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Abstract— Clustering is widely used in data analysis where kernel
methods are particularly popular due to their generality and discrim-
inating power. However, kernel clustering has a practically significant
bias to small dense clusters, e.g. empirically observed in [1]. Its causes
have never been analyzed and understood theoretically, even though
many attempts were made to improve the results. We provide conditions
and formally prove this bias in kernel clustering. Previously, Breiman
[2] proved a bias to histogram mode isolation in discrete Gini criterion
for decision tree learning. We found that kernel clustering reduces to a
continuous generalization of Gini criterion for a common class of kernels
where we prove a bias to density mode isolation and call it Breiman’s
bias. These theoretical findings suggest that a principal solution for the
bias should directly address data density inhomogeneity. In particular,
we show that density equalization can be implicitly achieved using either
locally adaptive weights or a general class of Riemannian (geodesic)
kernels. Our density equalization principle unifies many popular kernel
clustering criteria including normalized cut, which we show has a bias
to sparse subsets inversely related to Breiman’s bias. Our synthetic and
real data experiments illustrate these density biases and proposed so-
lutions. We anticipate that theoretical understanding of kernel clustering
limitations and their principled solutions will be important for a broad
spectrum of data analysis applications across the disciplines.

1 INTRODUCTION

In machine learning, kernel clustering is a well established data
analysis technique [3], [4], [1], [5], [6], [7], [8], [9], [10], [11] that
can identify non-linearly separable structures, see Figure 1(a-b).
Section 1.1 reviews the kernel K-means and related clustering
objectives, some of which have theoretically explained biases,
see Section 1.2. In particular, Section 1.2.2 describes the discrete
Gini clustering criterion standard in decision tree learning where
Breiman [2] proved a bias to histogram mode isolation.

Empirically, it is well known that kernel K-means or average
association (see Section 1.1.1) has a bias to so-called “tight”
clusters for small bandwidths [1]. Figure 1(c) demonstrates this
bias on a non-uniform modification of a typical toy example for
kernel K-means with common Gaussian kernel

k(x, y) ∝ exp(−
∥x − y∥2

2σ2
) . (1)

This paper shows in Section 2 that under certain conditions kernel
K-means approximates the continuous generalization of the Gini
criterion where we formally prove a mode isolation bias similar
to the discrete case analyzed by Breiman. Thus, we refer to the
“tight” clusters in kernel K-means as Breiman’s bias.

We propose a density equalization principle directly address-
ing the cause of Breiman’s bias. First, Section 3 discusses modifi-
cation of the density with adaptive point weights. Then, Section 4
proposes a general class of locally adaptive geodesic kernels
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Fig. 1: Kernel K-means with Gaussian kernel (1) gives desirable
nonlinear separation for uniform density clusters (a,b). But, for
non-uniform clusters in (c) it either isolates a small dense “clump”
for smaller σ due to Breiman’s bias (Section 2) or gives results
like (a) for larger σ. No fixed σ yields solution (d) given by locally
adaptive kernels or weights eliminating the bias (Sections 4 & 3).

implicitly transforming data and modifying its density. We derive
“density laws” relating adaptive weights and kernels to density
transformations. They allow to implement density equalization re-
solving Breiman’s bias, see Figure 1(d). One popular heuristic [12]
approximates a special case of our Riemannian kernels.

Besides mode isolation, kernel clustering may have the oppo-
site density bias, e.g. sparse subsets in Normalized Cut [1], see
Figure 9(a). Section 5 presents “normalization” as implicit data
density inversion establishing a formal relation between sparse
subsets and Breiman’s bias. Equalization addresses any density
biases. Interestingly, density equalization makes many standard
pairwise clustering criteria conceptually equivalent, see Section 6.

1.1 Kernel K-means
A popular data clustering technique, kernel K-means [3] is a
generalization of the basic K-means method. Assuming Ω
denotes a finite set of points and fp ∈ RN is a feature (vector) for
point p, the basic K-means minimizes the sum of squared errors
within clusters, that is, distances from points fp in each cluster
Sk ⊂ Ω to the cluster means mk

(
k-means
criterion ) ∑

k

∑
p∈Sk

∥fp −mk∥
2. (2)
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(a) Breiman’s bias (b) good clustering

Fig. 2: Example of Breiman’s bias on real data. Feature vectors are 3-dimensional LAB colours corresponding to image pixels.
Clustering results are shown in two ways. First, red and blue show different clusters inside LAB space. Second, pixels with colours
in the “background” (red) cluster are removed from the original image. (a) shows the result for kernel K-means with a fixed-width
Gaussian kernel isolating a small dense group of pixels from the rest. (b) shows the result for an adaptive kernel, see Section 4.

Instead of clustering data points {fp ∣ p ∈ Ω} ⊂ R
N in their

original space, kernel K-means uses mapping φ ∶ R
N
→ H

embedding input data fp ∈ RN as points φp ≡ φ(fp) in a higher-
dimensional Hilbert space H. Kernel K-means minimizes the sum
of squared errors in the embedding space corresponding to the
following (mixed) objective function

F (S,m) = ∑
k

∑
p∈Sk

∥φp −mk∥
2 (3)

where S = (S1, S2, . . . , SK) is a partitioning (clustering) of Ω
into K clusters, m = (m1,m2, . . .mK) is a set of parameters
for the clusters, and ∥.∥ denotes the Hilbertian norm1. Kernel
K-means finds clusters separated by hyperplanes in H. In general,
these hyperplanes correspond to non-linear surfaces in the original
input spaceRN . In contrast to (3), standard K-means objective (2)
is able to identify only linearly separable clusters in RN .

Optimizing F with respect to the parameters yields closed-
form solutions corresponding to the cluster means in the embed-
ding space:

m̂k =
∑q∈Sk φq

∣Sk ∣
(4)

where ∣.∣ denotes the cardinality (number of points) in a cluster.
Plugging optimal means (4) into objective (3) yields a high-order
function, which depends solely on the partition variable S:

F (S) = ∑
k

∑
p∈Sk

∥φp −
∑q∈Sk φq

∣Sk ∣
∥

2

. (5)

Expanding the Euclidean distances in (5), one can obtain an
equivalent pairwise clustering criterion expressed solely in terms
of inner products ⟨φ(fp), φ(fq)⟩ in the embedding space H:

F (S)
c
= −∑

k

∑pq∈Sk⟨φ(fp), φ(fq)⟩

∣Sk ∣
(6)

where c
= means equality up to an additive constant. The inner

product is often replaced with kernel k, a symmetric function:

k(x, y) ∶= ⟨φ(x), φ(y)⟩. (7)

Then, kernel K-means objective (5) can be presented as

(
kernel

k-means
criterion

) F (S)
c
= −∑

k

∑pq∈Sk k(fp, fq)

∣Sk ∣
. (8)

1. Our later examples use finite-dimensional embeddings φwhereH = RM
is an Euclidean space (M ≫ N ) and ∥.∥ is the Euclidean norm.

