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This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a car-
diac magnetic resonance (MR) sequence following the optimization of two original discrete cost func-
tions, each containing global intensity and geometry constraints based on the Bhattacharyya similarity.
The cost functions and the corresponding max-flow optimization built upon an original bound of the
Bhattacharyya measure yield competitive results in nearly real-time. Within each frame, the algorithm
seeks the LV cavity and myocardium regions consistent with subject-specific model distributions learned
from the first frame in the sequence. Based on global rather than pixel-wise information, the proposed
formulation relaxes the need of a large training set and optimization with respect to geometric transfor-
mations. Different from related active contour methods, it does not require a large number of iterative
updates of the segmentation and the corresponding computationally onerous kernel density estimates
(KDEs). The algorithm requires very few iterations and KDEs to converge. Furthermore, the proposed
bound can be used for several other applications and, therefore, can lead to segmentation algorithms
which share the flexibility of active contours and computational advantages of max-flow optimization.
Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results cor-
relate well with independent manual segmentations by an expert. Moreover, comparisons with a related
recent active contour method showed that the proposed framework brings significant improvements in
regard to accuracy and computational efficiency.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The standardized left ventricle (LV) segmentation in Cerqueira
et al. (2002) prescribes the use of representative 2D cardiac slices
to generate 17 standardized LV segments relevant to the clinical
assessment of regional (localized) heart motion abnormalities.
Such standard 2D segments are commonly used for regional anal-
ysis and quantification of the LV function. An essential component
in the diagnosis of cardiovascular diseases related to localized
regions with movement abnormalities, obtaining these segments
requires accurate detection of the LV endo- and epicardium bound-
aries in cardiac Magnetic Resonance (MR) sequences (Zhu et al.,
2010; Ben Ayed et al., 2009a; Spottiswoode et al., 2009; Hautvast
et al., 2006). The problem amounts to segmenting each frame into
three target regions: the LV cavity, myocardium, and background
(refer to the examples in Fig. 4). Manual delineation in all the
images of a subject is prohibitively time-consuming and, as such,
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automatic or semi-automatic algorithms are highly desired. Albeit
an impressive research effort has been devoted to this problem,
current algorithms are still not sufficiently fast and flexible for rou-
tine clinical use, mainly because of the challenges inherent to MR
cardiac images (Jolly, 2008). For instance, cardiac regions, such as
the papillary muscles and the myocardium, are connected and
have almost the same intensity profile (cf. the typical example in
Fig. 3). Furthermore, appropriate intensity and geometry models
of the LV are hard to learn from a finite training set (Ben Ayed
et al., 2009a; Hautvast et al., 2006; Jolly, 2008) given the substan-
tial variations in the LV shape and intensity between subjects, par-
ticularly those with pathological patterns.

Current algorithms are based, among others, on active con-
tours (Ben Ayed et al., 2009a,c; Hautvast et al., 2006; Fradkin
et al., 2008; Lynch et al., 2008; Pluempitiwiriyawej et al., 2005;
Sun et al., 2005; El-Berbari et al., 2007; Kaus et al., 2004; Fritscher
et al., 2005), active appearance and shape models (Andreopoulos
and Tsotsos, 2008; Mitchell et al., 2002; Mitchell et al., 2001;
Zambal et al., 2006; Van Assen et al., 2008), classification using
probabilistic atlases (Lorenzo-Valdés et al., 2004), graph cuts
(Zhu-Jacquot and Zabih, 2008; Ben Ayed et al., 2009), Bayesian fil-

http://dx.doi.org/10.1016/j.media.2011.05.009
mailto:ismail.benayed@ge.com
http://dx.doi.org/10.1016/j.media.2011.05.009
http://www.sciencedirect.com/science/journal/13618415
http://www.elsevier.com/locate/media


88 I. Ben Ayed et al. / Medical Image Analysis 16 (2012) 87–100
tering (Punithakumar et al., 2010), and registration (Zhuang et al.,
2008). Commonly, the problem is stated as the optimization of a
cost functional whose solution is obtained following the evolution
of an active contour toward the boundary of the target region.
Optimization of active contour functionals is a prevalent and flex-
ible choice in medical image analysis because it can introduce a
wide spectrum of intensity and geometry constraints1 on the
solution (Ben Ayed et al., 2009b; Rousson and Cremers, 2005; Liu
et al., 2005). Generally, these constraints reference a sum over
the target region or its boundary of pixel-wise penalties fitting the
image to intensity and geometry models learned from a finite train-
ing set. Pixel-wise intensity information cannot distinguish con-
nected cardiac regions having almost the same intensity profile
(Ben Ayed et al., 2009a; Hautvast et al., 2006), for instance the pap-
illary muscles within the cavity and the myocardium. Therefore,
most of existing methods bias the solution towards a model of
shapes learned a priori.

Although very effective in some cases, training-based algo-
rithms may have difficulty in capturing the substantial subject
variations in a clinical context (Ben Ayed et al., 2009a; Hautvast
et al., 2006; Jolly, 2008). The ensuing results are bounded to the
characteristics, variability, and mathematical description of the
training set. For instance, a pathological case outside the training
set of shapes may not be recovered, and intensity models have to
be updated for new acquisition protocols and sequences.

To relax the dependence on the choice of a training set, the re-
cent active curve studies in Zhu et al. (2010), Ben Ayed et al.
(2009a,c), Hautvast et al. (2006) build subject-specific models
from a user-provided segmentation of one frame in the current
cardiac sequence. For instance, in Hautvast et al. (2006), the
authors propose to maintain a constant intensity environment in
the vicinity of the cavity boundary propagated over the sequence.
Based on a global similarity measure between distributions, the
method in Ben Ayed et al. (2009a) maintains over a cardiac
sequence a constant overlap between the intensity distributions
of the cavity and myocardium, which led to promising results
for mid-cavity images. In a closely related direction, the authors
in Ben Ayed et al. (2009c) maximize the similarities between
the intensity distributions of cardiac regions within consecutive
frames. Based only on the current data, these methods allow more
flexibility in clinical use, although at the price of a user initializa-
tion. The LV segmentation methods in Ben Ayed et al. (2009a,c)
follow on the effort of several recent studies in the context of gen-
eral-purpose segmentation (Ben Ayed et al., 2009b, 2010; Ni et al.,
2009; Zhang and Freedman, 2005; Freedman and Zhang, 2004;
Aubert et al., 2003; Michailovich et al., 2007; Georgiou et al.,
2007; Rother et al., 2006), which have shown that the use of global
distribution measures outperforms standard techniques based on
pixel-wise information, and is less sensitive to inaccuracies in
estimating the models (Ben Ayed et al., 2009b; Michailovich
et al., 2007). As such, it can relax the need of a large training
set. Unfortunately, optimization of a global distribution measure
with respect to segmentation is NP-hard (Rother et al., 2006),
and the problem has been commonly addressed with active con-
tour optimization via partial differential equations (Ben Ayed
et al., 2009b; Ni et al., 2009; Zhang and Freedman, 2005;
Freedman and Zhang, 2004; Aubert et al., 2003; Michailovich
et al., 2007; Georgiou et al., 2007). A gradient flow equation of
contour evolution is derived in order to increase the similarity
between the region within the contour and a given model (Zhang
and Freedman, 2005; Freedman and Zhang, 2004; Aubert et al.,
2003), or to decrease the similarity between the segmentation
1 Geometry constraints reference object shape, position, and size.
regions defined by the interior and exterior of the contour
(Michailovich et al., 2007; Georgiou et al., 2007).

