1

x2 �x2 0

2
664

3
775 ðA:10Þ

Evaluating exp (At) yields

expðAtÞ ¼

1 0 0

1� cosðxtÞ cosðxtÞ 1
x sinðxtÞ

x sinðxtÞ �x sinðxtÞ cosðxtÞ

2
664

3
775 ðA:11Þ

The state at sampling time tk+1 can be written as

fðtkþ1Þ ¼ Fðtkþ1; tkÞfðtkÞ þ wðtkÞ ðA:12Þ

For a time-invariant continuous-time system, the transition
matrix is

Fðtkþ1; tkÞ ¼ Fðtkþ1 � tkÞ ¼ expððtkþ1 � tkÞAÞ , Fk ðA:13Þ

The discrete-time process noise relates to that of continuous-
time as follows

wðtkÞ ¼
Z tkþ1

tk

expððtkþ1 � sÞAÞBwðsÞds , wðkÞ ðA:14Þ

We assume w(t) is zero-mean and white noise. It follows that

E½wðkÞ� ¼ 02�1 ðA:15Þ
E½wðkÞwðlÞT � ¼ Q kdkl ðA:16Þ

where dkl is the Kronecker delta function. The covariance Qk can be
simplified as

Q k ¼
Z tkþ1

tk

expððtkþ1 � sÞAÞBCðsÞBT expððtkþ1 � sÞATÞds ðA:17Þ

where

CðsÞ ¼ E½wðsÞwðsÞT � ðA:18Þ

¼
q2

1 0

0 q2
2

" #
ðA:19Þ

Parameters q1 and q2, and q3 (recall that q3 is the third diagonal
element of the process covariance matrix) characterize, respec-
tively, the uncertainties associated with the mean position, veloc-
ity and angular frequency elements of the state vector. On the one
hand, smaller values of q1, q2 and q3 enforces the conformity of LV
motion to the model, thereby affecting the accuracy of the results
when the motion deviates from the model. On the other hand,
larger values of q1, q2 and q3 allow higher uncertainties within
the model, which may result in poor temporal consistency.

Solving (A.17) yields

Q k ¼ ½qij�3�3 ðA:20Þ

where

q11 ¼ q2
1DT ðA:21Þ

q12 ¼ q21 ¼
q2

1ðxDT � sinðxDTÞÞ
x

ðA:22Þ

q13 ¼ q31 ¼ q2
1ð1� cosðxDTÞÞ ðA:23Þ

q22 ¼
q2

1x2ð3xDT�4sinðxDTÞþcosðxDTÞsinðxDTÞÞþq2
2ðxDT�cosðxDTÞsinðxDTÞÞ

2x3

ðA:24Þ

q23 ¼ q32

¼ q2
1x2ð1� 2 cosðxDTÞ þ cos2ðxDTÞÞ þ q2

2 sin2ðxDTÞ
2x2 ðA:25Þ
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q33¼�
q2

1x2ðcosðxDTÞsinðxDTÞ�xDTÞ�q2
2ðcosðxDTÞsinðxDTÞ�xDTÞ

2x
ðA:26Þ
Appendix B. Unscented Kalman smoother

Consider the state transition Eq. (16) and the corresponding
measurement Eq. (18).

skþ1 ¼ fkðskÞ þ vk ðB:1Þ
zk ¼ Hksk þ gk ðB:2Þ

Our objective is to compute a Gaussian approximation to the
smoothing distribution pðskjz1:KÞ � N skjms

k; P
s
k

	 

, where ms

k and Ps
k

are the mean and covariance of the state sk, and z1:K = {z1, z2, . . .,
zK}. First, we consider the prediction and update distribution of
the optimal filtering equations corresponding the state-space model
given by (B.1) and (B.2).

1. Prediction:
on abno
pðskjz1:k�1Þ ¼
Z

pðskjsk�1Þpðsk�1jz1:k�1Þ dsk�1 ðB:3Þ
2. update:
pðskjz1:kÞ ¼
pðzkjskÞpðskjz1:k�1ÞR

pðzkjskÞpðskjz1:k�1Þ dsk
ðB:4Þ
The optimal smoothing equations corresponding to forward–
backward smoother can be written as follows:

pðskjz1:KÞ ¼ pðskjz1:kÞ
Z

pðskþ1jskÞpðskþ1jz1:KÞ
pðskþ1jz1:kÞ

dskþ1 ðB:5Þ

These optimal filtering and smoothing distributions are computa-
tionally intractable and, therefore, numerical approximations are
required. We can use the unscented Rauch-Tung-Striebel (RTS)
smoother to find the approximate smoothing distributions.