Formulation (8) enables optimization in high-dimensional
space H that only uses kernel computation and does not require
computing the embedding φ(x). Given a kernel function, one
can use the kernel K-means without knowing the corresponding
embedding. However, not any symmetric function corresponds
to the inner product in some space. Mercer’s theorem [4] states
that any positive semidefinite (p.s.d.) kernel function k(x, y)
can be expressed as an inner product in a higher-dimensional
space. While p.s.d. is a common assumption for kernels, pairwise
clustering objective (8) is often extended beyond p.s.d. affinities.
There are many other extension of kernel K-means criterion (8).
Despite the connection to density modes made in our paper, kernel
clustering has only a weak relation to mean-shift [13], e.g. see [14].

1.1.1 Related graph clustering criteria
Positive semidefinite kernel k(fp, fq) in (8) can be replaced by
an arbitrary pairwise similarity or affinity matrix A = [Apq]. This
yields the average association criterion, which is known in the
context of graph clustering [1], [15], [8]:

−∑
k

∑pq∈Sk Apq

∣Sk ∣
. (9)

The standard kernel K-means algorithm [8], [10] is not guar-
anteed to decrease (9) for improper (non p.s.d.) kernel k ∶= A.
However, [15] showed that dropping p.s.d. assumption is not
essential: for arbitrary association A there is a p.s.d. kernel k
such that objective (8) is equivalent to (9) up to a constant.

In [1] authors experimentally observed that the average associ-
ation (9) or kernel K-means (8) objectives have a bias to separate
small dense group of data points from the rest, e.g. see Figure 2.

Besides average association, there are other pairwise graph
clustering criteria related to kernel K-means. Normalized cut is a
common objective in the context of spectral clustering [1], [16]. It
optimizes the following objective

−∑
k

∑pq∈Sk Apq

∑p∈Sk dp
. (10)

where dp = ∑q∈ΩApq . Note that for dp = 1 equation (10) reduces
to (9). It is known that Normalized cut objective is equivalent to a
weighted version of kernel K-means criterion [17], [8].

1.1.2 Probabilistic interpretation via kernel densities
Besides kernel clustering, kernels are also commonly used for
probability density estimation. This section relates these two in-
dependent problems. Standard multivariate kernel density estimate
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or Parzen density estimate for the distribution of data points within
cluster Sk can be expressed as follows [18]:

PΣ(x∣Sk) ∶=
∑q∈Sk k(x, fq)

∣Sk ∣
, (11)

with kernel k having the form:

k(x, y) = ∣Σ∣
− 1

2 ψ (Σ− 1
2 (x − y)) (12)

where ψ is a symmetric multivariate density and Σ is a symmetric
positive definite bandwidth matrix controlling the density estima-
tor’s smoothness. One standard example is the Gaussian (normal)
kernel (1) corresponding to

ψ(t) ∝ exp(−
∥t∥2

2
) , (13)

which is commonly used both in kernel density estimation [18]
and kernel clustering [7], [1].

The choice of bandwidth Σ is crucial for accurate density es-
timation, while the choice of l plays only a minor role [19]. There
are numerous works regarding optimal bandwidth selection [20],
[19], [21]. For example, Scott’s rule of thumb is

√
Σii =

ri
N+4
√
n
, Σij = 0 for i ≠ j (14)

where n is the number of points, and r2
i is the variance of the

i-th feature that could be interpreted as the range or scale of the
data. Scott’s rule gives optimal mean integrated squared error
for normal data distribution, but in practice it works well in more
general settings. In all cases the optimal bandwidth for sufficiently
large datasets is a small fraction of the data range [22], [18].
For shortness, we use adjective r-small to describe bandwidths
providing accurate density estimation.

If kernel k has form (12) up to a positive multiplicative
constant then kernel K-means objective (8) can be expressed in
terms of kernel densities (11) for points in each cluster [7]:

F (S)
c
= −∑

k

∑
p∈Sk
PΣ(fp∣S

k
). (15)

1.2 Other clustering criteria and their known biases

One of the goals of this paper is a theoretical explanation for the
bias of kernel K-means with small bandwidths toward tight dense
clusters, which we call Breiman’s bias, see Figs 1-2. This bias was
observed in the past only empirically. As discussed in Section 4.1,
large bandwidth reduces kernel K-means to basic K-means where
bias to equal cardinality clusters is known [23]. This section
reviews other standard clustering objectives, entropy and Gini
criteria, that have biases already well-understood theoretically. In
Section 2 we establish a connection between Gini clustering and
kernel K-means in case of r-small kernels. This connection allows
theoretical analysis of Breiman’s bias in kernel K-means.

1.2.1 Probabilistic K-means and entropy criterion
Besides non-parametric kernel K-means clustering there are well-
known parametric extensions of basic K-means (2) based on
probability models. Probabilistic K-means [23] or model based
clustering [24] use some given likelihood functions P (fp∣θk)
instead of distances ∥fp − θk∥

2 in (2) as in clustering objective

−∑
k

∑
p∈Sk

logP (fp∣θk). (16)

Note that objective (16) reduces to basic K-means (2) for Gaussian
probability model P (.∣θk) with mean θk and a fixed scalar
covariance matrix.

In probabilistic K-means (16) models can differ from Gaus-
sians depending on a priori assumptions about the data in each
cluster, e.g. gamma, Gibbs, or other distributions can be used.
For more complex data, each cluster can be described by highly-
descriptive parametric models such as Gaussian mixtures (GMM).
Instead of kernel density estimates in kernel K-means (15), proba-
bilistic K-means (16) uses parametric distribution models. Another
difference is the absence of the log in (15) compared to (16).

The analysis in [23] shows that in case of highly descriptive
model P , e.g. GMM or histograms, (16) can be approximated by
the standard entropy criterion for clustering:

(
entropy
criterion ) ∑

k

∣Sk ∣ ⋅H(Sk) (17)

where H(Sk) is the entropy of the distribution of the data in Sk:

H(Sk) ∶= −∫ P (x∣θk) logP (x∣θk)dx.

The discrete version of the entropy criterion is widely used for
learning binary decision trees in classification [2], [18], [25]. It is
known that the entropy criterion above is biased toward equal size
clusters [2], [23], [26].

1.2.2 Discrete Gini impurity and criterion

Both Gini and entropy clustering criteria are widely used in the
context of decision trees [18], [25]. These criteria are used to
decide the best split at a given node of a binary classification tree
[27]. The Gini criterion can be written for clustering {Sk} as

(
discrete

Gini criterion) ∑
k

∣Sk ∣ ⋅G(Sk) (18)

where G(Sk) is the Gini impurity for the points in Sk. Assuming
discrete feature space L instead of RN , the Gini impurity is

G(Sk) ∶= 1 − ∑
l∈L

P(l ∣Sk)2 (19)

where P(⋅ ∣Sk) is the empirical probability (histogram) of
discrete-valued features fp ∈ L in cluster Sk.