Several measures were studied within the active contour frame-
work, for instance the Kullback–Leibler divergence (Aubert et al.,
2003; Zhang and Freedman, 2005; Freedman and Zhang, 2004),
the Earth Mover’s Distance (Adam et al., 2009), and the Bhattachar-
yya coefficient (Zhang and Freedman, 2005; Freedman and Zhang,
2004; Ben Ayed et al., 2009b; Michailovich et al., 2007). However,
the latter has shown superior performances over other criteria
(Zhang and Freedman, 2005; Michailovich et al., 2007). The Bhatta-
charyya coefficient has a clear geometric interpretation (Comaniciu
et al., 2003), outstanding theoretical properties which were well
studied in information theory (Aherne et al., 1997), and a fixed
(normalized) range which affords a conveniently practical apprai-
sal of the similarity.

These methods based on distribution measures lead to compu-
tationally intensive algorithms. Along with an incremental contour
evolution, they require a large number of updates of computation-
ally onerous integrals, namely, the distributions of the regions de-
fined by the contour at each iteration and the corresponding
measures. Active contour methods rely on stepwise gradient des-
cent. As a result, the ensuing algorithms are notoriously slow, con-
verge to a local minimum, and depend on the choice of an
approximating numerical scheme of contour evolution and the cor-
responding parameters.

In this study, we state the detection of the LV endo- and epicar-
dium boundaries in a cardiac MR sequence as the minimization
with respect to a binary variable (labeling) of two original discrete
cost functions based on the Bhattacharyya measure, each contain-
ing global intensity and geometry constraints. The global con-
straints measure a similarity between the distributions of the LV
cavity and myocardium regions in the current frame and subject-
specific models learned from the first frame in the sequence. As
we will see in the experiments, the global constraints are more rel-
evant than pixel-wise ones in the context of cardiac regions. Used
in conjunction with regularization terms for smooth segmentation
boundaries and a hard constraint to ensure the cavity is enclosed
within the myocardium, the global constraints yield competitive
results over 2280 cardiac images acquired from 20 subjects.
However, they do not afford an analytical form amenable to fast
max-flow optimization because they do not reference pixel or
pixel-neighborhood penalties. They evaluates a global similarity
measure between distributions and, therefore, the ensuing optimi-
zation problem is challenging and NP-hard. To solve efficiently the
problem, we first propose an original bound of the Bhattacharyya
measure by introducing an auxiliary labeling. From this bound,
we reformulate the problem as the optimization of auxiliary func-
tions by max-flow iterations, thereby obtaining a nearly real-time
segmentation algorithm. Then, we demonstrate that the proposed
procedure converges. The contributions of this study are not only
in the application context but also in the scope of general-purpose
segmentation:

1.1. Contributions in the application context

The proposed formulation removes the need of a large training
set, handles intrinsically geometric variations of the LV without
biasing the solution towards a set of template shapes, relaxes opti-
mization over geometric transformations, and prevents the papil-
lary muscles from being included erroneously in the myocardium.

1.2. Contributions in the general-purpose context

Variables which are global over the segmentation regions have
been generally avoided in the context of max-flow optimization
(Boykov and Funka Lea, 2006; Rother et al., 2004; Kohli et al.,
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2008; Blake et al., 2004). The proposed upper bound affords a po-
tent global description at a very low computational cost. It requires
very few max-flow iterations and KDEs to converge, unlike active
contours.

Although our cost functions contain constraints that are de-
signed for cardiac image segmentation, the proposed bound opti-
mization can be applied to any cost function in the form of the
Bhattacharyya similarity measure. Therefore, it can be used in
other applications and can lead to segmentation algorithms which
share the flexibility of active contours and computational advanta-
ges of max-flow optimization.

The remainder of this paper is organized as follows. The next
section details the proposed cost functions and the corresponding
bound optimization. In Section 3, we report a quantitative and
comparative performance evaluation using several criteria along
with the computation time/load, describe a typical example which
illustrates explicitly the relevance of global measures for cardiac
image segmentation, and give a representative sample of the re-
sults for visual inspection. Section 4 contains a conclusion.

2. Formulation

Consider a MR cardiac sequence containing N image functions2

InðpÞ ¼ In
p : P � R2 ! I � R; n 2 ½1 . . . N�;

with P the image domain and I the set of intensity variables. The
purpose of this study is to partition the domain P of each frame n
into three regions (cf. the examples in Fig. 4):

Cn : the heart cavity
Mn : the myocardium

P n ðCn [MnÞ : the background

We state the problem as the successive minimization with respect
to a binary variable (labeling) of two original discrete cost functions
designed to address the problems related to cardiac MR images,
each containing two kernel density matching terms, one intensity-
based and the other distance-based. The cost functions are used
in conjunctions with regularization terms for smooth partition
boundaries and a hard constraint to ensure the cavity region is en-
closed within the myocardium. Minimization of the first cost func-
tion yields for each frame n an optimal labeling Ln

CðpÞ : P ! f0;1g
which defines the heart cavity

Cn ¼ fp 2 P=Ln
CðpÞ ¼ 1g; ð1Þ

whereas the labeling minimizing the second cost function,
Ln

M[CðpÞ : P ! f0;1g, defines the myocardium

Mn ¼ fp 2 P=Ln
M[CðpÞ ¼ 1 and Ln

CðpÞ ¼ 0g ð2Þ
Table 1
Summary of the general notations for any labeling LðpÞ ¼ Lp : P ! f0;1g, any image
J : P ! J , and any set of variables J .
2.1. General notations and definitions

We first consider several notations which will be used repeat-
edly in the definition of the cost functions. For any labeling
LðpÞ ¼ Lp : P ! f0;1g, any image J : P ! J , and any set of vari-
ables J , we have:

� RL1 and RL0 are the complementary regions defined by

Notation Description

RL1 Region fp 2 P=LðpÞ ¼ 1g
RL Region fp 2 P=LðpÞ ¼ 0g

2 The
RL1 ¼ fp 2 P=LðpÞ ¼ 1g
RL0 ¼ fp 2 P=LðpÞ ¼ 0g ¼ P n RL1 ð3Þ
0

PL;J Distribution of J within RL1
number of frames N is typically equal to 20 or 25.
� PL;J is the kernel density estimate (KDE) of the distribution of
image data J within region RL1 :
A(R)
BJ ðf
8j 2 J ; PL;JðjÞ ¼
P

p2RL1
KjðJpÞ

AðRL1 Þ
; ð4Þ
where A(R) denotes the number of pixels within a region R and
Kj the Gaussian kernel (r is the width of the kernel):
KjðJpÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pr2
p exp�

