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Abstract

This study investigates a fast integral-kernel algorithm for classifying (labeling)

the vertebra and disc structures in axial magnetic resonance images (MRI).

The method is based on a hierarchy of feature levels, where pixel classifications

via non-linear probability product kernels (PPK) are followed by classifications

of 2D slices, individual 3D structures and groups of 3D structures. The algo-

rithm further embeds geometric priors based on anatomical measurements of the

spine. Our classifier requires evaluations of computationally expensive integrals

at each pixel, and direct evaluations of such integrals would be prohibitively

time consuming. We propose an efficient computation of kernel density esti-

mates and PPK evaluations for large images and arbitrary local window sizes

via integral kernels. Our method requires a single user click for a whole 3D MRI

volume, runs nearly in real-time, and does not require an intensive external

training. Comprehensive evaluations over T1-weighted axial lumbar spine data

sets from 32 patients demonstrate a competitive structure classification accu-

racy of 99%, along with a 2D slice classification accuracy of 88%. To the best

of our knowledge, such a structure classification accuracy has not been reached

by the existing spine labeling algorithms. Furthermore, we believe our work is

the first to use integral kernels in the context of medical images.
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1. Introduction1

Radiologic assessment is an essential step in managing patients with spinal2

diseases or disorders. Magnetic resonance imaging (MRI) is commonly utilized3

for evaluating the inter-vertebral discs and other soft tissue structures [1], while4

cortical bone is better seen on Computed Tomography (CT). Nonetheless, the5

focus of lumbar spine CT is more often on the discs than on the bone. Accurate6

detection and labeling of different spinal structures is vital, as many interven-7

tions require precise anatomic information [2, 3, 4, 5, 6, 7, 8, 9]. Surgical mishaps8

could occur if the spinal level is not reported accurately. For instance, in MRI1,9

benchmarking the axial-view slices facilitates the quantification and level-based10

reporting of common inter-vertebral disc displacements such as protrusion, ex-11

trusion and bulging [1], while labeling sagittal-view slices aids in defining a12

patient specific coordinate system. Furthermore, such detection and annotation13

algorithms provide inputs that facilitate significantly other difficult spine image14

processing tasks such as segmentation [11, 12], registration and fusion [13]. For15

instance, several recent spine segmentation algorithms assume that a labeling is16

given [11], or perform a labeling process along with the segmentation [12].17

Generating these labels in a manual fashion is tedious, subjective, and time-18

consuming. Therefore, automating the process is desired and has recently19

sparked an impressive research effort [12, 2, 3, 4, 5, 6, 7, 8, 9]. Automated20

labeling of such images is, however, a challenging problem as the field of view21

(i.e. the number of visible vertebral levels), the distributions of image intensi-22

ties, and the sizes, shapes, as well as orientations of different spinal structures23

are highly variable among different patients [2, 3, 9].24

1MRI is the primary modality to assess disc disorders [1]. Unlike CT, MRI scans depict
soft-tissue structures, thereby allowing to characterize/quantify disc displacements [1] and
degenerations [10].
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There are two major limitations with current automated spine labeling al-25

gorithms:26

(1) Most of the current algorithms address the labeling problem through27

intensive training from a manually-labeled data set [2, 3, 7, 8, 9]. Such a train-28

ing stage aims at learning the shapes, textures and appearances of different29

spinal structures. This knowledge is then used within a classification or regres-30

sion algorithm, e.g., support vector machine [7], random forest regression [8]31

or graphical models [3, 5], to subsequently label different spinal structures in32

the test image. Such algorithms work very well on data sets that closely match33

the training data, but would require adjustment/retraining for different data34

sets or if the imaging modality and/or acquisition protocol are altered (e.g., an35

algorithm that is trained and built for CT images may not perform well on MRI36

data [3, 5, 6, 9]). This might impede the use of these algorithms in routine37

clinical practices, where a particular disorder might be analyzed radiologically38

using several different imaging modalities/protocols with widely variable imag-39

ing parameters (resulting in extremely high variation in image data).40

(2) To the best of our knowledge, all of the current spine labeling algorithms41

focus on the sagittal view [2, 3, 4, 5, 6, 7, 8, 9]. However, the quantification42

and level-based reporting of common inter-vertebral disc displacements such as43

protrusion, extrusion and bulging require the radiologist to thoroughly inspect44

