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Abstract. We propose a fast algorithm for 3D segmentation of the right
ventricle (RV) in MRI using shape and appearance constraints based on
probability product kernels (PPK). The proposed constraints remove
the need for large, manually-segmented training sets and costly pose es-
timation (or registration) procedures, as is the case of the existing algo-
rithms. We report comprehensive experiments, which demonstrate that
the proposed algorithm (i) requires only a single subject for training; and
(ii) yields a performance that is not significantly affected by the choice
of the training data. Our PPK constraints are non-linear (high-order)
functionals, which are not directly amenable to standard optimizers. We
split the problem into several surrogate-functional optimizations, each
solved via an efficient convex relaxation that is amenable to parallel im-
plementations. We further introduce a scale variable that we optimize
with fast fixed-point computations, thereby achieving pose invariance in
real-time. Our parallelized implementation on a graphics processing unit
(GPU) demonstrates that the proposed algorithm can yield a real-time
solution for typical cardiac MRI volumes, with a speed-up of more than
20 times compared to the CPU version. We report a comprehensive ex-
perimental validations over 400 volumes acquired from 20 subjects, and
demonstrate that the obtained 3D surfaces correlate with independent
manual delineations.

1 Introduction

Quantification of right ventricle (RV) function, including ejection fraction,
ventricular enlargement, aneurysms, wall motion and contraction/motion anal-
ysis can be useful in the diagnosis of various cardiovascular abnormalities. RV
segmentation in 3D magnetic resonance images (MRI) is an essential step to-
wards such quantifications, yielding RV dynamics which translate into extensive
clinical information [1]. However, manual segmentation of 4D (3D+time) cardiac
volumes is tedious and time-consuming. As pointed out in the recent cardiac-
segmentation review in [2], RV segmentation in MRI is still acknowledged to be
a difficult and completely unsolved problem, unlike left ventricle (LV) segmenta-
tion which has been intensively researched during the last decade [2]. The main
difficulties arise from the complex deformations of the RV chamber in 3D, its
highly variable, crescent-shaped structure and the presence of papillary muscles.



Most of the existing RV/LV segmentation algorithms, for instance, those
based on statistical shape models [3], registration [4], and probabilistic-atlas
classification [5], require an intensive learning from a large, manually-segmented
training set. Although they can lead to outstanding performance in cases that
befit the training set, these algorithms may have difficulty in capturing the sub-
stantial variations in a clinical context, with the results often being dependent
on the choice of a specific training set. Furthermore, most of the existing shape-
based algorithms require additional costly pose optimization procedures (rota-
tion, translation, and scaling), which are often based on slow gradient-descent
techniques. To remove the dependence on a training set, several recent cardiac
image segmentation studies have attempted to build subject-specific models from
a user-provided segmentation of a single 2D frame in a cardiac sequence [6,7,8,9].
Unfortunately, these solutions are designed for LV segmentation, and require an
intensive user input, e.g., the algorithm in [7] uses manual segmentations of sev-
eral 2D slices in one subject data. Moreover, these approaches are difficult to
extend beyond the 2D case.

This study investigates rapid 3D segmentation of the right ventricle (RV) in
cardiac MRI with shape and appearance constraints based on probability prod-
uct kernels (PPK), which relax the need for large, manually-segmented training
sets and costly pose estimation (or registration) procedures. We report compre-
hensive experiments, which demonstrate that the proposed algorithm (i) requires
only a single subject for training; and (ii) yields a performance that is not sig-
nificantly affected by the choice of the training data. Our PPK constraints are
non-linear (high-order) functionals, which are not directly amenable to standard
optimizers. We split the problem into several surrogate-functional optimizations,
each solved via an efficient convex relaxation that is amenable to parallel im-
plementation. We further introduce a scale variable which we optimize with fast
fixed-point computations, thereby achieving scale-invariance in real-time. Our
parallelized implementation on a graphics processing unit (GPU) demonstrates
that the proposed algorithm can yield a real-time solution for a typical car-
diac MRI volume, with a speed-up of more than 20 times in comparison to the
CPU version. We report a performance evaluation over 400 volumes acquired
from 20 subjects, and demonstrate that the obtained 3D surfaces correlate with
independent manual delineations.