ðj�JpÞ2

2r2 ; ð5Þ
The Gaussian kernel is commonly used in density estimation
(Bishop, 2007). The value of r controls the smoothness of the
distribution estimate. For example, when r � 0, the Gaussian
kernel in (4) approaches the Dirac function, which yields the dis-
crete normalized histogram as estimate. r > 0 corresponds to a
smooth, continuous distribution estimate (the higher sigma,
the smoother the estimate).
� BJ ðf ; gÞ is the Bhattacharyya coefficient measuring the amount

of overlap (similarity) between two distributions f and g:
BJ ðf ; gÞ ¼
X
j2J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðjÞgðjÞ

q
ð6Þ
BJ ðf ; gÞ has a clear geometric interpretation (Comaniciu et al.,
2003); it corresponds to the cosine of the angle between the
vectors ðf ðjÞ; j 2 J ÞT and ðgðjÞ; j 2 J ÞT . Thus, it enforces the condi-
tion

P
j2J f ðjÞ ¼ 1 and

P
j2J gðjÞ ¼ 1, thereby considering explic-

itly f and g as distributions. The range of the Bhattacharyya
coefficient is [0;1], 0 corresponding to no overlap between the
distributions and 1 to a perfect match. Such fixed (normalized)
range affords a conveniently practical appraisal of the similarity.
Table 1 summarizes the general notations for any labeling
LðpÞ ¼ Lp : P ! f0;1g, any image J : P ! J , and any set of
variables J .
2.2. The cavity-detection cost function

We assume that a detection of the cavity in first frame I1, i.e., a
labeling L1

C defining a partition fC1;P n C1g, is given. Using prior
information from frame I1 and labeling L1

C, the intensity and geom-
etry model distributions of the cavity are learned and embedded in
the following distribution matching constraints to segment subse-
quent frames.

2.2.1. Intensity-matching constraint
Given the learned model distribution of intensity, denotedMC;I ,

i.e.,

MC;I ¼ PL1
C ;I

1 ; ð7Þ

the purpose of this term is to find, for each subsequent frame In,
n 2 [2. . .N], a region Cn whose intensity distribution most closely
matches MC;I . To this end, we minimize the following intensity
matching function with respect to L:
The number of pixels within R
; gÞ P

j2J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðjÞgðjÞ

p
2 ½0; 1�
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Ln
C ¼ arg min

L:P!f0;1g
BC;InðLÞ ¼ �BIðPL;In ;MC;I Þ

¼ �
X
i2I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL;In ðiÞMC;I ðiÞ

q
ð8Þ
2.2.2. Distance-matching constraint
The purpose of this term is to constrain the segmentation with

prior geometric information (shape, scale, and position of the cav-
ity) obtained from the learning frame. Let Oc be the centroid of cav-
ity C1 in the learning frame and DcðpÞ ¼ Dc

p ¼
kp�Ock

NDc
: P ! D a

distance image measuring the normalized distance between p and
Oc, with D the space of distance variables and NDc a normalization
constant which is computed systematically in order to restrict the
values of image Dc within interval [0;1]. LetMC;D be the model dis-
tribution of distances within the cavity in the learning frame:

MC;D ¼ PL1
C ;D

c ð9Þ

We propose to find a region Cn whose distance distribution most
closely matches MC;D by solving the following minimization
problem:

Ln
C ¼ arg min

L:P!f0;1g
BC;DðLÞ ¼ �BDðPL;Dc ;MC;DÞ

¼ �
X
d2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL;Dc ðdÞMC;DðdÞ

q
ð10Þ

Note that this geometric prior is invariant to rotation, and embeds
implicitly uncertainties with respect to scale via the kernel width
r in (5). The higher r, the more scale variations allowed. In our
experiments, r = 2 was sufficient to handle effectively variations
in the scale of the cavity (cf. the examples in Fig. 4). Based on global
rather pixel-wise information, the proposed geometric prior relaxes
(1) learning/modeling of geometric characteristics over a large
training set and (2) explicit optimization with respect to geometric
transformations, unlike existing shape priors. It is worth noting that
such invariance can be achieved with other descriptions, e.g., invari-
ant moments (Flusser et al., 2009). However, optimizing an invari-
ant moment with respect to segmentation is not amenable to fast
solvers. It may result in difficult, computationally expensive optimi-
zation problems.

2.2.3. Total cost function
We propose to minimize a cost function containing the inten-

sity and distance matching terms as well as a regularization term
for smooth segmentation boundaries. For each n 2 [2. . .N], the
algorithm computes the optimal labeling Ln

C minimizing the fol-
lowing discrete cost function over all L : P ! f0;1g:

Ln
C ¼ arg min

L:P!f0;1g
F C;InðLÞ

¼ BC;InðLÞ|fflfflfflffl{zfflfflfflffl}
Intensity Matching

þ cBC;DðLÞ|fflfflfflfflffl{zfflfflfflfflffl}
Geometry Matching

þ kSðLÞ|fflffl{zfflffl}
Smoothness

ð11Þ

where SðLÞ is a smoothness (regularization) term which ensures la-
bel consistency of neighboring pixels (Boykov and Kolmogorov,
2003)

SðLÞ ¼
X
fp;qg2N

1
kp� qk dLðpÞ–LðqÞ ð12Þ

with

dx–y ¼
1 if x–y

0 if x ¼ y

�
ð13Þ

and N is a 4-neighborhood system containing all unordered pairs
{p,q} of neighboring elements of P. c and k are positive constants
balancing the relative contribution of each term.
2.3. Efficient max-flow optimization via an upper bound of the
Bhattacharyya measure

The global terms BC;In ðLÞ and BC;DðLÞ in the cost function in Eq.
(11) are not directly amenable to max-flow optimization because
they do not reference pixel or pixel-neighborhood penalties. They
evaluates a global similarity measure between distributions and,
therefore, the ensuing optimization is a challenging and NP-hard
problem. To optimize efficiently these terms, we first propose an
original bound of the Bhattacharyya measure by introducing an
auxiliary labeling. From this bound, we reformulate the problem
as the optimization of auxiliary functions by max-flow iterations.
Then, we formally demonstrate that the proposed procedures
converge.