The smoothing update Eq. (B.4) can be divided into the follow-
ing three steps.

1. Form the joint distribution of sk and sk+1, given z1:k.
pðsk; skþ1jz1:kÞ ¼ pðskþ1jskÞpðskjz1:kÞ ðB:6Þ
2. Compute the conditional distribution
pðskjskþ1; z1:kÞ ¼
pðsk; skþ1jz1:kÞ

pðskþ1jz1:kÞ
ðB:7Þ
where the denominator term is given by
pðskþ1jz1:kÞ ¼
Z

pðskþ1jskÞpðskjz1:kÞ dsk ðB:8Þ
Applying Markov property of the state-space model, we have p(sk-

jsk+1, z1:K) = p(skjsk+1, z1:k). Thus,
pðskjskþ1; z1:KÞ ¼
pðsk; skþ1jz1:kÞ

pðskþ1jz1:kÞ
ðB:9Þ
3. Compute the joint distribution of sk and sk+1, given z1:K
pðsk; skþ1jz1:KÞ ¼ pðskjskþ1; z1:KÞpðskþ1z1:KÞ dskþ1 ðB:10Þ
Now, the smoothing distribution of sk is given by marginalizing the
joint distribution over sk+1:
pðskjz1:KÞ ¼
Z

pðskjskþ1; z1:KÞpðskþ1jz1:KÞ dskþ1 ðB:11Þ
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Here, we assume that the mean mk and covariance Pk of the dis-
tribution pðskjz1:kÞ � N ðskjmk; PkÞ for the state-space given by (B.1)
and (B.2) have been computed by the UKF. We also assume that the
smoothing distribution pðskþ1jz1:KÞ � N skþ1jms

kþ1; P
s
kþ1

	 

of time

step k + 1 is known and Gaussian. We can derive an approximation
to the optimal smoothing based on unscented transform as
follows:

1. Compute the unscented transformation based Gaussian approx-
imation to the joint distributionp(sk, sk+1jz1:k) in (B.6).
Please
Anal. (
sk

skþ1

� �
jz1:k 	 N

mk

mkþ1

� �
;

Pk Ckþ1

Ckþ1 Pkþ1

� �
 �
ðB:12Þ
This is done by augmenting the process noise vk with the state sk to
form a new state variable ~sk ¼ ½sk vk�T , which then has the
distribution
~skjz1:k 	 N
mk

0

� �
;

Pk 0
0 Q k

� �
 �
ðB:13Þ
2. Now, we can compute the approximate distributions for (B.7)
and (B.9), using (B.12) and computation rules of Gaussian distri-
butions. This results in
skjz1:K 	 N m0kþ1; P
0
kþ1

	 

ðB:14Þ
where
Dk ¼ Ckþ1½P�kþ1�
�1 ðB:15Þ

m0kþ1 ¼ mk þ Dk skþ1 �m�kþ1

	 

ðB:16Þ

P0kþ1 ¼ Pk � DkP�kþ1DT
k ðB:17Þ
3. Now, we can compute the approximate distribution of p(sk, sk+1-

jz1:K) in (B.10).
sk

skþ1

� �����z1:K 	 N m00kþ1; P
00
kþ1

	 

ðB:18Þ
where
m00kþ1 ¼
mk þ Dk skþ1 �m�kþ1

	 

ms

kþ1

" #
ðB:19Þ

P00kþ1 ¼
DkPs

kþ1DT
k þ P0kþ1 DkPs

kþ1

Ps
kþ1DT Ps

kþ1

" #
ðB:20Þ
Finally, we can compute the Gaussian approximation to the
smoothing distribution at time step k:

skjz1:k 	 N ms
kþ1; P

s
kþ1

	 

ðB:21Þ

where

ms
k ¼ mk þ Dk ms

kþ1 �m�kþ1

� �
ðB:22Þ

Ps
k ¼ Pk þ Dk Ps

kþ1 � Pkþ1
� �

DT
k ðB:23Þ
Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.media.2012.11.
007.
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