2 Formulation

The functional: Let I : Ω ⊂ R
3 → ZI ⊂ R be an image function which

maps 3D domain Ω to a finite set of intensity values ZI . Let D : Ω → ZD ⊂ R

be a function that measures the distance between each point x = (x, y, z) ∈ Ω
and a given anatomical landmark (i.e., a point) O ∈ Ω, which will be used to
build a translation-invariant shape prior and to learn an intensity prior. D(x) =
‖x−O‖, with ‖·‖ the standard L2 norm. ZD is a finite set of distance values.O is
obtained from a very simple user input that amounts to the manual identification
of the centroid of the RV cavity within a middle slice with a single mouse click.
Let A : Ω → ZA ⊂ R be a function measuring the angle between the vector



pointing from each point x ∈ Ω to O and the fixed x-axis unit vector v: A(x) =
<xO,v>
‖xO‖‖v‖ . Our objective functional is:

û = arg min
u∈{0,1}

E(u) with

E(u) := −
〈
PI(u, .),MI

〉

ρ
︸ ︷︷ ︸

Intensity Prior

−αD

〈
PD(u, .),MD

〉

ρ
︸ ︷︷ ︸

Distance prior

−αA

〈
PA(u, .),MA

〉

ρ
︸ ︷︷ ︸

Angle prior
︸ ︷︷ ︸

Shape prior

+ γ

∫

Ω

C |∇u| dx

︸ ︷︷ ︸

Smoothness/Edges

(1)

The following is a detailed description of the notations and variables that appear
in the optimization problem we define in equation (1):

– u : Ω → {0, 1} is a binary function, which defines a variable partition of
Ω: {x ∈ Ω/u(x) = 1}, corresponding to the target RV segment, and {x ∈
Ω/u(x) = 0}, corresponding to the complement of the target segment in Ω.

– For image data J ∈ {I,D,A} : Ω ⊂ R
3 → ZJ , and for any binary function

u : Ω → {0, 1}, PJ (u, .) is a vector encoding the probability density function
(pdf) of data J within the segment defined by {x ∈ Ω/u(x) = 1}:

PJ (u, z) =

∫

Ω

Kz(J)u dx
∫

Ω
u dx

∀z ∈ ZJ (2)

with Kz a Gaussian window: Kz(y) = 1
(2πσ2)(1/2)

exp
(

−‖z−y‖2

2σ2

)

, with σ the

width of the window.
– 〈f, g〉ρ is the probability product kernel [10], which evaluates the affinity be-

tween two pdfs f and g:

〈f, g〉ρ =
∑

z∈Z

[f(z)g(z)]
ρ

ρ ∈]0, 1],Z ∈ {ZI ,ZD,ZA} (3)

The higher 〈f, g〉ρ, the better the affinity between f and g. Notice that the
PPk in (3) can be viewed as a generalization of the Bhattacharyya coefficient
[7]. Minimization of the PPKs in (1) aims at finding a target region whose
shape and intensity pdfs most closely match a priori learned models:
• MI is a model of intensity. We learn MI from intensity data within a
cylinder centered at O. The radius of the cylinder, d, is a free parameter
which has to be fixed experimentally.

• MD and MA are models of distances and angles respectively, describing
a RV shape invariant with respect to translation. We learn these models
from a single training subject different from the testing subject.

– C : Ω → R is an edge-indicator function given by C(x) = 1
1+∇I(x) . γ, αD and

αA are positive constants that balance the contribution of each constraint
in (1).



Introducing a scale variable: The shape prior in (1) is not invariant with
respect to scale (or size) of the RV regions. To illustrate this, we plotted in Fig.
2 (c) the distance pdfs corresponding to the ground-truth segmentations of 20
different subjects (two different volumes for each subject). The figure demon-
strates that the distance pdfs have similar Gaussian shapes, but shifted sup-
ports. This shift is due to inter-subject variations in scale (or size). To account
for such shifts, we further introduce a scale variable in the model of distances:
MD(., s) : ZD × R → [0, 1] /MD(z, s) = MD(z + s), s ∈ R. Thus, to account
for this new variable (s), we replace the distance-based prior in (1) by a scale-
dependent prior:

〈
PD(u, .),MD

〉

ρ
→

〈
PD(u, .),MD(., s)

〉

ρ
. Therefore, s be-

comes a variable which has to be optimized along with the segmentation region.
With this new variable, our problem becomes: {û, ŝ} = minu,s E(u, s).

Two-step optimization: Our model has two different types of variables,
the target region described by indicator function u and the scale variable s. We
therefore adopt an iterative two-step procedure, by first fixing the scale variable
and optimizing the proposed functional with respect to u via convex relaxed
surrogate functionals, and then optimizing over the scale variable via fixed-point
computations, with u fixed.