Similarly to the entropy, Gini impurity G(Sk) can be
viewed as a measure of sparsity or “peakedness” of the
distribution for points in Sk. Note that (18) has a form
similar to the entropy criterion in (17), except that entropy
H is replaced by the Gini impurity. Breiman [2] analyzed
the theoretical properties of the discrete Gini criterion
(18) when P(⋅ ∣Sk) are discrete histograms. He proved

1  2  3                  ...                    14

Theorem 1 (Breiman). For K = 2 the
minimum of the Gini criterion (18) for
discrete Gini impurity (19) is achieved
by assigning all data points with the
highest-probability feature value in L
to one cluster and the remaining data
points to the other cluster, as in exam-
ple for L = {1, . . . ,14} on the left.
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2 BREIMAN’S BIAS (NUMERICAL FEATURES)
In this section we show that the kernel K-means objective reduces
to continuous Gini criterion under some general conditions on
the kernel function. We further formally prove that the optimum
of the continuous Gini criterion separates a small group of data
points from the rest. That is, we show that the discussed earlier
biases observed in the context of clustering [1] and decision tree
learning [2] are the same phenomena.

For further analysis we reformulate the problem of clustering
a discrete set of points {fp ∣p ∈ Ω} ⊂ R

N , see Section 1.1, as
a continuous domain clustering problem. Let ρ be a continuous
probability density function over domain RN such that the dis-
crete points fp could be treated as samples from this distribution.
The clustering of the continuous domain will be described by an
assignment function s ∶ RN → {1,2, . . . ,K}. Density ρ implies
conditional probability densities ρsk(x) ∶= ρ(x ∣ s(x) = k). Fea-
ture points fp in cluster Sk could be interpreted as a sample from
conditional density ρsk.

Then, the continues clustering problem is to find an assignment
function optimizing some clustering criteria. For example, we can
analogously to (18) define continuous Gini clustering criterion

(
continuous

Gini criterion) ∑
k

wk ⋅G(s, k), (20)

where wk is the probability to draw a point from k-th cluster and

G(s, k) ∶= 1 − ∫ ρsk(x)
2 dx. (21)

In the next section we show that kernel K-means energy (15)
can be approximated by continuous Gini-clustering criterion (20)
for r-small kernels.

2.1 Kernel K-means and continuous Gini criterion
To establish the connection between kernel clustering and the
Gini criterion, let us first recall Monte-Carlo estimation [23],
which yields the following expectation-based approximation for
a continuous function g(x) and cluster C ⊂ Ω:

∑
p∈C

g(fp) ≈ ∣C ∣ ∫ g(x)ρC(x) dx (22)

where ρC is the “true” continuous density of features in cluster C .
Using (22) for C = Sk and g(x) = PΣ(x∣Sk), we can approxi-
mate the kernel density formulation in (15) by its expectation

F (S)
c
≈ −∑

k

∣Sk ∣ ∫ PΣ(x∣Sk)ρsk(x) dx. (23)

Note that partition S = (S1, . . . , SK) is determined by dataset Ω
and assignment function s. If kernel k has r-small bandwidth Σ
optimal for accurate kernel density estimation, we have

PΣ(⋅ ∣Sk) ≈ ρsk(⋅) (24)

further reducing (23) to an approximation

F (S)
c
≈ −∑

k

∣Sk ∣ ⋅ ∫ ρsk(x)
2 dx

c
≡ ∑

k

∣Sk ∣ ⋅G(s, k). (25)

Additional application of Monte-Carlo estimation ∣Sk ∣/∣Ω∣ ≈ wk
allows replacing set cardinality ∣Sk ∣ by probability wk of drawing
a point from Sk. This results in continuous Gini clustering
criterion (20), which approximates (15) or (8) up to an additive
and positive multiplicative constants.

Next section proves that the continuous Gini criterion (20) has
a similar bias observed by Breiman in the discrete case.

2.2 Breiman’s bias in continuous Gini criterion
This section extends Theorem 1 to continuous Gini criterion (20).
Section 2.1 has already established a close relation between con-
tinuous Gini criterion and kernel K-means with r-small bandwidth
kernels. Thus, Breiman’s bias also applies to the latter.

Theorem 2 (Breiman’s bias in continuous case). For K = 2
the continuous Gini clustering criterion (20) achieves its optimal
value at the partitioning of RN into regions

s1 = arg max
x
ρ(x) and s2 = R

N
∖ s1.

Proof. The statement follows from Lemma 2 below.

We denote mathematical expectation of function z ∶ Ω→R1

Ez ∶= ∫ z(x)ρ(x)dx.

Minimization of (20) corresponds to maximization of the
following objective function

L(s) ∶= w∫ ρs1(x)
2 dx + (1 −w)∫ ρs2(x)

2 dx (26)

where

w ∶= w1 = ∫
s(x)=1

ρ(x)dx = E[s(x) = 1]

where [⋅] is the indicator function. Note that conditional density
ρs1 in (26) can be written as

ρs1(x) = ρ(x) ⋅
[s(x) = 1]

w
. (27)

Equations (26) and (27) give

L(s) =
1

w ∫
ρ(x)2

[s(x) = 1]dx

+
1

1 −w ∫
ρ(x)2

[s(x) = 2]dx. (28)

Introducing notation

I ∶= [s(x) = 1] and ρ ∶= ρ(x)

allows to further rewrite objective function L(s) as

L(s) =
EIρ

EI
+

E(1 − I)ρ

1 −EI
. (29)

Without loss of generality assume that E(1−I)ρ
1−EI ≤

EIρ
EI (the

opposite case would yield a similar result). We now need following

Lemma 1. Let a, b, c, d be some positive numbers, then
a

b
≤
c

d
Ô⇒

a

b
≤
a + c

b + d
≤
c

d
.

Proof. Use reduction to a common denominator.

Lemma 1 implies inequality

E(1 − I)ρ

1 −EI
≤ Eρ ≤

EIρ

EI
, (30)

which is needed to prove the Lemma below.