all individual axial slices [1], while visually cross-referencing such axial slices to45

their corresponding position in the sagittal view. Furthermore, in some cases,46

only the axial view is available for the patient while, in other cases, the two47

scans (i.e., axial and sagittal) might be acquired at different time points. In such48

cases, localizing the spinal structures in different views becomes a challenging49

task, even for an experienced radiologist, which motivates a standalone axial50

spine detection/labeling algorithm. Such a system would facilitate generating51

precise radiologic reports.52

In this work, we present a robust, near real-time axial MRI labeling al-53

gorithm based on a hierarchy of feature levels, where pixel classifications via54

non-linear probability product kernels (PPK) are followed by classifications of55
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(i) 2D slices, (ii) individual 3D structures and (iii) groups of 3D structures. The56

method embeds robust geometric priors based on anatomical measurements that57

are well known in the clinical literature of the spine [14, 15]. Our classifier re-58

quires evaluations of integrals at each pixel. However, direct evaluations of such59

integrals would be prohibitively time consuming. We propose to use an efficient60

computation of kernel density estimates and PPKs for large volumes via integral61

kernels. The algorithm is O(nz), where n is the number of pixels in the image62

and z is the number of density bins. It can achieve near real-time results with63

a graphics processing unit (GPU) implementation. Furthermore, it does not64

require intensive external training. We report evaluations over 32 data sets of65

T1-weighted 3D MRIs of the lumbar spine, which show a structure classifica-66

tion accuracy of 99%, and a slice classification accuracy of 88%. We believe67

our structure classification accuracy has not been reached by the existing spine68

labeling algorithms. It is worth noting that integral histograms/kernels have69

been used recently in computer vision, in the context of template matching in70

photographs [16, 17]. We believe, however, that our work is the first to use71

integral kernels in the context of medical images.72

2. Formulation73

Our algorithm is based on a hierarchy of feature levels, with the features74

from the current level used as inputs to the next level. It requires a single75

user-selected point in one 2D slice of a given spine series. Based on this point,76

pixels are classified followed by (i) 2D slices, (ii) 3D single vertebra and (iii) 3D77

multiple vertebrae. The system further embeds robust geometric priors based78

on spine measurements that are well known in the clinical literature [14, 15],79

e.g., vertebra height and axial area.80

2.1. Efficient Pixel-level Classifications via Integral Kernels81

Pixelwise Probability Kernel Matching: We propose a non-linear classifier,82

which determines whether the neighborhood of each pixel p matches a target83
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distribution denoted PL. To provide the initial training, the user selects a single84

point po = (xo, yo) within the vertebral region in a single 2D axial slice in the85

series; see the example in Fig. 2. Then, prior distribution PL is learned from a86

window of size w × h centered at po. Such neighborhood distributions contain87

contextual information, which provides much richer inputs to the classifier than88

individual-pixel intensities.89

Let Dj : Ω ⊂ R2 → R, j ∈ [1 . . . N ], be a set of input images, which

correspond to the axial slices of a given spine series. Ω is the image domain

and N is the number of slices in the series. For each D ∈ {Dj , j = 1 . . . N} and

each pixel p : (x, y) ∈ Ω, we seek to create a non-linear kernel based classifier

by evaluating the following criterion:

sign
(
ϕ
(
PW(p),D||PL

)
− ρ

)
(1)

where PL is an a priori learned distribution, ρ is a constant and PW(p),D is

the kernel density estimate (KDE) of the distribution of image data D within a

window W(p) centered at pixel p = (x, y) ∈ Ω:

PW(p),D(z) =

∑
q∈W(p) k

D
z (q)

C
∀z ∈ Z (2)

C is a normalization constant corresponding to the number of pixels within90

window W(p) and Z is a finite set of bins encoding the space of image variables.91

ϕ(.||.) is a probability product kernel [18, 19], which measures the degree of

similarity between two distributions:

ϕ
(
PW(p),D||PL

)
=

∑
z∈Z

[
PW(p),D(z)P

L(z)
]γ

, γ ∈ [0, 1] (3)

