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Abstract. The cardiac ejection fraction (EF) depends on the volume variation of
the left ventricle (LV) cavity during a cardiac cycle, and is an essential measure
in the diagnosis of cardiovascular diseases. It is often estimated via manual seg-
mentation of several images in a cardiac sequence, which is prohibitively time
consuming, or via automatic segmentation, which is a challenging and computa-
tionally expensive task that may result in high estimation errors. In this study, we
propose to estimate the EF in real-time directly from image statistics using ma-
chine learning technique. From a simple user input in only one image, we build
for all the images in a subject dataset (200 images) a statistic based on the Bhat-
tacharyya coefficient of similarity between image distributions. We demonstrate
that these statistics are non-linearly related to the LV cavity areas and, therefore,
can be used to estimate the EF via an Artificial Neural Network (ANN) directly. A
comprehensive evaluation over 20 subjects demonstrated that the estimated EFs
correlate very well with those obtained from independent manual segmentations.

1 Introduction

One of the most important observations in diagnosing cardiovascular diseases, the car-
diac ejection fraction (EF), may decrease in the case of a heart attack or other problems
related to the heart valves or muscles. Furthermore, EF is an important indicator of
long-term prognosis for patients with coronary artery disease. Because the left ventricle
(LV) is the main pumping chamber of the heart, EF is usually measured using informa-
tion from the LV [7]. In routine clinical use, it is often estimated from several images in
a cardiac sequence using manual segmentation of the LV cavity, which is prohibitively
time consuming. While automatic LV segmentation can be used to compute the EF,
automatic LV segmentation is still acknowledged as a challenging, computationally ex-
pensive task, which has attracted impressive research attention in recent years. Existing
LV segmentation algorithms are based on traditional techniques, such as thresholding,
region-growing, edge detection and clustering [8,9,11], and energy minimization tech-
niques such as graph cuts [4, 13], active contours/level sets [2, 6], as well as active
appearance and shape models [1]. In general, segmentation algorithms require a care-
ful user initialization, intensive training, and a heavy computational load. Furthermore,
the ensuing segmentation results depend significantly on the choice of a set of ad hoc
parameters and training data, which may yield high errors in the computation of the
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EF. These difficulties, inherent to segmentation algorithms, impede the automatic es-
timation of the EF in routine clinical use. A recent comprehensive review of cardiac
image segmentation and its challenges can be found in [12]. While existing techniques
are labor intensive, we believe that there are other characteristics of the images that can
be computed with less effort, but that nevertheless correlate strongly with the EF. One
such technique that we describe below is based on machine learning, which removes the
need for image segmentation. From a simple user input in one single image, we build for
all the images in a subject dataset (200 images) a statistic based on the Bhattacharyya
coefficient [3] of similarity between image distributions. We demonstrate that these
statistics are non-linearly related to the LV cavity areas (cf. Fig. 3) and therefore can be
used to estimate the EF directly via an Artificial Neural Network (ANN). The proposed
method consists of four main steps: (1) Image acquisition, (2) Building Image Statis-
tics, (3) Applying Artificial Neural Network, and (4) Estimating Ejection Fraction. A
comprehensive quantitative evaluation over 20 subjects demonstrates that the estimated
EFs correlated very well with those obtained from manual segmentations.