2.3.1. Upper bounds
To introduce our formulation, let us first introduce the follow-

ing proposition:

Proposition 1. Given a fixed (auxiliary) labeling La, for any labeling
L verifying RL1 � RL

a

1 , i.e., the foreground region defined by L is within
the foreground region defined by La, and "a 2 [0,1], we have the
following upper bound of BC;In ðLÞ

BC;In ðLÞ 6 J C;In ðL;La;aÞ ¼
X
p2RL0

cp;Inð0Þ þ ð1� aÞ
X
p2RL1

cp;In ð1Þ; ð14Þ

with cp;In ð0Þ and cp;In ð1Þ given for each p in P by

cp;Inð0Þ ¼ La
p

A RL
a

1ð Þ BC;InðLaÞ þ
P
i2I

Ki In
p

� � ffiffiffiffiffiffiffiffiffiffiffiffi
MC;I ðiÞ
PLa ;In ðiÞ

r� �
cp;Inð1Þ ¼ BC;In ðL

aÞ
AðRLa

1 Þ

8>><>>: ð15Þ

Similarly, we have the following upper bound of BC;DðLÞ

BC;DðLÞ 6 J C;DðL;La;aÞ ¼
X
p2RL0

cp;Dð0Þ þ ð1� aÞ
X
p2RL1

cp;Dð1Þ ð16Þ

with cp,D(0) and cp,D(1) given for each p in P by

cp;Dð0Þ ¼
La

p

A RL
a

1ð Þ BC;DðLaÞ þ
P
d2D

KdðDc
pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MC;DðdÞ
PLa ;Dc ðdÞ

r� �
cp;Dð1Þ ¼ BC;DðLaÞ

AðRLa
1 Þ

8>><>>: ð17Þ
Proof of proposition 1. We give a proof of Proposition 1 in Appen-
dix A.
Definition 1. AðL; bLÞ is called auxiliary function of a given cost
function FðLÞ if it satisfies the following conditions:

FðLÞ 6 AðL; bLÞ ð18Þ
AðL;LÞ ¼ FðLÞ ð19Þ

Auxiliary functions are commonly used in the Nonnegative Matrix
Factorization (NMF) literature for optimization (Lee and Seung,
2000). Rather than optimizing the cost function, one can optimize
iteratively an auxiliary function of the cost function. At each itera-
tion t, this amounts at optimizing over the first variable

Lðtþ1Þ ¼ arg min
L
AðL;LðtÞÞ ð20Þ

Thus, by definition of auxiliary function and minimum, we obtain
the following monotonically decreasing sequence of the cost
function

FðLðtÞÞ ¼ AðLðtÞ;LðtÞÞP AðLðtþ1Þ;LðtÞÞP FðLðtþ1ÞÞ ð21Þ
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Proposition 2. For a = 0, the following function is an auxiliary func-

Weights of the graph edges for optimizing auxiliary function AðL;L ;aÞ. The last term
in wp;Tc is a hard constraint; it is a positive constant K used for each pixel outside RL

a

1

to ensure the solution L verifies RL1 � RL
a

1 . A large K enforces the condition
wp;Tc > wp;Sc . This means that any pixel outside RL

a

1 remains connected to terminal
tion of F C;In ðLÞ

AC;InðL;La;aÞ ¼ J C;InðL;La;aÞ þ cJ C;DðL;La;aÞ þ kSðLÞ ð22Þ

Tc (refer to Fig. 1c) and, therefore, remains within the complement of the cavity
region.

Edge Weight (cost)

wp;Sc cp;In ð0Þ þ ccp;Dð0Þ
wp;Tc ð1� aÞðcp;In ð1Þ þ ccp;Dð1ÞÞ þ K 1� La

p

� �
wp,q

k
kp�qk
Proof. We give a proof of Proposition 2 in Appendix B. h

Proposition 2 instructs us to consider the following procedure
Minimization of F C;In :

begin
� Initialize the auxiliary labeling La

� Initialize a:a = a0 with 0 < a0 < 1
repeat

1. Optimize the auxiliary function over L
Fig. 1. Illu
the other
LðtÞ ¼ arg min
L:RL1�RL

a
1

AC;InðL;La;aÞ
2. Update La by La ¼ LðtÞ
3. Decrease a:a = aq with q > 1

until Conversgence;

The optimal labeling Ln
C is given by LðtÞ at convergence. This

optimal labeling defines the cavity in frame n (region Cn) according
to Eq. (1).

Convergence proof: When a approaches zero, AC;In ðL;La;aÞ ap-
proaches an auxiliary function of cost function F C;In and, therefore,
the above procedure leads to a monotonically decreasing sequence
of F C;In . This comes directly from (21). Since the cost function is
lower bounded (because the Bhattacharyya measure is upper
bounded by one), the above minimization procedure converges.

2.3.2. Max-flow optimization
Now notice that the auxiliary function AC;In in step 1 of the min-

imization of F C;In is the sum of unary and pairwise (sub-modular)
penalties. In combinatorial optimization, a global optimum of such
sum can be computed efficiently in low-order polynomial time by
solving an equivalent max-flow problem (Boykov and Kolmogorov,
2004). Furthermore, the condition that a solution L should verify
RL1 � RL

a

1 can be imposed easily by adding a hard constraint
(Boykov and Funka Lea, 2006).

To optimize the auxiliary function, it suffices to build a weighted
graph (an illustration of the graph is depicted in Fig. 1a)
(a)
stration of the min-cut/max-flow optimization: the minimum cut yields a parti
to the sink.
G ¼ hN;Ei; ð23Þ

where N is the set of vertices (nodes) and E the set of edges connect-
ing these nodes. N contains a node for each pixel p 2 P and two
additional nodes called terminals, one source Sc representing the
cavity region Cn and one sink (Tc) representing the complement of
the cavity, P n Cn. Let wp,q be the weight of the edge connecting
neighboring pixels {p,q} in N , and wp;Sc and wp;Tc the weights of
the edges connecting each pixel p to source Sc and sink Tc,
respectively.

The edge weights (costs) in Table 2 correspond to the optimiza-
tion of AC;In . Choosing these weights and following the max-flow
algorithm of Boykov and Kolmogorov (2004), we compute a mini-
mum cut of G, i.e., a subset of edges in E whose sum of edge
weights is minimal and whose removal divides the graph into
two disconnected subgraphs, each containing a terminal node (re-
fer to Fig. 1b and c for an illustration). This minimum cut, which
assigns each node (pixel) p in P to one of the two terminals, in-
duces at each iteration t an optimal labeling Lt which minimizes
globally the auxiliary function.

As illustrated in Fig. 1, we are using the Boykov–Kolmogorov
max-flow algorithm (Boykov and Kolmogorov, 2004) in the case
of 2D grids with a 4-neighborhood system. In this case, it is well
known that the algorithm yields a state-of-the-art efficiency
(Boykov and Kolmogorov, 2004). However, as noted in Boykov
and Kolmogorov (2004), Juan and Boykov (2007), the efficiency
of the algorithm decreases when moving from 2D to 3D grids or
when using denser (larger neighborhood) grids.