The higher ϕ(.||.), the better the similarity between the distributions. For in-92

stance, γ = 0.5 corresponds to the well-known Bhattacharyya coefficient [19].93

The latter is always in the range of [0, 1], with 1 indicating a perfect match94

between the distributions and 0 corresponding to a total mismatch.95
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The choice of kernel function kDz controls the degree of smoothness of image96

density estimates (2) within the current 2D slice. One choice is to use a bin97

counter, which yields the normalized histogram of image data within window98

W(p) of the current 2D slice: kDz (q) = 1 if D(q) = z and 0 otherwise. Alter-99

natively, one can use a Gaussian kernel kDz (q) = exp ∥D(q)−z∥2

σ , where σ is a100

fixed parameter that controls how smooth the density estimates are. Experi-101

mentally, we did not observe a difference between Gaussian-kernel density and102

normalized histogram. Therefore, we opted for the latter as it yields a faster103

implementation. Notice that, at this pixel-level classification stage, the densities104

estimated at the current 2D slice are not affected by information from adjacent105

slices. However, in the 3D single-vertebra classification step (section 2.3), we106

will define a convolution kernel on the slice-level features, thereby combining107

contributions from several adjacent slices.108

Efficient Computation of PPK via Integral Kernels: To embed rich contex-109

tual information about the vertebrae/discs, we need to use large-size windows110

in our classifiers. For large windows, the computation of (3) for each pixel in111

D is very expensive computationally if performed by direct evaluation. In the112

following, we describe an efficient computation of kernel density estimates and113

PPK evaluations for large images and arbitrary window sizes via integral kernels.114

Such integral-kernel method can be viewed as an extension of the integral-image115

method of Viola and Jones [20]. Introduced for the purpose of human face de-116

tection, the Viola-Jones method is well-known in computer vision. First, let us117

recall the integral-image method.118

Integral images: Given an image D, the corresponding integral image ID is

defined as the sum of all pixel intensities to the left and above the current pixel:

ID(x, y) =
∑
u≤x

∑
v≤y

D(u, v) (4)

The sum of intensities of all pixels within an arbitrary rectangular region can
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be computed from ID using only the corners of the rectangle:

x2∑
u=x1

y2∑
v=y1

D(u, v) = ID(x1, y1) + ID(x2, y2)− ID(x1, y2)− ID(x2, y1) (5)

where (x1, y1) are the coordinates of the upper left corner of the rectangle and119

(x2, y2) are those of the lower right corner. Coordinates (x2, y1) correspond to120

the upper right corner, and (x1, y2) to the lower left corner. Since ID can be121

computed efficiently for the entire image and (5) can be computed very efficiently122

for a given rectangle, this method is very efficient when multiple windows need123

to be computed from the same image.124

Integral kernels: To extend the idea of integral images to integral kernels,

and to efficiently compute the PPKs in (3), we build for each slice D a set of

separate kernel images defined over Ω: kD1 , kD2 , . . . kDz , z ∈ Z, with kDz the Dirac

kernel defined earlier. Then, we compute an integral kernel image based on each

kDz (see the illustration in Fig. 1):

ID
z (x, y) =

∑
u≤x

∑
v≤y

kDz (u, v) (6)

Now, we can easily show that PW(p),D can be computed from the integral kernel

images using five simple operations for each p = (x, y) ∈ Ω:

PW(p),D(z) =
ID
z (x1, y1) + ID

z (x2, y2)− ID
z (x1, y2)− ID

z (x2, y1)

(x2 − x1 + 1)(y2 − y1 + 1)
(7)

where x1 = x− w
2 , x2 = x+ w

2 , y1 = y− h
2 and y2 = y+ h

2 , with w and h being125

the width and height of W(p); see the illustration in Fig. 1.126

This leads to a very efficient evaluation of classifier (1) for every p = (x, y) ∈127

Ω, with a computational complexity that (i) is linear in the number of pixels in128

Ω and in the cardinality of Z, and (ii) is independent of the window’s size. This129

method is also highly suited to modern graphics cards because it is amenable130

to parallel implementations.131

Examples of the obtained pixel-level classifications are shown in Fig. 2,132
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where the results are depicted for both vertebrae and disc slices, based on the133

simple training input from a different slice. To avoid processing the entire slice,134

only pixels within a region-of-interest Rs around the input point are consid-135

ered in the pixel-level classification process. The pixel-level classifications we136

obtained from (1) will be used to further generate slice-level classifications.137

... ...

kD1 kDi kDz

p

ID
i (p) ID

z (p)ID
1 (p)

pp

ID
z

p
wh

p1

p2

Figure 1: Illustration of integral kernels. Left: Computation of integral kernel images 1 . . . z
for point p = (x, y); Right: A diagram of the window centered at p = (x, y) and defined by
p1 = (x1, y1) and p2 = (x2, y2).