Lemma 2. Assume that function sε ∶ D → {1,2} is

sε(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1, ρ(x) ≥ supx ρ(x) − ε,

2, otherwise.
(31)

Then
sup
s
L(s) = lim

ε→0
L(sε) = Eρ + sup

x
ρ(x). (32)
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Proof. Due to monotonicity of expectation we have
EFI

EI
≤
E (I supx ρ(x))

EI
= sup

x
ρ(x). (33)

Then (30) and (33) imply

L(s) =
EIρ

EI
+
E(1 − I)ρ

1 −EI
≤ sup

x
ρ(x) +Eρ. (34)

That is, the right part of (32) is an upper bound for L(s).
Let Iε ≡ [sε(x) = 1]. It is easy to check that

lim
ε→0

E(1 − Iε)ρ

1 −EIε
= Eρ. (35)

Definition (31) also implies

lim
ε→0

EIερ

EIε
≥ lim
ε→0

E(supx ρ(x) − ε)Iε
EIε

= sup
x
ρ(x). (36)

This result and (33) conclude that

lim
ε→0

EIερ

EIε
= sup

x
ρ(x). (37)

Finally, the limits in (35) and (37) imply

lim
ε→0

L(sε) = lim
ε→0

E(1 − Iε)ρ

1 −EIε
+ lim
ε→0

EIερ

EIε
= Eρ + sup

x
ρ(x). (38)

This equality and bound (34) prove (32).

This result states that the optimal assignment function sepa-
rates the mode of the density function from the rest of the data.
The proof considers case K = 2 for continuous Gini criterion
approximating kernel K-means for r-small kernels. The multi-
cluster version should be analogous. Empirically, K > 2 gives
similar bias, see Figure 3. These are asymptotic results that are
valid when the sizes of clusters are sufficiently large. In practice
we observe that shrinking of the clusters invalidates approxima-
tion (23) preventing their complete collapse. As a result Breiman’s
bias yields small clusters separating the densest parts of the data
from the rest, see Figures 2, 3, 7(a-d), 8.

Interestingly, there is also a relation between maximum cliques
and density modes. Assume 0-1 kernel [∥x − y∥ ≤ σ] with
bandwidth σ. Then, kernel matrix A is a connectivity matrix
corresponding to a σ-disk graph. Intuitively, the maximum clique
on this graph should be inside a disk with the largest number of
points in it, which corresponds to the density mode.

Formally, mode isolation bias can be linked to both maximum
clique and its weighted-graph generalization, dominant set [9]. It
is known that maximum clique [28] and dominant set [9] solve a
two-region clustering problem with energy

−
∑pq∈S1 Apq

∣S1∣
(39)

corresponding to average association (9) for K = 1 and S1
⊆ Ω.

Under the same assumptions as above, Gini impurity (21) can be
used as an approximation reducing objective (39) to

EIρ

EI
. (40)

Using (33) and (37) we can conclude that the optimum of (40) iso-
lates the mode of density function ρ. Thus, clustering minimizing
(39) for r-small bandwidths also has Breiman’s bias. That is, for
such bandwidths the concepts of maximum clique and dominant
set for graphs correspond to the concept of mode isolation for data
densities. Dominant sets for the examples in Figures 1(c), 2(a),
and 7(d) would be similar to the shown mode-isolating solutions.
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Fig. 3: Breiman’s bias in clustering of images. We select 4
categories from the LabelMe dataset [29]. The last fully connected
layer of the neural network in [30] gives 4096-dimensional feature
vector for each image. We reduce the dimension to 5 via PCA. For
visualization purposes, we obtain 3D embeddings via MDS [31].
(a) Kernel densities estimates for data points are color-coded:
darker points correspond to higher density. (b,c) The result of the
kernel K-means with the Gaussian kernel (1). Scott’s rule of thumb
defines the bandwidth. Breiman’s bias causes poor clustering,
i.e. small cluster is formed in the densest part of the data in (b),
three clusters occupy few points within densest regions while the
fourth cluster contains 71% of the data in (c). The normalized
mutual information (NMI) in (c) is 0.38. (d) Good clustering
produced by KNN kernel up (Example 3) gives NMI of 0.90,
which is slightly better than the basic K-means (0.89).

3 ADAPTIVE WEIGHTS SOLVING BREIMAN’S BIAS

We can use a simple modification of average association by
introducing weights wp ≥ 0 for each point “error” within the
equivalent kernel K-means objective (3)

Fw(S,m) = ∑
k

∑
p∈Sk

wp∥φp −mk∥
2. (41)

Such weighting is common for K-means [22]. Similarly to Section
1.1 we can expand the Euclidean distances in (41) to obtain an
equivalent weighted average association criterion generalizing (9)

−∑
k

∑pq∈Sk wpwqApq

∑p∈Sk wp
. (42)

Weights wp have an obvious interpretation based on (41); they
change the data by replicating each point p by a number of points
in the same location (Figure 4a) in proportion to wp. Therefore,
this weighted formulation directly modifies the data density as

ρ′p ∝ wpρp (43)

where ρp and ρ′p are respectively the densities of the original and
the new (replicated) points. The choice of wp = 1/ρp is a simple
way for equalizing data density to solve Breiman’s bias. As shown
in Figure 4(a), such a choice enables low-density points to be
replicated more frequently than high-density ones. This is one of
density equalization approaches giving the solution in Figure 1(d).
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- original data - replicated data - original data - transformed data

(a) adaptive weights (Sec. 3) (b) adaptive kernels (Sec. 4.3)

Fig. 4: Density equalization via (a) adaptive weights and (b)
adaptive kernels. In (a) the density is modified as in (43) via “repli-
cating” each data point inverse-proportionately to the observed
density using wp ∝ 1/ρp. For simplicity (a) assumes positive
integer weights wp. In (b) the density is modified according to
(58) for bandwidth (61) via implicit embedding of data points in a
higher dimensional space that changes their relative positions.

4 ADAPTIVE KERNELS SOLVING BREIMAN’S BIAS

Breiman’s bias in kernel K-means is specific to r-small band-
widths. Thus, it has direct implications for the bandwidth selection
problem discussed in this section. Note that kernel bandwidth
selection for clustering should not be confused with kernel
bandwidth selection for density estimation, an entirely different
problem outlined in Section 1.1.2. In fact, r-small bandwidths
give accurate density estimation, but yield poor clustering due
to Breiman’s bias. Larger bandwidths can avoid this bias in
clustering. However, Section 4.1 shows that for extremely large
bandwidths kernel K-means reduces to standard K-means, which
looses ability of non-linear cluster separation and has a different
bias to equal cardinality clusters [23], [26].

In practice, avoiding extreme bandwidths is problematic since
the notions of small and large strongly depend on data properties
that may significantly vary across the domain. This motivates
locally adaptive strategies. Interestingly, Section 4.2 shows that
any locally adaptive bandwidth strategy implicitly corresponds to
some data embedding Ω → RN

′

deforming density of the points.
That is, locally adaptive selection of bandwidth is equivalent to
selection of density transformation. Local kernel bandwidth and
transformed density are related via the density law established
in (59). On the other hand, Theorem 2 and Figure 1 imply that
Breiman’s bias is caused by high non-uniformity of the clusters
and density equalizing transformations should address it. Sec-
tion 4.3 proposes adaptive kernel strategies based on our density
law and motivated by a density equalization principle addressing
Breiman’s bias. In fact, a popular locally adaptive kernel in [12] is
a special case of our density equalization principle.