2 Estimating Left Ventricle Volumes from Image Statistics

2.1 Building Image Statistics

Let I be a cardiac MRI sequence containing J frames1, each comprising I slices2,
Ii, j: Ω ⊂ ℜ2 → ℜ+ with (i, j) ∈ [1 . . . I]× [1 . . .J]. To introduce our methodology for
building an image statistic related to the LV cavity area for each image Ii, j, (i, j) ∈
[1 . . . I]× [1 . . .J], let us consider the following definitions. (1) Let I be a reference image
which we use for a simple user input (refer to the middle image in Fig. 1 b). For instance,
in the experiments of this study, we used image I7,1 in each subject dataset. (2) Let
Γin,Γout : [0,1]→Ω denote two simple planar closed curves (e.g. squares) superimposed
by the user on the reference image3 I (refer to the middle image in Fig. 1 b), one placed
within the cavity (the blue curve in Fig. 1 b) and the other enclosing the cavity (the red
curve). Let us now superimpose systematically (without additional user effort) Γout onto
each of the images in the subject dataset, as shown in Fig. 1. Then, we compute for each
image a statistic based on the Bhattacharyya coefficient of similarity between image
distributions (refer to Fig. 2), and demonstrate that the obtained statistics are related
to the areas of the LV. Let RΓ ⊂ Ω be the region enclosed within Γ , Γ ∈ {Γin,Γout},
and PRΓ ,I the kernel density estimate of the distribution of an image I ∈ Ii, j, (i, j) ∈
[1 . . . I]× [1 . . .J], within region RΓ :

PRΓ ,I(z) =

∫
RΓ

K(z− I)dx

aRΓ
, aRΓ =

∫

RΓ
dx, K(y) =

1√
2πσ2

exp
− y2

2σ2 (1)

where aRΓ is the area inside region RΓ and K is the Gaussian kernel [10]. We con-
sider the distribution of the image within the region enclosed by the blue curve in the

1 The number of frames J is typically equal to 20 or 25.
2 The number of slices I is typically equal to 10.
3 The reference image is a mid-cavity slices at the end-diastolic time.
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(a) (b)

Fig. 1. (a) frame 1 (slices 1,7, and 10); (b) Γin (the blue curve within the cavity) and Γout (the red
curve enclosing the cavity) are given by the user in the reference image (the middle image). Γin is
used solely in the reference image to compute PRΓin ,I

, whereas Γout is superimposed systematically
(without additional user effort) to all the other images to compute PRΓout ,Ii, j

.

reference image (PRΓin ,I
) as an approximation of the distribution within the cavity, and

the distribution of the region enclosed by the red curve in each image Ii, j (PRΓout ,Ii, j )
as an approximation of the distribution of the entire left ventricle. Now consider the
following measure of similarity between these two distributions in each image Ii, j,
(i, j) ∈ [1 . . . I]× [1 . . .J]:

β i, j = B(PRΓin
,I,PRΓout ,Ii, j); B( f ,g) =

∫

R+

√
f gdz (2)

where the Bhattacharyya coefficient B( f ,g) measures the amount of overlap (similarity)
between two distributions f and g. The range of the Bhattacharyya coefficient is [0; 1],
with 0 indicating no overlap between the distributions and 1 being a perfect match.
The fixed [0; 1] range of the Bhattacharyya coefficient affords a conveniently practical
appraisal of the similarity. More importantly, we expect the measure β i, j to be related to
the cavity area in the corresponding image Ii, j. This is demonstrated experimentally by
the typical example in Fig. 2, and the corresponding variations of the cavity areas and
the Bhattacharyya statistics in Fig. 3. Note the strong similarity between the variations
of the cavity areas and those of the Bhattacharyya statistics (Fig. 3). Such similarity is
reasonable since the more the distributions of the cavity and the LV overlap, the higher
the cavity area.

2.2 Artificial Neural Network (ANN) Estimation of LV Cavity Areas

We constructed an Artificial Neural Network (ANN) to determine the nonlinear relation
between the Bhattacharyya coefficients and the corresponding LV cavity areas (refer to
Fig. 3 for an illustration of such non-linear relation). Following a back propagation
ANN, a powerful machine learning technique [5], our feed-forward network consists of
five layers, three hidden, one input, and one output (refer to Fig.4 (a) for an illustration).
Let P1,200 be the input of the network, a single row matrix containing the Bhattacharyya
statistics, and let T1,200 an output matrix containing the LV cavity areas:
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I = I7,1 . . . I7,7 (End-systolic) . . . I7,19 (End-diastolic)