2.2. 2D Slice-level Features138

We derive the second level of features from the area of pixels classified as

vertebrae in a given 2D slice and from geometric priors. First, we group vertebra

pixels into sets of 4-connected regions: Si, i = 1, 2, . . . . These regions are then

filtered, building a set S as follows:

S =
{
Si|area(Si) > Amin and ∥ci, p0∥ < dmax

}
(8)

(a) (b) (c)

Figure 2: Illustration of pixel-level classifications from axial-view images of the spine. Left: a
simple user input on a single slice used for training; Middle: pixel classifications for a vertebra
in a new slice different from the training slice; Right: pixel classifications for an inter-vertebral
disc on a new slice different from the training slice.
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where Amin and dmax are pre-specified geometric priors, which we will define139

so as to reflect human spine measurements that are well known in the clinical140

literature [14, 15]. ∥.∥ denotes the Euclidean distance. If S ̸= ∅, we use the area141

of the largest region in S as a 2D slice-level feature for the next step. Otherwise,142

we assign value 0 to this feature. We denote this feature Ak for slice Dk.143

2.3. 3D Single-Vertebra Classifications144

The next level of classification is identifying individual vertebrae in 3D. We145

start with an input set of adjacent slices Dk, k ∈ [1, . . . , N ], in the neighborhood146

of a vertebra. These slices are all the slices within a geometric prior height Hs,147

either centered on the initial (user-provided) point or starting at the uppermost148

(or lowermost) slice of a previously identified vertebra. We start by classifying149

these slices as vertebra or not. As input, we use the 2D slice-level feature150

computed at the previous step (Ak). We apply a one-dimensional smoothing151

filter to the features of adjacent slices: As
k = Ak ∗K, where As

k is the smoothed152

data and K is a one-dimensional convolution kernel. Then, a slice is classified153

as vertebra if As
k > tarea, where tarea is a threshold given by tarea = caµarea, with154

ca a user defined factor and µarea the average of areas As
k. If the set of adjacent155

slices classified as vertebrae results in a vertebral height larger than a geometric156

prior Hmin, then we classify the 3D set of adjacent slices as vertebra. We define157

geometric priors Hs and Hmin using well-known anatomical measurements of158

the spine [14, 15].159

2.4. Multiple 3D Vertebra Classifications160

To improve classification accuracy, we further employ an iterative model161

update. By using the location of the previously found vertebra, we update162

distribution PL (using the center of the previous vertebra) and the search region163

required for finding the next vertebra. Then, the classification proceeds in164

both vertical directions of the spine. For the first vertebra, the initial search165

height, which we denote H0
s , is defined to be twice the height of a vertebrae166

(which we fix using prior spine measurements that are well documented in the167
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clinical literature [14, 15]), centered at the input point. For finding subsequent168

vertebrae, the search range Hs begins at the boundary of the previous vertebrae169

and extends for the height of a vertebra plus two inter-vertebral disc spaces (also170

defined with a priori known spine measurements [14, 15]). A summary of the171

procedure is given in Algorithm 1.172

Algorithm 1: Vertebrae Classification Algorithm

• Given an initial input p = p0 and vertebra Vn = V0 ∈ [Vmin, Vmax]

1) Learn the target probability distribution PL.

2) Set the search height Hs = H0
s .

3) For each slice Dj in the set of slices within search hight Hs:

a) Use sign
(
ϕ
(
PW(p),Dj

||PL
)
− ρ

)
to classify each pixel p via

integral kernels.

b) Compute 2D slice-level feature Aj .

4) Compute smoothed features As
j for each Dj within search hight

Hs.

5) Using sign
(
As

j − tarea
)
, find the uppermost/lowermost slices for

the current vertebra.

6) Update the vertical search region Hs and target distribution PL

using Vn.

• If Vn ≤ Vmax:

7) While Vn < Vmax,

a) Let n = n+ 1

b) repeat steps 3-6

• Else:

8) Set Vn = V0. Update the vertical search Hs and target
distribution PL based on V0.

