
1

Spine Image Fusion via Graph Cuts
Brandon Miles, Ismail Ben Ayed,Member, IEEE,, Max W. K. Law, Greg Garvin, Aaron Fenster,Senior Member,

IEEE, Shuo Li

Abstract—This study investigates a novel CT/MR spine image
fusion algorithm based on graph cuts. This algorithm allows
physicians to visually assess corresponding soft tissue and bony
detail on a single image eliminating mental alignment and
correlation needed when both CT and MR images are required
for diagnosis. We state the problem as a discrete multi-label opti-
mization of an energy functional that balances the contributions
of three competing terms: (1) a squared error, which encourages
the solution to be similar to the MR input, with a preference
to strong MR edges; (2) a squared error, which encourages the
solution to be similar to the CT input, with a preference to strong
CT edges; and (3) a prior, which favors smooth solutions by en-
couraging neighboring pixels to have similar fused-image values.
We further introduce a transparency-labeling formulation, which
significantly reduces the computational load. The proposed graph
cut fusion guarantees nearly global solutions, while avoiding the
pixelation artifacts that affect standard wavelet based methods.
We report several quantitative evaluations/comparisons over
40 pairs of CT/MR images acquired from 20 patients, which
demonstrate a very competitive performance in comparisons to
the existing methods. We further discuss various case studies,
and give a representative sample of the results.

Index Terms—Image Fusion, Graph Cuts, Medical Imaging,
Spine.

I. I NTRODUCTION

FOR spine diseases and injuries, it is common for a
patient to receive both an MR and a CT scan because

of their individual benefits. MR images depict useful soft-
tissue details including the spinal discs, nerves, cerebral spinal
fluid and spinal cord. Therefore, it is the primary modality to
diagnose protruding and degenerated discs. CT images clearly
depict bony structures, especially the bone cortex, allowing
the assessment of damaged joints or osteophyte growth (bony
spurs at the margins of a joint).

Radiologists currently display MR and CT images side by
side, when both images are available. This does provide them
with all the available image information, but its accessibility
is limited to visual correlation between the two images.It can
be difficult to determine whether narrowing of a spinal canal
is caused by tissue or bone from clinical MR images hence,
both CT and MR can be employed [1]. Using both CT and
MR images, as opposed to relying on a single modality can
benefit diagnosis and treatment of osteophytes and degenerate
discs that impact bone and nerve structures. In addition both
modalities can aid post operative follow up after spinal surgery
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[2]. Here, both the CT and MR modalities provide comple-
mentary information. In order to properly visualize the related
bone and soft tissue structures, the images must be mentally
aligned and fused together. Detecting changes on unregistered,
uncombined images is an error prone task [3] . Therefore, it
is highly desirable to fuse these two modalities into a single
image showing the clinically significant CT and MR details
as well as their relative locations on a single image. This will
remove the need for mental juxtaposition when examining
multiple views. Our goal is to provide and validate such a
system.

Here we present a novel method for image fusion of the
spine, which preserves the bone structures and soft tissue
detail in a single image. Spine image fusion has the potential
to enable more effective and efficient evaluations of spine
disorders, more so as the number of spine scans increases very
rapidly. For instance, in the United States, there has been a
300% increase in lower spine MR scans in the period between
1994 and 2006 [4], and the percentage of adults who have
suffered from back pain is 75% [5].

Multi-modality image fusion has been studied in other
fields, with applications varying from multifocal [6] to ge-
ographical images [7]. In medicine, image fusion has been
used for brain imaging [8], [9], MRI-SPECT fusion [10],
epilepsy treatment planning [11], liver ablation [12] and digital
subtraction angiography [13]. For the spine, registered and
overlaid CT and MR spine images have been used for surgery
planning [1], [14] and evaluation of bone implants [2]. A
wavelet based approach to image fusion has been proposed by
Li et al. [6]. The two input images were fused in the wavelet
domain, and an inverse transformation was applied to produce
the result. Other variations of this technique include additive
wavelet decomposition [7], the contourlet transform [8], [15],
the curvelet transform [16] and the complex wavelet transform
[17], [18]. The wavelet or transform based methods can suffer
from pixelation artifacts when two dissimilar images are fused.
This is a result of the decimations involved in the wavelet
transform as well as the translation dependence of standard
wavelets. This may result in small details being distorted,
leading to a significant loss in image quality. Pathologies that
should have been visible may no longer be seen.