Interpretation of the minimum cut (min-cut/max-flow): Let us
write the auxiliary function in terms of the graph weights in Table
2 (we ignore the smoothness and hard constraints for a clear
presentation):
(b) (c)
tion of the image domain into two regions, one connected to the source terminal and
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AC;In ¼
X
p2RL0

wp;Sc þ
X
p2RL1

wp;Tc ð24Þ

For each pixel p, we have two cases:

Case 1: wp;Tc < wp;Sc (refer to the illustration in Fig. 1b)
In this case, the minimum cut removes the edge with the lower

weight wp;Tc , i.e., the edge connecting p and Tc, thereby including
pixel p in the cavity region RL1 (i.e., foreground). This makes sense
because including p in RL1 adds the lower weight to the expression
in (24) and, therefore, favors the minimization of function AC;In .

Case 2: wp;Sc < wp;Tc (refer to the illustration in Fig. 1c)

In this case, the minimum cut removes the edge connecting p
and Sc, thereby excluding pixel p from the cavity region.

A statistical hypothesis testing interpretation of coefficients
cp;In ð0Þ; cp;In ð1Þ; cp;Dð0Þcp;Dð1Þ:

In the following, we examine the link between the bound opti-
mization and the classical theory of hypothesis testing (Lehmann,
1986). To simplify the interpretation, let us omit the effect of the
smoothness, geometry-matching and hard constraints (i.e.,
c = k = K = 0). At the first iteration (t = 0), assume that the cavity
(foreground) region contains all the pixels in the image. Then,
the algorithm performs at each iteration t the following statistical
test for each pixel p within the current cavity region
ðp 2 RL

t�1

1 ¼ RL
a

1 Þ:

Hp ¼ wp;Sc �wp;Tc ¼ cp;In ð0Þ � ð1� aÞcp;Inð1Þ

¼ 1

A RL
a

1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MC;I In

p

� �
PLa ;In In

p

� �
vuuut þ a

BC;In ðLaÞ
AðRL

a

1 Þ

¼ 1

A RL
a

1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MC;I In

p

� �
PLa ;In ðIn

pÞ

vuut � a
BIðPL;In ;MC;I Þ

A RL
a

1

� � ð25Þ

The evaluation of the sign of Hp has a clear meaning, and amounts
to a statistical hypothesis testing by an image likelihood ratio test. It
evaluates the hypotheses that the image at pixel p is drawn from
learned modelMC;I or from the image distribution within the cur-
rent foreground region. We have two cases:

Case 1: Hp < 0, i.e., the likelihood ratio is lower than the follow-
ing critical value:
MC;I In
p

� �
PLa ;In In

p

� � < ðaBIðPL;In ;MC;I ÞÞ2 ð26Þ
Fig. 2. Illustration of the hard constraint: minimization of the area of intersection
between Cn and RL0 ensures that the cavity region is enclosed within the
myocardium.
In this case, we have cp;In ð0Þ < ð1� aÞcp;In ð1Þ, i.e., wp;Sc < wp;Tc .
Therefore, the graph cut excludes pixel p from the current fore-
ground region (refer to Fig. 1c) so as to decrease the auxiliary func-
tion. This makes sense because it results in decreasing the image
distribution within the current cavity region at value Ip, which
means a better match with the model at that value.

Case 2: Hp > 0
In this case pixel p is kept within the cavity region because
excluding it would increase the discrepancy between PLa ;In

and model MC;I at value In
p .

Interpretation of a: Parameter a controls the critical value in the
right-hand side of (26). The higher a, the more pixels excluded
from the current foreground region and, therefore, the faster the
evolution of the labeling towards the final segmentation. Therefore
a can be viewed as an algorithmic time which controls the conver-
gence speed.
2.4. The myocardium-detection cost function

Adopting a similar notation as previously and assuming that a
detection of the myocardium in first frame I1, i.e., a labeling L1

M[C

defining a partition fM1 [ C1;P nM1 [ C1g, is given, we propose
to minimize the following cost function to detect the myocardium:

Ln
M[C ¼ arg min

L:P!f0;1g
FM;InðLÞ

¼ BM;InðLÞ|fflfflfflfflffl{zfflfflfflfflffl}
Intensity Matching

þ cBM[C;DðLÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Geometry Matching

þ kSðLÞ|fflffl{zfflffl}
Smoothness

þKA RL0 \ RL
n
C

1

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Hard constraint

ð27Þ

The first term is an intensity matching term which measures the
similarity between PL;In and a myocardium model of intensity
learned from the first frame:

BM;In ðLÞ ¼ �BIðPL;In ;MM;I Þ ¼ �
X
i2I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL;In ðiÞMM;I ðiÞ

q
ð28Þ

where

MM;I ¼ PL1
M ;I

1 with L1
M ¼ LM[C1 1� L1

C

	 

ð29Þ

The second term is a distance matching term:

BM[C;DðLÞ ¼ �BDðPL;Dmc ;MMC;DÞ ¼ �
X
d2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL;Dmc ðdÞMMC;DðdÞ

q
ð30Þ

where DmcðpÞ ¼ Dmc
p ¼

kp�Omck
NDmc

: P ! D is a distance image measuring
the normalized distance between p and Omc, which denotes the cen-
troid of region M1 [ C1 in the learning frame.MMC;D is the model of
distances learned from the first frame:

MMC;D ¼ PL1
M[C ;D

mc ð31Þ

The last term is a hard constraint which measures the area of region
RL0 \ RL

n
C

1 (K is a positive constant). Minimization of the area of inter-
section between Cn and RL0 ensures that the cavity region is en-
closed within the myocardium (refer to Fig. 2 for an illustration).
The cost function in (27) is minimized by max-flow iterations using
previous arguments. The obtained optimal labeling, Ln

M[C, defines
the myocardium region in frame n according to Eq. (2).

3. Experimental results and discussions

The evaluation was carried out over 120 short axis cardiac cine
MR sequences acquired from 20 subjects: a total of 2280 images
were automatically segmented, and the results were compared to



Table 3
Details of the datasets used in evaluation of the proposed method.

Description Value

Number of subjects 20
Scanner protocol FIESTA
Patient ages 16–69 years
Short-axis image resolution (256 � 256) pixels
Temporal resolution 20 volumes
Pixel spacing 1.17–1.56 mm
Slice thickness 8–10 mm
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independent manual segmentations by an expert. For each subject,
the algorithm was applied to six slices including apical, mid-cavity,
and basal slices. Each slice corresponds to a sequence of 20 frames.
Table 3 summarizes the details of the datasets used in evaluation.
Using the same datasets, we compared the accuracy and
computational load/time of the proposed method, referred to as
MFM (max-flow method), with the level-set segmentation of the
LV in Ben Ayed et al. (2009a), referred to as LSM (level-set method).
Similar to LSM (Ben Ayed et al., 2009a), MFM relaxes the need of a
training, and learns model distributions from a user-provided
segmentation of the first frame in each sequence. For a fair
comparison, the same presegmented learning frame was used for
both algorithms.