9) While Vn ≥ Vmin

a) Let n = n− 1

b) Repeat steps 3-6.
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3. Data description173

This retrospective study was approved by the Human Subjects Ethics Board174

of Western University, with the requirement for informed consent being waived.175

A total of 32 subjects were included in this study. The series of each subject176

contains a set of axial T1-weighted MRI slices of the lumbar spine. A total of177

102 vertebrae, each corresponding to several 2D slices, were detected/annotated178

automatically. Furthermore, the algorithm annotated each 2D slice as either179

vertebra or inter-vertebral disc (The data included 749 slices in total). The slice180

thickness ranged from 4 to 5 mm and the in-plane voxel spacing ranged from181

4.4 to 10 mm. The number of visible vertebrae within each series varied from182

one subject to another, which makes the problem challenging. These numbers183

are reported in Table 1.184

Table 1: The number of vertebrae visible at each level for the lumbar spine data sets acquired
from 32 subjects.

Vertebral Level L5 L4 L3 L2 L1 T12
Number of Visible Vertebrae 32 32 21 11 5 1

The initial user click was placed on a single axial slice of the L5 vertebra of185

the lumbar spine. The algorithm labelled the axial slices as either vertebra or186

inter-vertebral disc; Fig. 3 depicts typical examples.187

4. Choice of the parameters and input selection188

The geometric parameters were fixed based on spine measurements that189

are well known in the clinical literature [14, 15]. We defined such geometric190

parameters in millimeters, so as to ensure independence of voxel spacing. These191

are the size of search windows W(p), the minimum classification area Amin, the192

maximum distance dmax, the initial search height H0
s , the subsequent search193

height Hs, the minimum vertebrae height Hmin and the region of interest Rs.194

Table 2 reports vertebra and disc measurements (height and width) that are195

known in the literature [14]. Furthermore, based on data for the lumbar spine196

[15], the major axis length of the vertebrae was found to be about 1.5 times the197
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minor axis length (width of the vertebrae). Based on these values, the cross-198

sectional area of a vertebra can be overestimated by a rectangle of 1.5w2
vertebrae199

and underestimated by an oval of size 0.375πw2
vertebrae, with wvertebrae denoting200

vertebra width. Our experimental heights, search ranges and area measurements201

correspond to these measurements, which can be found in Table 2. The classifier-202

related parameters were tuned experimentally. Variable γ was set equal to 0.5,203

which corresponds to the Bhattacharya distance between distributions. Pixel-204

level classification threshold ρ was set equal to 0.75. The number of bins was205

experimentally set to be 100. The 1D convolution parameter K was set to206

[0.3 1 0.3], while the area threshold factor ca was fixed equal to 0.75.207

Table 2: Vertebra and disc measurements as well as overestimates/underestimates for the
lumbar vertebrae [14, 15].

Measurement type Value
Vertebra Height (mm) 27.3± 1.2
Disc Height (mm) 8.8± 0.9

Vertebrae Width (mm) 34.3± 1.8
Vertebrae Area Overestimate (mm2) 360
Vertebrae Area Underestimate (mm2) 224

Table 3: Parameter selection.
Parameter Symbol value

Pixel Threshold ρ 0.75
Number of Bins Z 100

Search Window (mm×mm) W 12 x 12
Region of Interest (mm×mm) Rs 80 x 80

Minimum Area (mm2) Amin 400
Max Distance (mm) dmax 40

Minimum Vertebrae Height (mm) Hmin 12.5
Area Threshold Factor ca 0.75

Initial Search Height (mm) H0
s 50

Subsequent Search Height (mm) Hs 45 0.83± 0.46

5. Validation method208

The performance of the algorithm was validated based on the correct clas-209

sification of vertebrae, the classification of individual slices and the distance210
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of the vertebral uppermost and lowermost slices from the ground truth. The211

ground-truth annotations were manually generated from the axial images by a212

medical resident, and were reviewed/validated by a senior radiologist with over213