Step 1–Optimization with respect to the segment via surrogate

functionals and convex relaxation: To simplify further development, let us
assume that our functional contains only one probability product kernel and has
the following general form:

min
u(x)∈{0,1}

{

E(u) := −〈P(u, .),M〉ρ + γ

∫

Ω

C |∇u| dx
}

(4)

Observe that we omitted the superscripts that we defined previously for the pdfs
to simplify further presentation and notations. Once the problem in (4) is solved,
extension to a weighted sum of probability product kernels, as is the case in (1),
becomes straightforward. Unfortunately, the probability product kernel in (4)
is a non-linear (high-order) functional, which results in a difficult (non-convex)
optimization problem that is not directly amenable to standard solvers. We split
the problem into several surrogate-functional optimizations, each solved via an
efficient convex relaxation.

Surrogate functionals: We proceed by constructing and optimizing itera-
tively surrogate functionals of E (whose optimization is easier than the original
functional):
Definition 1 Given a fixed labeling ui (i is the iteration number), S(u, ui) is a
surrogate functional of E if it satisfies the following conditions [11]:

E(u) ≤ S(u, ui) (5a)

E(u) = S(u, u) (5b)

Rather than optimizing directly E , we optimize the surrogate functional over the
first variable at each iteration:

ui+1 = min
u
S(u, ui) , i = 1, 2, . . . (6)



Using the constraints in (5a) and (5b), and by the definition of minimum in (6),
we can show that the solutions in (6) yield a decreasing sequence of E : E(ui) =
S(ui, ui) ≥ S(ui+1, ui) ≥ E(ui+1). Therefore, if E is lower bounded, sequence
E(ui) converges to a minimum of E . Now, consider the following proposition 5 :
Proposition 1 Given a fixed ui : Ω → {0, 1}, the following functional is a
surrogate of functional E defined in (4):

S(u, ui) = −
〈
P(ui, .),M

〉

ρ
+

∫

Ω

f iu− dx+

∫

Ω

giu+ dx+

∫

Ω

C |∇u| dx (7)

where

u−(x) :=

{
1− u(x) , for ui(x) = 1
0 , otherwise

, u+(x) :=

{
u(x) , for ui(x) = 0
0 , otherwise

(8)

and

f i =
∑

z∈Z

Dz,i,ρTM,z
∫

Ω
TM,zui dx

; TM,z = Kz(J)M(z) ; (9)

Dz,i,ρ =







∫

Ω

TM,zu
i dx

∫

Ω
ui dx







ρ

; gi =
∑

z∈Z

Dz,i,ρ

ρ
∫

Ω
ui dx

(10)

Convex relaxation: Now, note that S(u, ui) has a linear form, which is
amenable to powerful global solvers. At each iteration, we optimize S(u, ui) with
the convex-relaxation technique recently developed in [12]. The optimizer in [12]
is amenable to parallel implementations on graphics processing units (GPU).
Therefore, it can yield real-time solutions for 3D grids.

Step 2–Fixed-point optimization with respect to the scale variable:

We fix labeling variable u and optimize E with respect s. Considering a variable
change z ← z− s and the fact that only the distance-distribution prior depends
on s, we have:

∂E

∂s
= −αD

∂
〈
PD(u, .),MD(., s)

〉

ρ

∂s

= −ραD

∑

z∈ZD

∂PD(u, z − s)

∂s

[
MD(z)

]ρ [
PD(u, z − s)

]ρ−1
(11)

Using the pdf expression in (2), we also have:

∂PD(u, z − s)

∂s
=

∫

Ω
∂Kz(s+D)

∂s udx
∫

Ω
udx

=

∫

Ω
(z − s−D)Kz(s+D)dx

σ2
∫

Ω
udx

(12)

5 The proof of proposition 1 is given in the supplemental material available at:
http://externe.emt.inrs.ca/users/benayedi/BenAyed-Miccai13-Supp.pdf

http://externe.emt.inrs.ca/users/benayedi/BenAyed-Miccai13-Supp.pdf


RMSE (mm) DM GPU time/volume CPU time/volume

2.30 ± 0.12 0.84 ± 0.07 0.129 sec 2.72 sec
Table 1. Quantitative evaluations over 400 volumes acquired from 20 subjects. The
statistics are expressed as mean ± std.