4.1 Overview of extreme bandwidth cases

Section 2.1 and Theorem 2 prove that for r-small bandwidths the
kernel K-means is biased toward “tight” clusters, as illustrated
in Figures 1, 2 and 7(d). As bandwidth increases, continuous
kernel density (11) no longer approximates the true distribution
ρsk violating (24). Thus, Gini criterion (25) is no longer valid as
an approximation for kernel K-means objective (15). In practice,
Breiman’s bias disappears gradually as bandwidth gets larger. This
is also consistent with experimental comparison of smaller and
larger bandwidths in [1].

The other extreme case of bandwidth for kernel K-means
comes from its reduction to basic K-means for large kernels.
For simplicity, assume Gaussian kernels (1) of large bandwidth σ

0 ∞

“equi-cardinality” bias
(lack of non-linear separation)

r-small σ

Breiman’s bias
(mode isolation)

dΩ

Fig. 5: Kernel K-means biases over the range of bandwidth σ. Data
diameter is denoted by dΩ = maxpq∈Ω ∥fp − fq∥. Breiman’s bias
is established for r-small σ (Section 1.1.2). Points stop interacting
for σ smaller than r-small making kernel K-means fail. Larger σ
reduce kernel K-means to the basic K-means removing an ability
to separate the clusters non-linearly. In practice, there could be no
intermediate good σ. In the example of Fig.1(c) any fixed σ leads
to either Breiman’s bias or to the lack of non-linear separability.

approaching data diameter. Then the kernel can be approximated
by its Taylor expansion exp (−

∥x−y∥2

2σ2 ) ≈ 1 − ∥x−y∥
2

2σ2 and kernel
K-means objective (8) for σ ≫ ∥x−y∥ becomes2 (up to a constant)

∑
k

∑pq∈Sk ∥fp − fq∥
2

2σ2∣Sk ∣
c
=

1

σ2 ∑
k

∑
p∈Sk

∥fp −mk∥
2, (44)

which is equivalent to basic K-means (2) for any fixed σ.
Figure 5 summarizes kernel K-means biases for different

bandwidths. For large bandwidths the kernel K-means loses its
ability to find non-linear cluster separation due to reduction to the
basic K-means. Moreover, it inherits the bias to equal cardinality
clusters, which is well-known for the basic K-means [23], [26].
On the other hand, for small bandwidths kernel K-means has
Breiman’s bias proven in Section 2. To avoid the biases in
Figure 5, kernel K-means should use a bandwidth neither too small
nor too large. This motivates locally adaptive bandwidths.

4.2 Adaptive kernels as density transformation

This section shows that kernel clustering (8) with any locally
adaptive bandwidth strategy satisfying some reasonable assump-
tions is equivalent to fixed bandwidth kernel clustering in a new
feature space (Theorem 3) with a deformed point density. The
adaptive bandwidths relate to density transformations via density
law (59). To derive it, we interpret adaptiveness as non-uniform
variation of distances across the feature space. In particular, we
use a general concept of geodesic kernel defining adaptiveness via
a metric tensor and illustrate it by simple practical examples.

Our analysis of Breiman’s bias in Section 2 applies to general
kernels (12) suitable for density estimation. Here we focus on
clustering with kernels based on radial basis functions ψ s.t.

ψ(x − y) = ψ(∥x − y∥). (45)

To obtain adaptive kernels, we replace Euclidean metric with
Riemannian inside (45). In particular, ∥x − y∥ is replaced with
geodesic distances dg(x, y) between features x, y ∈ RN based on
any given metric tensor g(f) for f ∈ R

N . This allows to define a
geodesic or Riemannian kernel at any points fp and fq as in [11]

kg(fp, fq) ∶= ψ(dg(fp, fq)) ≡ ψ(dpq) (46)

where dpq ∶= dg(fp, fq) is introduced for shortness.

2. Relation (44) easily follows by substituting mk ≡ 1
∣Sk ∣
∑p∈Sk fp.
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(a) space of points f (b) transformed points f ′

with Riemannian metric g with Euclidean metric

g1

g2

g3

1

1

1

unit balls in Riemannian metric unit balls in Euclidean metric

Fig. 6: Adaptive kernel (46) based on Riemannian distances (a)
is equivalent to fixed bandwidth kernel after some quasi-isometric
(50) embedding into Euclidean space (b), see Theorem 3, mapping
ellipsoids (52) to balls (54) and modifying data density as in (57).

In practice, the metric tensor can be defined only at the data
points gp ∶= g(fp) for p ∈ Ω. Often, quickly decaying radial basis
functions ψ allow Mahalanobis distance approximation inside (46)

dg(fp, x)
2

≈ (fp − x)
T gp (fp − x), (47)

which is normally valid only in a small neighborhood of fp. If nec-
essary, one can use more accurate approximations for dg(fp, fq)
based on Dijkstra [32] or Fast Marching method [33].

EXAMPLE 1 (Adaptive non-normalized3 Gaussian kernel). Ma-
halanobis distances based on (adaptive) bandwidth matrices Σp
defined at each point p can be used to define adaptive kernel

κp(fp, fq) ∶= exp
−(fp − fq)

TΣ−1
p (fp − fq)

2
, (48)

which equals fixed bandwidth Gaussian kernel (1) for Σp = σ
2I .

Kernel (48) approximates (46) for exponential function ψ in (13)
and tensor g continuously extending matrices Σ−1

p over the whole
feature space so that gp = Σ−1

p for p ∈ Ω. Indeed, assuming
matrices Σ−1

p and tensor g change slowly between points within
bandwidth neighbourhoods, one can use (47) for all points in

κp(fp, fq) ≈ exp
−dg(fp, fq)

2

2
≡ exp

−d2
pq

2
(49)

due to exponential decay outside the bandwidth neighbourhoods.

EXAMPLE 2 (Zelnik-Manor & Perona kernel [12]). This popular
kernel is defined as κpq ∶= exp

−∥fp−fq∥
2

2σpσq
. This kernel’s relation to

(46) is less intuitive due to the lack of “local” Riemannian tensor.
However, under assumptions similar to those in (49), it can still be
seen as an approximation of geodesic kernel (46) for some tensor
g such that gp = σ−2

p I for p ∈ Ω. They use heuristic σp = RKp ,
which is the distance to the K-th nearest neighbour of fp.

EXAMPLE 3 (KNN kernel). This adaptive kernel is defined as
up(fp, fq) = [fq ∈ KNN(fp)] where KNN(fp) is the set of K
nearest neighbors of fp. This kernel approximates (46) for uniform
function ψ(t) = [t < 1] and tensor g such that gp = I/(RKp )

2.