In the following, we first describe a typical example which illus-
trates explicitly the relevance of global measures for cardiac image
segmentation, and give a representative sample of the results for
visual inspection. Then, we report the computation time/load,
and describe a quantitative and comparative performance analysis
using several accuracy measures. In this analysis, the parameters
were unchanged for all the datasets, and were fixed as follows:
c = 1; k = 0.0012; K = 103; r = 2 for the distance distributions,
r = 10 for the intensity distributions of the cavity, and r = 10�8

for the intensity distributions of the myocardium; q = 5; a0 = 0.9
for the cavity detection and a0 = 0.8 for the myocardium detection.
Finally, we will describe a large number of experiments which
demonstrate the effect of the weighting parameters (c and k) on
the results of the proposed algorithm.
3.1. Relevance of global measures: a typical example

Fig. 3 depicts a typical example, where the purpose is to find the
boundary between the heart cavity and the myocardium. The ex-
pert (ground truth) delineation, depicted by the green curve in
Fig. 3b, includes the papillary muscles within the cavity (region
(a) (b)
Fig. 3. A typical example where the purpose is to find the boundary between the hear
interest. (b) The green curve depicts the expert (ground truth) delineation, and the red c
(32). (c) MC: the distribution of image data within the ground-truth cavity (region ins
myocardium (region outside the green curve). (For interpretation of the references to co
within the green curve). Recovering this expert segmentation is
difficult because the myocardium (region outside the green curve)
and the papillary muscles within the cavity are connected and have
the same intensity profile.

The red curve in Fig. 3b depicts the segmentation obtained by
minimizing the pixel-wise likelihood energy commonly used in
min-cut segmentation (Boykov and Funka Lea, 2006):

Lopt ¼ arg min
L:P!f0;1g

�
X
p2RL0

logMMðIpÞ �
X
p2RL1

logMCðIpÞ; ð32Þ

where I is the image data;MC andMM are the assumed models of
image data within the cavity and myocardium, respectively. These
models were learned from the ground truth for illustration pur-
poses:MC is the distribution of image data within the ground-truth
cavity (region inside the green curve) whereas MM is the distribu-
tion of image data within the ground-truth myocardium (region
outside the green curve). Fig. 3c plots these models. The optimiza-
tion in (32) performs the following test at each pixel p:

Case 1: �logMMðIpÞ < �logMCðIpÞ, i.e., MMðIpÞ >MCðIpÞ
In this case, the pixel is included in the myocardium region (i.e.,

RL0 ) so as to obtain a lower value of the energy. Therefore, following
the optimization in (32), all the cavity pixels corresponding to the
gray area in Fig. 3c are erroneously included in the myocardium
(refer to the red curve in Fig. 3b).
Case 2: �logMMðIpÞ > �logMCðIpÞ, i.e., MMðIpÞ <MCðIpÞ
In this case, the pixel is included in the cavity region.

Although the models were learned from the ground truth, opti-

mization of the pixel-wise energy in (32) excluded the papillary
muscles from the cavity, yielding a segmentation different from
the ground truth. Pixel-wise information cannot distinguish
between the papillary muscles and the myocardium because the
pixels within these two connected regions have almost the same
intensity.

Table 4 illustrates explicitly the relevance of the proposed
global measure over the pixelwise energy in (32). For each of the
segmentations in Fig. 3b, it reports the corresponding pixel-wise
energy as well as the global intensity-matching constraint:

�BIðPL;I;MCÞ ¼ �
X
i2I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL;IðiÞMCðiÞ

q
ð33Þ

The ground truth segmentation yields a pixel-wise energy higher
than the one corresponding to the red-curve segmentation (refer
to the second line in Table 4). This indicates that the desired
segmentation does not correspond to the minimum of the
0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Bins

D
en
si
ty

(c)
t cavity and the myocardium. (a) A box limiting the segmentation to the region of
urve the segmentation obtained by minimizing the pixel-wise likelihood energy in

ide the green curve); MM: the distribution of image data within the ground-truth
lour in this figure legend, the reader is referred to the web version of this article.)



Table 4
Relevance of global measures: pixel-wise and global energies corresponding to the
segmentations in Fig. 3b.

Segmentation Green curve (ground truth) Red curve

Global energy �1 �0.86
Pixel-wise energy 7.38 � 103 7.25 � 103
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pixel-wise energy in (32). On the contrary, the global energy (33)
corresponding to the ground truth is lower than the one correspond-
ing to the red-curve segmentation (refer to the first line in Table 4).
This demonstrates explicitly that minimization of the proposed
intensity-matching constraint is more relevant for cardiac image
segmentation.

3.2. Visual inspection: a representative sample of the results

In Fig. 4, we give a representative sample of the results for four
subjects, including mid-cavity, apical, and basal slices. The green
and red curves depict the automatic endo- and epicardium bound-
aries, respectively. The yellow discontinuous curves depict the
ground-truth boundaries. The proposed method prevented the
Fig. 4. A representative sample of the results for four subjects. The yellow discontinuou
automatic endo- and epicardium boundaries, respectively. Weighting parameters c = 1 an
reader is referred to the web version of this article.)
papillary muscles from being included erroneously in the myocar-
dium. This task is challenging (El-Berbari et al., 2007) because the
papillary muscles and the myocardium are connected and have al-
most the same intensity (refer to the green curves in the typical
examples depicting mid-cavity frames in Fig. 4). The shown exam-
ples also contain apical frames in the second and fourth row in
Fig. 4, where it is difficult to segment the cavity because of the
small size of the structures and moving artifacts. These examples
show how the method handles implicitly significant variations in
the scale of the cavity, although neither an additional optimization
over geometric transformations nor a large training set are
required.

3.3. Computation time/load

Although based on global distribution measures, the proposed
method (MFM) led to nearly real-time segmentation. Running on
a 2 GHz machine, it needs 0.14 s to process a frame. Table 5 reports
the computation time/load for NFM and the level-set method in
Ben Ayed et al. (2009a) (LSM). The proposed bound leads to a sig-
nificant decrease in computation load because it requires only two
kernel density estimations (KDEs) and max-flow iterations,
s curves depict the ground-truth boundaries. The green and red curves depict the
d k = 0.0012. (For interpretation of the references to colour in this figure legend, the



Table 5
Computation time (CPU) and number of iterations and kernel density estimations
(KDEs) for the proposed method (MFM) and the level-set method in Ben Ayed et al.
(2009a) (LSM). MFM led to nearly real-time segmentation and a significant decrease
in the computation load.