Embedding (12) in (11), setting the obtained expression to zero, and after some
manipulations, we obtain the following necessary condition for a minimum of E
with respect to s:

s− g(s) = 0 where

g(s) =

∑

z∈ZD

∫

Ω
(z −D)Kz(D + s)

[
MD(z)

]ρ [
PD(u, z − s)

]ρ−1
udx

∑

z∈ZD

∫

Ω
Kz(D + s) [MD(z)]

ρ
[PD(u, z − s)]

ρ−1
udx

(13)

Note that since the necessary condition in (13) has the form of a fixed-point
equation, the solution can be obtained by fixed-point iterations:

sn+1 = g(sn), n = 1, 2, . . . (14)

Let sopt be the limit of sequence sn at convergence. We have: sopt = limn→+∞sn+1 =
limn→+∞g(sn) = g(limn→+∞sn) = g(sopt). Consequently, sopt is a solution of
the necessary condition obtained in (13).

3 Experiments

We evaluated the algorithm over a data set containing short axis cardiac cine
MRI volumes of 20 subjects (20 volumes per subject, each corresponding to a
cardiac phase, i.e., we used 400 volumes in total). We performed three of types of
experiments (The parameters were invariant for all the subjects αD = 0.2;αA =
0.1; γ = 65):

– Standard quantitative evaluations, which compare the results with indepen-
dent manual segmentations approved by an expert;

– Comprehensive evaluations which demonstrate: (i) the performance of the
proposed algorithm is not significantly affected by the choice of the training
subject and (ii) the shape description we propose does not change signifi-
cantly from one subject to another; and

– Computational evaluations, which demonstrate that the parallelized compu-
tations can bring a significant speed-up of more than 20 times.

Example: Fig. 1 depicts a typical example of the results, and demonstrates
a high conformity between the manual and automatic segmentation.

Computational evaluations: The parallelized implementation was run on
an NVIDIA Tesla C1600 GPU, and the non-parallelized version on a 2.13 GHz
Xeon (E5506), with 6 GB of RAM. Table 1 reports the average GPU/CPU times
per volume. The parallelized implementation requires about 0.129 seconds for a
typical volume, a speed-up of more than 20 times compared to the CPU version.

Quantitative performance evaluations: We proceeded to a leave-one-out
validation, where one subject was used for training and the rest of the subjects



(a) Manual (b) Automatic (c) Odd slices (d) Even slices

Fig. 1. An typical example using a 125 x 125 x 6 volume. (a-b): Manual and automatic
surfaces; (c-d): The corresponding 2D contours/slices.

were used for testing. We assessed the similarities between the ground truth
and the obtained segmentations using a surface-based measure, the Root Mean
Squared Error (RMSE), and a region-based measure, the Dice Metric (DM).
Here following an description of these measures.

– Dice Metric (DM): Let Vm and Va be the automated and manually seg-

mented volumes, respectively.DM is given byDM = 2Va

⋂
Vm

Va+Vm
, and is always

in [0 1], 1 indicating a perfect match and 0 a total mismatch.
– RMSE: RMSE evaluates a distance between automated surfaces and the

corresponding manual ones. TheRMSE overN points is given by:RMSE =
√

1
N

∑N
i=1 (x̂i − x̃i)2 + (ŷi − ỹi)2 where (x̂i, ŷi) is a point on the automati-

cally detected surface and (x̃i, ỹi) is the corresponding point on the manually
traced surface. The lower RMSE, the better the conformity of the results
to the ground truth.

Table 1 reports the results, and demonstrates that the obtained 3D surfaces
correlate with manual delineations. Note that a DM higher than 0.80 indicates
an excellent agreement between manual and automatic segmentations [7].
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Fig. 2. (a) and (b): Robustness of the proposed algorithm with respect to the choice
of the training subject, (c): Invariance of the distance-based shape model.

Robustness with respect to the choice of training subject: We pro-
ceeded to a comprehensive leave-one-in evaluation method consisting of 20 tests,
each corresponding to the choice of a different training subject. Then, we seg-
mented the entire dataset and measured the corresponding average DM and
RMSE. Figs. 2 (a) and (b) plot the obtained average DM and RMSE as func-
tions of the index of the training subject, demonstrating a very low variation.



Invariance of the shape-prior models: Using ground-truth segmenta-
tions, we plotted in Fig.2 (c) the distance distributions corresponding to the
20 subjects in the dataset (We used two volumes for each subject). The figure
demonstrates that the distributions have very similar shapes, but slightly differ-
ent supports. These slight shifts, which are due to inter-subject variations in scale
(or size), are handled efficiently with the proposed fixed-point computations.

4 Conclusion

We proposed a real-time 3D MRI segmentation of the right ventricle based
on probability product kernel constraints. The proposed algorithm removes the
need for large, manually-segmented training sets and costly pose estimation pro-
cedures. We reported comprehensive experiments, which support the fact that a
single subject is sufficient for training our algorithm and demonstrate that the
obtained performance is independent of the choice of training data.
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