Variational fusion methods have also been investigated [19]–
[23]. These methods consist of finding the optimum of an
energy functional, often via standard continuous optimization
techniques, e.g., gradient descent. For these variationalap-
proaches, the main difficulties come from the limitations ofthe
optimizers. Gradient-descent procedures [19]–[23] yieldsub-
optimal solutions and have a very high computational load.

Discrete optimization methods, which use graph cut al-
gorithms have recently sparked a substantial research effort
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in computer vision, and led to very efficient algorithms in
image segmentation [24], [25], stereo vision [26] and image
restoration [27]. For object recognition, graph cuts have been
employed to segment planar surfaces from depth images [28].
Both depth and intensity values were combined as inputs to a
graph cut based segmentation algorithm. Graph cuts have also
been used to determine the optimal fusion rules for combining
subbands of a beamlet transform [29]. Although this method
utilizes a graph cut approach for combining subbands, it is
still a transform based method and therefore is limited by
the transformation performed. To the best of our knowledge,
graph cut formulations have not been previously studied in the
context of variational approaches to image fusion.

In this study, we state image fusion as a discrete multi-
label optimization problem, which can be solved efficiently
with graph cuts [26], [30], [31], via the well-known swap or
alpha-expansion moves [26]. The proposed energy function
[32] balances the contributions of three competing terms: (1)
a squared error, which encourages the solution to be similar
to the MR input, with preference to strong MR edges; (2) a
squared error, which encourages the solution to be similar to
the CT input, with preference to strong CT edges; and (3) a
prior, favoring smooth solutions by encouraging neighboring
pixels to have similar fused-image values. We further intro-
duce a transparency-labeling formulation, which significantly
reduces the computational load. The proposed graph-cut fu-
sion guarantees nearly global solutions, while avoiding the
pixelation artifacts that affect standard wavelet based methods.
We report several quantitative evaluations/comparisons over 40
pairs of CT/MR images acquired from 20 patients. The results
demonstrate very competitive performance in comparisons to
existing variational and transform-based methods [6], [8], [19].

This work is a significant extension of a preliminary con-
ference version [32]. The dataset was increased from 9 to 20
patients, resulting in validation on 40 image slices. A compar-
ison to Piella’s variational method and validation resultsbased
on the structural similarity information measure (SSIM) have
also been added. Two more clinical case studies have also been
included. In section II we present our formulation of image
fusion as a graph cut labeling problem. This is followed by
a description of the dataset, its registration, preprocessing and
fusion in section III. We further discuss various case studies,
and give a representative sample of the results in IV with a
discussion following in V.

II. FORMULATION

A. Multi-label Formulation

We state image fusion as the following multi-label optimiza-
tion problem:

λ∗ = minE(λ) with E(λ) = D(λ) + c1R(λ) (1)

where:

• Variableλ is a labeling function that assigns each point in
image domainΩ to a labell, which describes the intensity
of the fused image at that point:

λ : p ∈ Ω → λ(p) ∈ L, (2)

with L ⊂ I denoting a closed finite set of integers (the
possible output intensities).

• Data termD is defined as:

D(λ) =
∑

p∈Ω

Dp (λ(p))

=
∑

l∈L

∑

p∈Rl

[

w1 (l − u1(p))
2
+ w2 (l − u2(p))

2
]

(3)

where u1 : Ω → R and u2 : Ω → R denote the
input images, andRl is the l-label region defined by
{p ∈ Ω|λ(p) = l}. w1 and w2 are weights defined as
follows:

s1 = |∇u1| ∗K s2 = |∇u2| ∗K

w1 =
s1

s1 + s2
w2 =

s2

s1 + s2
(4)

K is a kernel, for instance, a box filter.w1 andw2 bias the
solution towards strong edges inu1 andu2, respectively.
The data term balances the contributions of two compet-
ing terms:
1. A squared error which, encourages the solution to be
similar to the first inputu1, with preference to strong
edges inu1; and
2. A squared error which, encourages the solution to be
similar to the second inputu2, with preference to strong
edges inu2.