20 years of experience in musculoskeletal radiology. Each slice was classified as214

either vertebra or disc based on the percentage of the vertebral column cross215

sectional area containing vertebra/disc in that slice. If more than 50% of the216

vertebral column consisted of a single vertebra, then that slice was labeled as217

belonging to that vertebra; otherwise, it was labeled as disc. This resulted in218

an uppermost and lowermost slice for each vertebra (e.g., L3 could be manually219

labeled to extend from axial slice 24 to slice 30).220

To validate the correct classification of vertebrae, a vertebra was considered221

to be correctly labeled if: (1) there was at least one correctly labeled verte-222

bral slice for that vertebra and (2) no slices were incorrectly labeled as another223

vertebra. If only condition (2) was met, the vertebra was considered to be un-224

labeled, since it was not given any label. The vertebra was considered to be225

incorrectly labeled if any of the vertebra’s slices were incorrectly labeled as a226

different vertebra. Ideally, all vertebrae will be correctly labeled. An incorrectly227

labeled vertebra is a concern, since this can lead to incorrect diagnosis or treat-228

ment, whereas an unlabeled vertebra is merely inconvenient. To validate the229

correct classification of individual slices, slices were considered to be correctly230

labeled if they matched the ground truth and incorrectly labeled otherwise. To231

validate the vertebral uppermost and lowermost slice boundaries, a comparison232

was made with the manually identified ground truths. For each vertebra, the233

distance, in number of slices between the labeled uppermost slice of the verte-234

bra and the ground truth uppermost slice, was calculated. The same principle235

was applied for the lowermost slices. Comparisons of these distances were then236

made for each vertebra over the set of subjects by calculating both the mean237

distances and the maximum distances in number of slices.238
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6. Results239

6.1. Classification Accuracy240

A total of 102 vertebrae were classified. A representative sample labeling for241

these images can be seen in Fig. 3. Of the 102 vertebrae, 101 were correctly242

identified and only 1 was incorrectly identified for a 99% structure-classification243

accuracy. The per slice classification accuracy was found to be 88%. These244

results are summarized in Table 4. The error in identifying the uppermost and245

lowermost vertebrae slice boundaries was found to be 0.83 ± 0.46 slices, with246

the average maximum distance from the classified uppermost and lowermost247

slice boundaries to the ground truth boundaries (over the 32 patients) being248

1.44±0.91 slices. It should be noted that, for the one vertebra that was defined249

as wrong, only one slice was incorrectly classified, with the rest of the vertebra250

being correctly classified. This error could be easily identified by a clinician.251

Additionally, for the majority of vertebrae, the boundaries are within one slice of252

the manually identified boundaries. These results confirm the clinical usefulness253

of our algorithm.254

Figure 3: Representative output of the lumbar spine detection algorithm displaying axial slices
from each analyzed level with the initial user input chosen at L5, with a labeled sagittal view
provided for illustrative purposes.
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No. of vertebral structures Structure accuracy No. of slices Slice accuracy
102 99% 749 88%

Table 4: Accuracy over 32 subjects.

Boundary Dist. (Slices) Max Boundary Dist. (Slices)
0.83± 0.46 1.44± 0.91

Table 5: Boundary distance accuracy over 32 subjects.

6.2. A pathological case with a restricted disc space255

Our data set included pathological cases where the inter-vertebral disc space256

is reduced. Fig. 4 depicts an example, in which the L3/L2 inter-vertebral257

structure corresponds to a single slice (Slice 25), with the top of vertebra L3258

corresponding to the adjacent slice below (Slice 24) and the beginning of vertebra259

L2 corresponding to the adjacent slice above (Slice 26). For this example,260

the L3/L2 inter-vertebral disc slice was correctly annotated, and the algorithm261

yielded correct classifications for all the 3D vertebral structures surrounding262

this restricted inter-vertebral disc space (L3 and L2), i.e., for each structure we263

had the two conditions of correct classification verified: (1) there was at least264

one correctly labeled vertebral slice and (2) no slices were incorrectly labeled as265

another vertebra. Notice, however, that slice 26 was not correctly annotated as266

the start of the L2 vertebra.267

(a) Slice 24 (Top of L3) (b) Slice 25 (c) Slice 26 (Beginning of L2)

Figure 4: A pathological case, where the inter-vertebral disc space is restricted and corresponds
to a single slice.
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6.3. Sensitivity to parameters268