. . . . . .
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(d) . . . (e) . . . (f)
β 7,1 = 0.9188 . . . β 7,7 = 0.8754 . . . β 7,19 = 0.9609

Fig. 2. Computing image statistics for the frames of slice 7 (middle slice): (a) reference image
(red curve: Γout , blue curve: Γin); (b): frame 7 (end-systolic) and (c) frame 19 (end-diastolic); (d),
(e), and (f) the corresponding distributions and Bhattacharyya measures (β i j). We observe that
the variations of β i j are similar to the variations of the LV cavity areas. For instance at the end
of systole (the middle column), the smallest cavity area coincides with the lowest Bhattacharyya
measure.
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Fig. 3. (a) A typical example which shows the variations of LV cavity areas obtained from manual
segmentations; (b) A typical example which shows the variations of the Bhattacharyya image
statistics

P1,200 = [P1, ...,P j, ...,P10] with P j =
[

β 1, j . . . β i, j . . . β 20, j
]

(3)

T1,200 = [T 1, ...,T j, ...,T 10] with T j =
[

a1, j . . . ai, j . . . a20, j
]

(4)

To reduce the dimensionality of the inputs and outputs, we used principal component
analysis (PCA) to transform 200 possibly correlated variables into a smaller set of
uncorrelated variables (the first five components in our case):

IN1,5 = PCACOV(P1,200) OUT1,5 = PCACOV(T1,200), (5)
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where PCACOV is the PCA transform function, IN1,5 and OUT1,5 denote the trans-
ferred inputs and outputs respectively.

The next step is to train the network using the transferred inputs (IN1,5) and outputs
(OUT1,5). The network we built estimates the following non-linear mapping: OUT1,5 =
F(IN1,5) where F is a nonlinear transfer function consisting of two hyperbolic tangent
functions and a linear function, a common choice in the neural network literature [5].
As illustrated in Fig 4 (a), the resulting network consists of five layers, one input and
one output containing 5 neurons each, both based on the linear function ( f (x) = x), as
well as three hidden layers containing 50, 25 and 50 neurons and based on the hyper-
bolic tangent, hyperbolic tangent and linear functions respectively. Let INPUT5,19 and
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Fig. 4. (a) The ANN consists of one input layer, three hidden layers, and one output layer, (b)
Variation of the volume of the LV cavity in each heart beat

OUTPUT5,19 denote the training input and output of the neural network respectively:

INPUT5,19 = [(IN1)−1, ...,(INa)−1, ...,(IN19)−1] st. INa
1,5 = PCACOV(P1,200)

(6)

OUT PUT5,19 = [(OUT 1)−1, ...,(OUT a)−1, ...,(OUT 19)−1] (7)

st. OUT a
1,5 = PCACOV(T1,200)

To validate this procedure, we employ a leave-one subject-out approach, where the test
dataset was excluded from the training data. For the current testing subject dataset, the
LV cavity areas were estimated using the transferred subject Bhattacharyya statistics
and the learned non-linear mapping F as depicted in Fig. 5 (b).

OUTtest 1,5 = F(INtest 1,5) Ttest 1,200 = PCACOV−1(OUTtest 1,5) (8)
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Fig. 5. (a) The training phase; (b) The testing phase: the estimated Bhattacharyya statistics are
fed to the network and the corresponding LV cavity areas are predicted

2.3 Estimating the Cardiac Ejection Fraction from Image Statistics

Let Vs and Vd denote the smallest (end-systolic) and largest (end-diastolic) volumes of
the LV in a cardiac cycle, respectively ( Fig. 4(b)). The cardiac ejection fraction, EF , is
given by: EF = Vd−Vs

Vd
. The numerator measures the blood volume pumped by the left

ventricle. We computed Vs and Vd by integrating the computed LV cavity areas in the
sagittal direction.