• Smoothness termR favors smooth solutions by encour-
aging neighboring pixels to have similar fused-image
values:

R(λ) =
∑

{p,q}∈N

r (λ(p), λ(q)) (5)

with N being a set containing all pairs of pixelsp andq
in a local neighborhood ofp andr (λ(p), λ(q)) is defined
by the truncated absolute value:

r (λ(p), λ(q)) = min (c2, |lp − lq|) (6)

with c2 being a positive constant.

B. Alpha-blending Reformulation

The above formulation requires a one-to-one correspon-
dence between the labels and pixel intensities. Therefore,the
number of labels needed to express the output image is equal
to the number of all possible pixel values. This may lead
to a high computational load in the case of images with
large dynamic ranges, as is common in medical imaging. To
reduce the number of labels, we reformulate the data term as
a transparency labeling. This is done by expressing the output
image as a function ofu1 andu2 via a transparency imageα,
with α(p) ∈ [0, 1] ∀ p ∈ Ω:

uα = αu1 + (1− α)u2 (7)

whereuα denotes the output fused image.
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Based on this formulation, we rewrite the data term in (3)
as follows:

D(λ) =
∑

p∈Ω

Dp (λ(p))

=
∑

l∈Lα

∑

p∈Rl

[

w1 (uα(p, l)− u1(p))
2
+

+w2 (uα(p, l)− u2(p))
2
]

(8)

where

uα(p, l) =
l

Nl

u1(p) +

(

1−
l

Nl

)

u2(p) l ∈ Lα (9)

with Lα being a new (reduced) set of non-negative integer
labels {0, 1, 2, ..., Nl}, parameterized by the user specified
number of labelsNl.

C. Graph Cut Optimization

Our problem is amenable to efficient graph cut optimization
[26], [30], [31]. An illustration of the multi-label graph cut
problem is provided in Fig. 1. Exactly one label is given to
each pixel in the image, with associated data and smoothness
costs assigned to the links in the graph. To formulate this
optimization letG = 〈V, E〉 be a weighted graph, withV a set
of nodes andE a set of weighted edges.V contains a node
for each pixel inΩ and for each label inLα. There is an edge
e{p,q} between every pair of nodesp, q. A cut C ⊂ E is a set
of edges that separates all the label nodes from each other,
thereby creating a sub-graph for each label. The minimum-
cut problem consists of finding a cutC with the lowest cost.
The cost of this minimum cut, denoted|C|, equals the sum of
the edge weights inC. By properly setting the weights of the
graph, one can use a series of swap moves from combinatorial
optimization [30] to efficiently compute the minimum-cost
cuts corresponding to a minimum of functionalE.

(a) (b)

Fig. 1. An illustration of the graph-cut problem: a) A graph with 3 possible
labels showing the data cost of assigning a label to a node andsmoothness
cost of assigning a labeling to adjacent pixel locations, b)the end result of
the labeling of the graph.

A swap move starts with a labeled graph and determines for
a given pair of labels,p and q, whether each node having a
value inp, q should (1) retain its current label or (2) be updated
to the other label in the pair. Each swap is accomplished
globally in an exact manner by finding the minimum cut
on a binary graph consisting of only two labels. This can
be extended to the multi-label case by iterating over the set
of all possible pairs of labels. The minimum cut is selected
at each stage, with the final labeling corresponding to a

minimum of the energy functional. One can also use alpha-
expansion moves [26] to optimize energy functions of the form
E. It is well-known that alpha-expansion moves guarantee a
solution that is within a constant factor of the global optimum
[26]. However, experimentally, it is well established thatswap
moves outperform alpha expansions [26]. Therefore, in this
work, we used swap moves with the edge weights defined in
Table I; wheree{l,p} denotes an edge between a label and a
pixel, ande{p,q} an edge between two adjacent pixels.