Theorem 3. Clustering (8) with (adaptive) geodesic kernel (46) is
equivalent to clustering with fixed bandwidth kernel k′(f ′p, f

′
q) ∶=

ψ′(∥f ′p − f
′
q∥) in new feature space RN

′

for some radial basis
function ψ′ using the Euclidean distance and some constant N ′.

3. Normalization as in (12) leads to energy (15) linked to Breiman’s bias.

Proof. A powerful general result in [34], [35], [15] states that for
any symmetric matrix (dpq) with zeros on the diagonal there is a
constant h such that squared distances

d̃2
pq = d2

pq + h
2
[p ≠ q] (50)

form Euclidean matrix (d̃pq). That is, there exists some Euclidean
embedding Ω→RN

′

where for ∀p ∈ Ω there corresponds a point
f ′p ∈ R

N ′

such that ∥f ′p − f
′
q∥ = d̃pq , see Figure 6. Therefore,

ψ(dpq) = ψ (

√

d̃2
pq − h2 [dpq ≥ h]) ≡ ψ′(d̃pq) (51)

for ψ′(t)∶=ψ(
√
t2 − h2[t ≥ h]) and kg(fp, fq)=k′(f ′p, f

′
q).

Theorem 3 proves that adaptive kernels for {fp} ⊂ R
N can

be equivalently replaced by a fixed bandwidth kernel for some
implicit embedding4

{f ′p} ⊂ R
N ′

in a new space. Below we
establish a relation between three local properties at point p :
adaptive bandwidth represented by matrix gp and two densities
ρp and ρ′p in the original and the new feature spaces. For ε > 0
consider an ellipsoid in the original space RN , see Figure 6(a),

Bp ∶= {x ∣ (x − fp)
T gp (x − fp) ≤ ε

2
}. (52)

Assuming ε is small enough so that approximation (47) holds,
ellipsoid (52) covers features {fq ∣ q ∈ Ωp} for subset of points

Ωp ∶= {q ∈ Ω ∣ dpq ≤ ε}. (53)

Similarly, consider a ball in the new space RN
′

, see Figure 6(b),

B′
p ∶= {x ∣ ∥x − f ′p∥

2
≤ ε2

+ h2
} (54)

covering features {f ′q ∣ q ∈ Ω′
p} for points

Ω′
p ∶= {q ∈ Ω ∣ d̃2

pq ≤ ε
2
+ h2

}. (55)

It is easy to see that (50) implies Ωp = Ω′
p. Let ρp and ρ′p

be the densities5 of points within Bp and B′
p correspondingly.

Assuming ∣ ⋅ ∣ denotes volumes or cardinalities of sets, we have

ρp ⋅ ∣Bp∣ = ∣Ωp∣ = ∣Ω′
p∣ = ρ′p ⋅ ∣B

′
p∣. (56)

Omitting a constant factor depending on ε, h, N and N ′ we get

ρ′p = ρp
∣Bp∣

∣B′
p∣

∝ ρp ∣det gp∣
− 1

2 (57)

representing the general form of the density law. For the basic
isotropic metric tensor such that gp = I/σ2

p it simplifies to

ρ′p ∝ ρp σ
N
p . (58)

Thus, bandwidth σp can be selected adaptively based on any
desired transformation of density ρ′p ≡ τ(ρp) using

σp ∝
N
√
τ(ρp)/ρp. (59)

where observed density ρp in the original feature space can be
evaluated at any point p using any standard estimators, e.g. (11).

4.3 Density equalizing locally adaptive kernels
Bandwidth formula (59) works for any density transform τ . To
address Breiman’s bias, one can use density equalizing trans-
forms τ(ρ) = const or τ(ρ) = 1

α log(1 + αρ), which even up

4. The implicit embedding implied by Euclidean matrix (50) should not be
confused with embedding in the Mercer’s theorem for kernel methods.

5. We use the physical rather than probability density. They differ by a factor.
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using fixed width kernel using adaptive kernel

(a) input image (b) 2D color histogram (e) density mapping

(c) clustering result (d) color coded result (f) clustering result

Fig. 7: (a)-(d): Breiman’s bias for fixed bandwidth kernel (1).
(f): result for (48) with adaptive bandwidth (61) s.t. τ(ρ)= const .
(e) density equalization: scatter plot of empirical densities in the
original/new feature spaces obtained via (11),(50), see Appendix.

original density ρ

ne
w

de
ns

ity

τ(ρ) = ρ

τ(ρ) = 1
α
log(1 + αρ)

τ(ρ) = const

the highly dense parts of the feature
space as illustrated on the right.
Some empirical results using den-
sity equalization τ(ρ) = const for
synthetic and real data are shown
in Figures 1(d) and 7(e,f).

One way to estimate the density in (59) isKNN approach [18]

ρp ≈
K

nVK
∝

K

n(RKp )N
(60)

where n ≡ ∣Ω∣ is the size of the dataset, RKp is the distance to the
K-th nearest neighbor of fp, VK is the volume of a ball of radius
RKp centered at fp. Then, density law (59) for τ(ρ) = const gives

σp ∝ RKp (61)

consistent with heuristic bandwidth in [12], see Example 2.
The result in Figure 1(d) uses adaptive Gaussian kernel (48)

for Σp = σpI with σp derived in (61). Theorem 3 claims equiv-
alence to a fixed bandwidth kernel in some transformed higher-
dimensional space RN

′

. Bandwidths (61) are chosen specifically
to equalize the data density in this space so that τ(ρ) = const .

1

0
-0.5

-1

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5

The picture on the right illustrates
such density equalization for the
data in Figure 1(d). It shows a
3D projection of the transformed
data obtained by multi-dimensional
scaling [31] for matrix (d̃pq) in (50). The observed density equal-
ization removes Breiman’s bias from the clustering in Figure 1(d).

Real data experiments for kernels with adaptive bandwidth
(61) are reported in Figures 2, 3, 7, 8 and Table 1. Figure 7(e)
illustrates the empirical density equalization effect for this band-
width. Such data homogenization removes the conditions leading
to Breiman’s bias, see Theorem 2. Also, we observe empirically
that KNN kernel is competitive with adaptive Gaussian kernels,
but its sparsity gives efficiency and simplicity of implementation.