3 Experimental Evaluations and Comparisons

A set of 2D short-axis cine magnetic resonance (MR) images of 20 subjects were ac-
quired through the cardiac cycle on a 1.5T scanner with fast-imaging employing steady-
state acquisition (FIESTA) image sequence mode. The acquisition parameters were as
follows: TR=2.98 ms, TE=1.2 ms, flip angle=30 degree, and slice thickness=10 mm.
Each subject’s dataset consists of 20 frames throughout the cardiac cycle, each com-
prising 10 slices.

We used the proposed method to automatically compute the LV cavity areas, thereby
estimating the LV cavity volumes and ejection fractions in each of the 20 subjects4. We
proceeded to a leave-one subject-out validation approach, where the training used to
compute the volumes of each subject is based on the other 19 subjects. The obtained
volumes and ejection fractions were evaluated quantitatively by comparing them with
those obtained from independent manual segmentation by an expert. Fig. 6 (a) depicts
the computed LV cavity volumes for all 20 patients versus those obtained from the
independent manual segmentations, as well as the identity line, which indicates an ex-
cellent correlation between manually and automatically computed volumes. In the next

4 The dataset contains normal and abnormal cases.
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Fig. 6. (a) Automatic versus manual cavity volumes; (b) Automatic and manual EFs in 20
subjects

step, the estimated cavity volumes were used to estimate the EFs for all 20 subjects.
Let EFA be a vector containing the 20 automatically estimated EFs and EFM a vector
of the same size containing the EFs obtained form manual segmentations. Fig. 6 (b)
depicts EFA and EFM, and confirms that the EFs computed with the proposed method
are very close to those obtained from independent manual segmentations. We evaluated
the conformity between the manually and automatically computed EFs (Table 1). First
we evaluated the correlation coefficient, CorrCoe f f , which measures the correlation
between EFA and EFM. The range of CorrCoe f f is [0,1], where 1 indicates a perfect
fit between the vectors. The proposed method yielded a CorrCoe f f of 0.9635, which
indicates a high conformity between manual and automatic ejection fractions. We then
evaluated the mean and standard deviation of the norm of the difference between EFA

and EFM: Di f f EF = ‖EFA −EFM‖. The very low mean and standard deviation (std)
of Di f f EF (Table 1) indicates a high conformity between manual and automatic ejec-
tion fractions. We used a parametric test (two-tailed t-test) to estimate the conformity

Table 1. Statistical measures of the conformity between automatically and manually computed
EFs and computation time (in seconds)

CorrCoe f f (EFA, EFM) mean(Di f f EF) std(Di f f EF) CPU(s) P− value(t − test)
0.9635 0.0160 0.0163 0.2087 0.1778

between manually and automatically estimated ejection fractions that indicated the dif-
ferences between EFA and EFM were not statistically significant (P = 0.178).

Figs 7 depicts automatically and manually computed volumes for three subjects.
Fig. 7 (a) shows the best estimation in the 20 subjects, which corresponds to the lowest
error, i.e., the lowest absolute difference between manually and automatically computed
volumes. Fig. 7 (b) corresponds to the medium error (the medium estimation in the 20
subjects), and Fig. 7 (c) to the highest error (the worst estimation in the 20 subjects).
The computation time is reported in Table 1. On a 2.2 GHz machine, a non-optimized
MATLAB implementation took 0.2087 seconds to estimate the EF per subject.
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Fig. 7. Automatic versus manual cavity volumes: (a) the best case in the 20 subjects; (b) the
medium case in the 20 subjects; (c) the worst case in the 20 subjects

4 Conclusion

This study investigated a real-time method for computing the cardiac EF directly (with-
out segmentation) from image statistics via machine learning. These image statistics
were based on the Bhattacharyya coefficients of similarity between image distributions,
which were shown to be non-linearly related to the LV cavity areas. An ANN was used
to find the relation between the image statistics and the corresponding LV cavity ar-
eas in each subject dataset. A comprehensive experimental evaluation over 20 subjects
demonstrated an excellent conformity of the automatically estimated EFs to those com-
puted from manual segmentations.
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