Method MFM LSM

CPU/frame (secs) 0.14 4.33
CPU/subject (secs) 15.96 494.45
Nb of iterations and KDEs/frame 2 300

Table 6
Quantitative performance evaluations over 20 subjects (2280 images) for the
proposed method (MFM with c = 1 and k = 0.0012) and the method in Ben Ayed
et al. (2009a) (LSM). The first two rows: The average RMSE. The second two rows:
statistics of the DM expressed as mean ± standard deviation (the higher the DM, the
better the performance). The last two rows: reliability of the DM ðRð0:80ÞÞ. The higher
the reliability, the better the performance.

Method MFM LSM

Endocardium RMSE 1.60 2.46
Epicardium RMSE 1.99 1.89
Cavity DM 0.92 ± 0.031 0.88 ± 0.090
Myocardium DM 0.82 ± 0.061 0.81 ± 0.10
Cavity reliability 1 0.89
Myocardium reliability 0.79 0.75

3 DM is always in [0,1]. DM equal to 1 indicates a perfect match between manual
and automatic segmentations.
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whereas LSM requires approximately 300 KDEs and active-curve
updates. KDE allows an accurate and flexible description of model
distributions, but is computationally onerous. Generally, the ensu-
ing segmentation algorithms, for instance those based on level-set
evolution, compute a large number of updates of kernel densities
and, therefore, are computationally intensive. MFM requires very
few updates of kernel densities, thereby allowing an accurate and
flexible description with a very low computational load.

3.4. Quantitative and comparative performance evaluations

Table 6 summarizes the similarities between the ground truth
and the segmentations obtained with MFM (c = 1 and k = 0.0012)
and LSM using three measures: the Root Mean Squared Error
(RMSE), the Dice metric (DM), and the correlation coefficient. RMSE
is contour-based; it measures a distance between manual and
automatic boundaries. The Dice metric and correlation coefficient
are region-based; they measure the similarity between the auto-
matically detected and ground-truth regions.

3.4.1. The Root Mean Squared Error (RMSE)
We evaluated the RMSE by computing the distances between

corresponding points on the manual and automatic boundaries.
The RMSE over N points is given by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðx̂i � ~xiÞ2 þ ðŷi � ~yiÞ2
vuut ð34Þ

where ðx̂i; ŷiÞ is a point on the automatically detected boundary and
ð~xi;~yiÞ is the closest point to ðx̂i; ŷiÞ on the manually traced boundary.
We used 240 points along the boundary, i.e., N = 240. RMSE mea-
sures a distance between manual and automatic boundaries. As
such, the lower RMSE, the better the conformity of the results to
the ground truth. The first two rows in Table 6 report the average
RMSE in pixels over all the data for MFM and LSM. For endocardium
detection, MFM led to a significant improvement in the accuracy
over LSM: MFM yielded an average RMSE equal to 1.60 pixels,
whereas LSM yielded an average RMSE equal to 2.46 pixels.

Fig. 5a depicts the average RMSE of endocardium detection as a
function of the time, i.e., throughout the cardiac cycle, for MFM and
LSM. MFM led to a lower curve, which indicates a better confor-
mity to the ground truth. For epicardium detection, MFM and
LSM led approximately to the same accuracy: MFM yielded an
average RMSE equal to 1.99, whereas LSM yielded an average RMSE
equal to 1.89. Fig. 5b depicts the average RMSE of epicardium
detection as a function of the time.
3.4.2. The Dice metric
We computed the Dice metric (DM) commonly used to measure

the similarity (overlap) between the automatically detected and
ground-truth regions (Ben Ayed et al., 2009a; Lynch et al., 2008;
Pluempitiwiriyawej et al., 2005). The cavity and myocardium re-
gions were evaluated for performance appraisal. Let Va,Vm, and
Vam be the volumes corresponding to an automatically segmented
region, the corresponding hand-labeled region, and the intersec-
tion between them, respectively. The volume is measured by the
sum of areas of the considered region in six slices. Volume mea-
surements are expressed as the number of pixels within the region.
DM is given by3

DM ¼ 2Vam

Va þ Vm
ð35Þ

The higher the DM, the better the performance of the algorithm.
The second two rows in Table 6 report the DM statistics over all

the data for MFM and LSM. For cavity detection, MFM led to a sig-
nificant improvement in region accuracy over LSM: MFM yielded a
DM equal to 0.92 ± 0.031 (DM is expressed as mean ± standard
deviation), whereas LSM yielded a DM equal to 0.88 ± 0.090. Note
that an average DM higher than 0.80 indicates an excellent agree-
ment with manual segmentations (Pluempitiwiriyawej et al.,
2005), and an average DM higher than 0.90 is, generally, difficult
to obtain because the small structure of the cavity at the apex de-
creases significantly the DM (Lynch et al., 2008). For myocardium
detection, MFM led to a region accuracy slightly better than LSM:
MFM yielded a DM equal to 0.82 ± 0.061, whereas LSM yielded a
DM equal to 0.81 ± 0.10.
3.4.3. The reliability
We examined quantitatively and comparatively the reliability of

the algorithm by evaluating the reliability function–i.e., the comple-
mentary cumulative distribution function (ccdf)–of the obtained
Dice metrics, defined for each d 2 [0,1] as the probability of obtain-
ing DM higher than d over all volumes:

RðdÞ ¼ PrðDM > dÞ

¼ Number of volumes segmented with DM > d
Total number of volumes

ð36Þ

RðdÞ measures how reliable the algorithm in yielding accuracy d,
i.e., a DM higher than d. The higher R, the better the performance.
The last two rows in Table 6 reports Rð0:80Þ for MFM and LSM,
indicating the proposed algorithm brings 11% improvement in the
reliability of cavity detection and 4% improvement in the reliability of
myocardium detection. For cavity detection, MFM yielded
Rð0:80Þ ¼ 1, i.e., an excellent agreement (DM > 0.80) in 100% of
the cases, whereas LSM achieved 89% of the cases with a similar
accuracy. For myocardium detection, MFM yielded Rð0:80Þ ¼ 0:79,
whereas LSM yielded Rð0:80Þ ¼ 0:75.

In Fig. 6a and b, we plotted R as a function of d for the cavity
and myocardium, respectively. The proposed algorithm led to reli-
ability curves higher than LSM. Fig. 6c and d depict the DM for a
representative sample of the analyzed volumes for MFM and LSM.
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Fig. 6. Region-based comparisons of manual and automatic segmentations of 2280 images (380 volumes) acquired from 20 subjects. (a) and (b): Reliability
ðRðdÞ ¼ PrðDM > dÞÞ for the proposed method (MFM) and the level set method in Ben Ayed et al. (2009a) (LSM). MFM led to reliability curves higher than LSM. (c) and
(d): DM in a representative sample of the tested volumes for MFM and LSM. The first column corresponds to the cavity detection, and the second to the myocardium
detection.
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Fig. 8. Effect of the geometry-matching term: The yellow discontinuous curves
depict the ground truth boundary; (a) The red curve depicts the epicardium
boundary obtained without geometry-matching term (c = 0); (b) The red curve
depicts the epicardium boundary obtained with the geometry-matching term
(c = 1); The smoothness weight is fixed for the two experiments (k = 0.00075). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 7
Quantitative performance evaluations over 20 subjects (2280 images) for MFM
without geometry-matching term (c = 0) and MFM without smoothness term (k = 0).
The first two rows: The average RMSE. The second two rows: statistics of the Dice
metric (DM) expressed as mean ± standard deviation (the higher the DM, the better
the performance). The last two rows: reliability of the DM ðRð0:80ÞÞ. The higher the
reliability, the better the performance.