5 NORMALIZED CUT AND BREIMAN’S BIAS

Breiman’s bias for kernel K-means criterion (8), a.k.a. average
association (AA) (9), was empirically identified in [1], but our
Theorem 2 is its first theoretical explanation. This bias was the
main critique against AA in [1]. They also criticize graph cut [39]
that “favors cutting small sets of isolated nodes”. These critiques

Gaussian AA KNN AABox and ground truth

Fig. 8: Representative interactive segmentation results. Regular-
ized average association (AA) with fixed bandwidth kernel (1) or
adaptive KNN kernels (Example 3) is optimized as in [36]. Red
boxes define initial clustering, green contours define ground-truth
clustering. Table 1 provides the error statistics. Breiman’s bias
manifests itself by isolating the most frequent color from the rest.

regularization average error, %
(boundary

smoothness)
Gaussian

AA
Gaussian

NC
KNN

AA
KNN
NC

none† 20.4 17.6 12.2 12.4
Euclidean length∗ 15.1 16.0 10.2 11.0
contrast-sensitive∗ 9.7 13.8 7.1 7.8

TABLE 1: Interactive segmentation errors. AA stands for the
average association, NC stands for the normalized cut. Errors are
averaged over the GrabCut dataset[37], see samples in Figure 8.
∗We use [36], [38] for a combination of Kernel K-means objec-
tive (8) with Markov Random Field (MRF) regularization terms.
The relative weight of the MRF terms is chosen to minimize the
average error on the dataset. †Without the MRF term, [36] and
[38] correspond to the standard kernel K-means [8], [10].

are used to motivate normalized cut (NC) criterion (10) aiming at
balanced clustering without “clumping” or “splitting”.

We do not obeserve any evidence of the mode isolation bias
in NC. However, Section 5.1 demonstrates that NC still has a bias
to isolating sparse subsets. Moreover, using the general density
analysis approach introduced in Section 4.2 we also show in
Section 5.2 that normalization implicitly corresponds to some
density-inverting embedding of the data. Thus, mode isolation
(Breiman’s bias) in this implicit embedding corresponds to the
sparse subset bias of NC in the original data.

5.1 Sparse subset bias in Normalized Cut
The normalization in NC does not fully remove the bias to small
isolated subsets and it is easy to find examples of “splitting”
for weakly connected nodes, see Figure 9(a). The motivation
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σ = 2.47

NC = 0.202

σ = 2.48

NC = 0.207

(a) NC for smaller bandwidth (b) NC for larger bandwidth
(bias to “sparsest” subsets) (loss of non-linear separation)

Fig. 9: Normalized Cut with kernel (1) on the same data as in Fig-
ure 1(c,d). For small bandwidths NC shows bias to small isolated
subsets (a). As bandwidth increases, the first non-trivial solution
overcoming this bias (b) requires bandwidth large enough so
that problems with non-linear separation become visible. Indeed,
for larger bandwidths the node degrees become more uniform
dp ≈ const reducing NC to average association, which is known to
degenerate into basic K-means (see Section 4.1). Thus, any further
increase of σ leads to solutions even worse than (b). In this simple
example no fixed σ leads NC to a good solution as in Figure 1(d).
That good solution uses adaptive kernel from Section 4.3 making
specific clustering criterion (AA, NC, or AC) irrelevant, see (68).

argument for the NC objective below Fig.1 in [1] implicitly
assumes similarity matrices with zero diagonal, which excludes
many common similarities like Gaussian kernel (1). Moreover,
their argument is built specifically for an example with a single
isolated point, while an isolated pair of points will have a near-
zero NC cost even for zero diagonal similarities.

Intuitively, this NC issue can be interpreted as a bias to
the “sparsest” subset (Figure 9a), the opposite of AA’s bias to
the “densest” subset, i.e. Breiman’s bias (Figure 1c). The next
subsection discusses the relation between these opposite biases in
detail. In any case, both of these density inhomogeneity problems
in NC and AA are directly addressed by our density equalization
principle embodied in adaptive weights wp ∝ 1/ρp in Section 3 or
in the locally adaptive kernels derived in Section 4.3. Indeed, the
result in Figure 1(d) can be replicated with NC using such adaptive
kernel. Interestingly, [12] observed another data non-homogeneity
problem in NC different from the sparse subset bias in Figure 9(a),
but suggested a similar adaptive kernel as a heuristic solving it.

5.2 Normalization as density inversion

The bias to sparse clusters in NC with small bandwidths (Fig-
ure 9a) seems the opposite of mode isolation in AA (Figure 1c).
Here we show that this observation is not a coincidence since
NC can be reduced to AA after some density-inverting data
transformation. While it is known [17], [8] that NC is equivalent to
weighted kernel K-means (i.e. weighted AA) with some modified
affinity, this section relates such kernel modification to an implicit
density-inverting embedding where mode isolation (Breiman’s
bias) corresponds to sparse clusters in the original data.

First, consider standard weighted AA objective for any given
affinity/kernel matrix Âpq = k(fp, fq) as in (42)

−∑
k

∑pq∈Sk wpwqÂpq

∑p∈Sk wp
.

τ(x) = x
(1+logx)10 τ(x) = x2

(1+logx)10

(a) density transform (65) (b) density transform (66)
(kernel normalization only) (with additional point weighting)

Fig. 10: “Density inversion” in sparse regions. Using node degree
approximation dp ∝ ρp (67) we show representative density
transformation plots (a) ρ̄p = τ(ρp) and (b) ρ′p = τ(ρp) corre-
sponding to AA with kernel modification Âpq =

Apq
dpdq

(65) and
additional point weighting wp = dp (66) exactly corresponding to
NC. This additional weighting weakens the density inversion in
(b) compared to (a), see the x-axis scale difference. However, it
is easy to check that the minima in (65) and (66) are achieved at
some x∗ exponentially growing with N̄ . This makes the density
inversion significant for NC since N̄ may equal the data size.

Clearly, weights based on node degrees w = d and “normalized”
affinities Âpq =

Apq
dpdq

turn this into NC objective (10). Thus,
average association (9) becomes NC (10) after two modifications:

● replacing Apq by normalized affinities Âpq =
Apq
dpdq

and
● introducing point weights wp = dp.

Both of these modifications of AA can be presented as implicit
data transformations modifying denisty. In particular, we show that
the first one “inverses” density turning sparser regions into denser
ones, see Figure 10(a). The second data modification is generally
discussed as a density transform in (43). We show that node degree
weights wp = dp do not remove the “density inversion”.

For simplicity, assume standard Gaussian kernel (1) based on
Euclidean distances dpq = ∥fp − fq∥ in RN

Apq = exp
−d2

pq

2σ2
.

To convert AA into NC we first need an affinity “normalization”

Âpq =
Apq
dpdq

= exp
−d2

pq − 2σ2 log(dpdq)

2σ2
= exp

−d̂2
pq

2σ2
(62)

equivalently formulated as a modification of distances

d̂2
pq ∶= d2

pq + 2σ2 log(dpdq). (63)

Using a general approach in the proof of Theorem 3, there exists
some Euclidean embedding f̄p ∈ RN̄ and constant h ≥ 0 such that

d̄2
pq ∶= ∥f̄p − f̄q∥

2
= d̂2

pq + h
2
[p ≠ q]. (64)

Thus, modified affinities Âpq in (62) correspond to the Gaussian
kernel for the new embedding {f̄p} in RN̄

Âpq ∝ exp
−d̄2

pq

2σ2
≡ exp

−∥f̄p − f̄q∥
2

2σ2
.