We performed an extensive sensitivity analysis in order to evaluate the ro-269

bustness of the algorithm w.r.t the parameters. We varied each parameter in a270

range centered around the corresponding value in Table 3, and computed the271

classification accuracies for each range of values. The parameters that were272

analyzed for sensitivity included: the Bhattacharya threshold ρ, the x and y273

locations of the input point, the search window size, the number of bins and the274

area threshold. Fig. 5 depicts the results of varying the parameters. Varying275

the Bhattacharya threshold (Fig. 5a) produced very similar results for values276

in the range of [0.5, 0.8], with a large drop in performance for values above 0.8.277

This is expected since, as the threshold gets higher, the classified pixels must278

match the target distribution more closely. This makes the algorithm less robust279

to variations away from the target distribution, excluding many pixels that are280

actually part of the vertebrae. For the x and y inputs, Fig. 5b and Fig. 5c281

show constant performance until about 20 pixels from the origin, giving a wide282

range of areas for selecting the initial point. The method was also very robust283

to window sizes (Fig. 5d): any window size greater than 9mm×9mm produced284

excellent results. The larger the input area for classification, the better the285

performance. Surprisingly, the method was not sensitive to the number of bins286

(Fig. 5e), neither to the area threshold (Fig. 5f). This demonstrated that these287

were not important parameters in the algorithm, and a possible speed up could288

be realized by reducing the number of bins.289

6.4. Run times290

Table 6 reports the run times along with the computational complexity of291

our algorithm using a conventional calculation, the integral kernels and a GPU292

(Graphics Processing Unit) implementation of the integral kernels. The CPU293

code was written in Matlab (the Mathworks Nattick MA, USA), and the GPU294

code was written in CUDA. The experiments were run on a computer with a295

Xeon quad core processor (Intel, Santa Clara, CA, USA), 2Gb of RAM and an296

NVidia GeForce GTX 680 graphics card (Nvidia, Santa Clara, CA, USA). The297
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Figure 5: Analysis of the sensitivity of the algorithm to changes in various parameters: (a)
Bhattacharyya threshold ρ, (b) X-input location, (c) Y-input location, (d) Window size, (e)
Number of histogram bins and (f) Area threshold.
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Table 6: Run time for 42 axial slices. The local window (w × h) is 50 × 50 pixels. n is the
number of pixels in the image, and z is the number of kernel features. The computational
order of the integral image method is independent of the window size.

CPU-conventional CPU-Integral GPU-Integral
Images Images

Run time (s) N/A 49.2 2.95
Order w × h× n× z n× z n× z

GPU implementation required 2.95 seconds for the whole volume, whereas the298

CPU one required 49.2 seconds. This running time was based on a T1 lumbar299

spine 3D image with 42 axial slices.300

7. Conclusion301

We investigated an efficient integral-kernel algorithm for classifying (label-302

ing) the vertebra and disc structures in axial MR images. Based on an extension303

of integral images to kernel densities, our method built several feature levels,304

where pixel classifications via non-linear probability product kernels were fol-305

lowed by classifications of 2D slices, 3D single structures and 3D multiple struc-306

tures. Furthermore, we embedded geometric priors based on known anatomi-307

cal measurements of the spine. The ensuing algorithm runs in near real-time,308

when implemented on the GPU. Our experimental evaluations over 32 MR T1-309

weighted axial lumbar spine data sets (obtained from 32 patients) showed a310

structure classification accuracy of 99% and a slice classification accuracy of311

88%. Our purpose was to design a system that works for the majority of pa-312

tient data sets that are collected from routine MRI images of the spine: Our313

experiments included spine patients with typical disorders such as degenerative314

disc disease (DDD) and herniation. In the future, it will be interesting to extend315

our algorithm to:316

• Images of instrumented (fusion) spines.317

• Other parts of the spine, e.g., the cervical spine. In this case, we expect318

the problem to be more challenging due to larger displacements of the319

structures form one slice to another.320
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• Other MR sequences, such as proton density, as well as computed tomog-321

raphy (CT) images. We expect excellent results, as our learning part is322

based solely on a data-driven distributions, which is not limited to any323

specific modality.324

It is worth noting that, as our method can be implemented in near real-time,325

it can be extended to accommodate user interventions and partial manual cor-326

rections when the method fails in labeling some parts of the spine, particularly327

in cases of atypical images such as those of instrumented (fusion) spines.328
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