Method MFM (c = 0) MFM (k = 0)

Endocardium RMSE 2.36 3.69
Epicardium RMSE 2.89 2.02
Cavity DM 0.76 ± 0.2 0.88 ± 0.07
Myocardium DM 0.77 ± 0.12 0.80 ± 0.06
Cavity reliability 0.61 0.89
Myocardium reliability 0.52 0.61
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3.4.4. The correlation coefficient
The proposed method yielded high correlation coefficients be-

tween manual and automatic volumes. The correlation coefficient
is equal to 0.99 for cavity detection, and is equal to 0.81 for myo-
cardium detection. The linear regression plots in Fig. 7 illustrate
this high correlation. For all the data analyzed (380 volumes), it de-
picts the volumes obtained with the proposed method versus man-
ual volumes, along with the identity line. Most of the data points
are very close to the identity line, which illustrates small differ-
ences between manual and automatic segmentations.

3.5. Effect of the choice of the weighting parameters

In this section, we examine the role of the different terms in the
cost function, and evaluate quantitatively the robustness of the
proposed algorithm with respect to the choice of the weighting
parameters. First, we start with a typical example which demon-
strates explicitly the positive effect of the geometry-matching
term. Then, we examine the performance of the algorithm without
smoothness (k = 0) or without geometry-matching (c = 0). Finally,
we describe extensive experiments which evaluate the perfor-
mance of the algorithm as a function of the parameters (Figs. 9
and 10).

The example in Fig. 8 demonstrates explicitly the effect of the
geometry-matching term. The yellow discontinuous curve depicts
the ground truth epicardium boundary. The red curve in (a) depicts
the epicardium boundary obtained without geometry-matching
term (c = 0). In this case, a part of myocardium region was ex-
cluded erroneously from the solution. On the contrary, adding
the geometry-matching term (c = 1) biased the solution towards
the ground-truth (refer to Fig. 8b).

Table 7 reports the performance of the proposed algorithm with
c = 0. Removing the geometry-matching constraint affected signif-
icantly all the performance measures. Table 7 also reports the
performance of the proposed algorithm without smoothness
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constraint (k = 0). Removing the smoothness constraint did not
change significantly the average DM. However, it affected the RMSE
and Reliability.

Fig. 9a and b plot the average Dice metric as a function of c (the
weight of the geometry-matching constraint) for the cavity and
myocardium, respectively. We run the algorithm over 16 uni-
formly-spaced values of c in the interval [0;3]. The values of c in
[0.5;1.5] yielded a Dice metric above 0.9. Therefore, this parameter
does not require a fine tuning. It is interesting to notice that the
best performance corresponds to c = 1. This makes sense because
the intensity and geometry-matching constraints have the same
form of a Bhattacharyya measure and, therefore, the same range
of values.

Fig. 10a and b plot the average Dice metric as a function of k
(the weight of the smoothness constraint) for the cavity and myo-
cardium, respectively. We run the algorithm over 11 uniformly-
spaced values of k � 103 in the interval [0;2]. Most of the values
of k within this interval yield a Dice metric above 0.9 for the cavity
and above 0.8 for the myocardium. The Dice metric starts to drop
significantly only at the neighborhood of k � 103 = 2. Fig. 10a and
b demonstrate that the smoothness parameter does not require
fine tuning.
4. Conclusion

This study investigated nearly real-time detection of the LV
endo- and epicardium boundaries in a cardiac magnetic resonance
(MR) sequence. The solution is obtained following the optimization
of two original discrete cost functions, each containing global
geometry and intensity constraints based on the Bhattacharyya
similarity. Quantitative evaluations over 2280 images acquired
from 20 subjects demonstrated that the results correlate well with
independent manual segmentations by an expert. Compared to the
recent active contour method in Ben Ayed et al. (2009a), the pro-
posed formulation led to improvements in accuracy and a signifi-
cant decrease in computation time. Built upon an original bound
of the Bhattacharyya measure, the proposed formulation afford
an important computational advantage over related active contour
methods: it does not require a large number of iterative updates of
the segmentation and the corresponding kernel densities. Another
interesting aspect of the bound-optimization framework is that it
can be used for several other applications and, therefore, can lead
to segmentation algorithms which share the flexibility of active
contours and computational advantages of max-flow optimization.
Apart from these advantages over related general-purpose
segmentation methods, the proposed formulation has several
desirable properties in the application context. Based on global
distribution information learned from the current data, it removes
the need of a large training set, handles intrinsically geometric
variations of the LV without biasing the solution towards a set of
template shapes, relaxes optimization over geometric transforma-
tions, and prevents the papillary muscles from being included
erroneously in the myocardium.

Acknowledgments

This study is supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC), under the post-
doctoral fellowship (PDF) awarded to Ismail Ben Ayed, and in part
by GE Healthcare.
Appendix A. Proof of Proposition 1

Because RL1 and RL0 are complementary, we can rewrite RL
a

1 as
follows:
RL
a

1 ¼ ðR
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1 \ RL1 Þ [ RL
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1 \ RL0
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1 , we have RL
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1 \ RL1 ¼ RL1 . Therefore, from Eq.
(A.1), we can rewrite RL1 as follows:
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Using this equation, we rewrite the kernel density estimate in (4) as
follows:
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Now because A RL
a
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is nonnegative, we have the following
inequality
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Using this lower bound in the Bhattacharyya measure, we obtain
the following upper bound of BC;In ðLÞ (i is omitted as argument of
the distributions to simplify the equations)
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Now notice the following inequality for any 0 6 x 6 1ffiffiffiffiffiffiffiffiffiffiffiffi
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Finally, combining this inequality with (A.5) gives the following
upper bound of BC;In ðLÞ
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Now notice the following equalities:
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Embedding these equalities in (A.10) gives:
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Now because the last term in (A.12) is positive, we have the follow-
ing inequality "a 2 [0,1]:
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Combining (A.9) and (A.13) proves the inequality in Eq. (14). Proof
of the inequality in Eq. (16) follows the same steps.

Appendix B. Proof of Proposition 2

To prove Proposition 2, it suffices to verify conditions (18) and
(19) for AC;In and F C;In . Condition (18) follows directly from Propo-
sition 1. For Condition (19), it suffices to see that

When La ¼ L;La
p ¼ 0 8p 2 RL0 ; i:e:;
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�
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In this case, we haveX
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Therefore,
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which verifies condition (19).
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