Assuming dq ≈ dp for features fq near fp, equations (63) and
(64) imply the following relation for such neighbors of fp

d̄2
pq ≈ d2

pq + h
2
+ 4σ2 log(dp).

Then, similarly to the arguments in (56), a small ball of radius ε
centered at fp inRN and a ball of radius

√
ε2 + h2 + 4σ2 log(dp)
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(a) original data {fp} ⊂ R
1 (b) embedding {f̄p} ⊂ R

N̄

Fig. 11: Illustration of “density inversion” for 1D data. The
original data points (a) are getting progressively denser along
the line. The points are color-coded according to the log of their
density. Plot (b) shows 3D approximation {yp} ⊂ R

3 of high-
dimensional Euclidean embedding {f̄p} ⊂ R

N̄ minimizing metric
errors ∑pq(d̂

2
pq − ∥yp − yq∥

2
)
2 where d̂pq are distances (63).

at f̄p in RN̄ contain the same number of points. Thus, similarly
to (57) we get a relation between densities at points fp and f̄p

ρ̄p ≈
ρp ε

N

(ε2 + h2 + 4σ2 log(dp))N̄/2
. (65)

This implicit density transformation is shown in Figure 10(a). Sub-
linearity in dense regions addresses mode isolation (Breiman’s
bias). However, sparser regions become relatively dense and
kernel-modified AA may split them. Indeed, the result in Fig-
ure 9(a) can be obtained by AA with normalized affinity Apq

dpdq
.

The second required modification of AA introduces point
weights wp = dp. It has an obvious equivalent formulation via
data points replication discussed in Section 3, see Figure 4(a).
Following (43), we obtain its implicit density modification effect
ρ′p = dpρ̄p. Combining this with density transformation (65) im-
plied by affinity normalization Apq

dpdq
, we obtain the following den-

sity transformation effect corresponding to NC, see Figure 10(b),

ρ′p ≈
dp ρp ε

N

(ε2 + h2 + 4σ2 log(dp))N̄/2
. (66)

The density inversion in sparse regions relates NC’s result in
Figure 9(a) to Breiman’s bias for embedding {f̄p} in RN̄ .

Figure 10 shows representative plots for density transforma-
tions (65), (66) using the following node degree approximation
based on Parzen approach (11) for Gaussian affinity (kernel) A

dp = ∑
q

Apq ∝ ρp. (67)

Empirical relation between dp and ρp is illistrated below: some
overestimation occurs for sparcer re-
gions and underestimation happens for
denser regions. The node degree for
Gaussian kernels has to be at least 1
(for an isolated node) and at most N
(for a dense graph).

6 DISCUSSION (KERNEL CLUSTERING EQUIVALENCE)

Density equalization with adaptive weights in Section 3 or adap-
tive kernels in Section 4 are useful for either AA or NC due to
their density biases (mode isolation or sparse subset). Interestingly,
kernel clustering criteria discussed in [1] such as normalized cut
(NC), average cut (AC), average association (AA) or kernel K-
means are practically equivalent for such adaptive methods. This
can be seen both empirically (Table 1) and conceptually. Note,

weights wp ∝ 1/ρp in Section 3 produce modified data with
near constant node degrees d′p ∝ ρ′p ∝ 1, see (67) and (43).
Alternatively, KNN kernel (Example 3) with density equalizing
bandwidth (61) also produce nearly constant node degrees dp ≈K
where K is the neighborhood size. Therefore, both cases give

−
∑pq∈Sk Apq

∑p∈Sk dp
∝ −

∑pq∈Sk Apq

K ∣Sk ∣

c
≈
∑p∈Sk,q∈S̄k Apq

K ∣Sk ∣
, (68)

which correspond to NC (10), AA (9), and AC criteria. As
discussed in [1], the last objective also has very close relations
with standard partitioning concepts in spectral graph theory:
isoperimetric or Cheeger number, Cheeger set, ratio cut.

This equivalence argument applies to the corresponding clus-
tering objectives and is independent of specific optimization algo-
rithms developed for them. Interestingly, the relation between (9)
and basic K-means objective (3) suggests that standard Lloyd’s
algorithm can be used as a basic iterative approach for approx-
imate optimization of all clustering criteria in (68). In practice,
however, kernel K-means algorithm corresponding to the exact
high-dimensional embedding {φp} in (3) is more sensitive to local
minima compared to iterative K-means over approximate lower-
dimensional embeddings based on PCA [14, Section 3.1]6.
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APPENDIX
EMPIRICAL DENSITY TRANSFORMATION PLOTS

For adaptive bandwidths σp in (59) corresponding to any given
τ(ρ), implicit quasi-isometric embedding in (50) allows to obtain
an empirical scatter plot τ(ρ)Ω ∶= {(ρ′(f ′p), ρ(fp)) ∣ p ∈ Ω},
e.g. shown in Figure 7(e), which could validate the “theoretical”
plot ρ′ = τ(ρ). Indeed, Parzen density (11) with kernel (1) for the
new embedding {f ′p ∣p ∈ Ω} ⊂ R

N ′

gives

ρ′(f ′p) ∝ ∑
q

e
−∥f ′p−f

′

q∥
2

2
c
∝ ∑

q

e
−∥fp−fq∥

2

2σ2q (69)

where
c
∝ is an equality up to some additive and multiplicative

constants that follows directly from equation (50). Similar Parzen
density estimate for the original embedding gives

ρ(fp) ∝ ∑
q

e
−∥fp−fq∥

2

2 (70)

different from (69) only by the lack of σp in the exponent.
Note that adaptive bandwidths can also be used for density es-

timation often giving better accuracy. Interestingly, using adaptive
σp for estimating density ρ(fp) leads to a variant of (70)

ρ(fp) ∝ ∑
q

1

σNq
e
−∥fp−fq∥

2

2σ2q (71)

6. K-means is also commonly used as a discretization heuristic for spectral
relaxation [1] where a similar eigen analysis is motivated by spectral graph
theory [40], [41], [42] defferently from PCA dimensionalty reduction in [14].
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also different from (69). Now the difference is in the kernel
normalization, which is required for density estimation in (71).

Note that normalized adaptive kernels is not a good idea for
clustering. They turn PΣ in probabilistic formulation (15) into
a good approximation of the true data density. Thus, kernel K-
means reduces to the continuous Gini criteria with Breiman’s bias
(Theorem 2). In contrast, non-normalized geodesic kernels (46)
invalidate probabilistic formulation (15). Instead, they equalize the
data density reducing Breiman’s bias (see Sections 4.2 and 4.3).
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