TABLE I
WEIGHTS ASSIGNED TO THE EDGES OF THE GRAPH FOR MINIMIZING THE

PROPOSED FUSION ENERGY

edge weight for

{l, p} w1 (uα(p, l)− u1)
2 + w2 (uα(p, l)− u2)

2 p ∈ Ω, l ∈ Lα

{p, q} r(lp, lq) p, q ∈ Ω

III. M ETHODS

This retrospective study was approved by the Human Sub-
jects Ethics Board of Western University, with the requirement
for informed consent being waived. Twenty patient image sets
were randomly selected with the criteria of patients having
had both a lumbar MR and CT scan within a one-year time
period. None of these patients had fractures, but other diseases
such as degenerate / protruding discs, spinal stenosis and
osteophytes were present. The images were acquired using
either a Magnatom or Avanto Siemens 1.5T MR scanner
(Seimens AG, Erlangen, Germany), with varying CT scanners
depending on the location the CT images were obtained.
The MR scans were acquired using a 3D T2 weighted pulse
sequence, and the CT scans were acquired from either helical
or axial slice CT images. No contrast was used in either scan.
The lumbar spine was assumed to be rigid between scans,
because the patients were scanned in a feet first prone position,
resulting in very similar postures. We evaluated the proposed
method over 40 pairs of CT/MR images acquired from these
20 patients. Twenty pairs were from the center sagittal slice,
and 20 were from the left side of the patient through the nerve
root bundle. T2-weighted 3D MR images were used because
they clearly present the discs, nerve root bundle and cerebral
spinal fluid. The 3D MR/CT images were then registered and
preprocessed. Finally the images were fused as sets of 2D
images because radiologists typically view 3D volumes as
stacks of 2D images.

Validation was completed based first on visual results of
the fusion, studying clarity of the detail presented in the
fused image, and second via a statistical comparison of the
clinically significant bone and tissue transferred to the fused
images. Four clinical case studies were then examined to
illustrate the potential clinical value of this technique.Our
method was compared to four methods: (A) an averaging of
the two images, and three methods from recent literature: (B)
the discrete wavelet transform (DWT) [6] (C) the contourlet
transform (CLT) [8] and (D) Piella’s variational method [19].
These methods were implemented using the parameters listed
in their papers. Table II contains a summary of these features.
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TABLE II
IMPLEMENTATION DETAILS AND PARAMETERS FOR THE THREE METHODSFROM LITERATURE

Discreet Wavelet [6] Contourlet Transform [8] Piella Variational [19]

• Subbands:3 subbands
• Wavelet: Haar wavelet
• Lowpass Rule:pixel-wise averaging
• Highpass Rule:pixel-wise selection of the

coefficient with the largest maximum value

• Subbands: 4 subbands, with 4,8,16 di-
rectional subbands in levels 2,3,4 (lowest
detail to highest)

• Filters: Lowpass 9-7 Filter, directional
PKVA

• Lowpass Rule: local energy in a 3x3 win-
dow

• Highpass Rule: local contourlet contrast

• Parameters η = 0.1, β = 0.5, γ = 0.3,
δt = 0.15

• Kernel w - Gaussian,σ = 0.1
• Polynomial J ′ n = 7, α = 10, k = 0.25

A. Registration and Pre-Processing

The input volumes were registered, using a rigid 3D versor
based transform in ITK [33]. The optimizer used maximization
of Mutual Information (MI) [34] to align soft tissue details
present in both images (note the soft tissue details in the
CT image are suitable for registration, but MR is better for
diagnosis). For the purpose of aligning soft tissue each CT
image was thresholded from -255 to 255 Houndsfield Units
(HU) or -255 to 0 HU if needed. This kept many of the
soft tissue details, but removed most of the bone detail. Both
images were then scaled to an intensity range of 0 to 255
to be in the same range. The transform was initialized using
two corresponding user-selected points, one from the CT and
the other from the MR image. After this, MI was calculated
from the voxels in both images, and the versor transform was
iteratively updated based on MI of the two images at each step.
Using the obtained optimal transform, the original MR image
(without intensity scaling) was transformed and resampledto
the voxel spacing of the CT image.

Manual points were selected in the 3D images for the target
registration error (TRE) and the fiducial localization error
(FLE) evaluation. The TRE is the mean post registration Eu-
clidean distance between corresponding pairs of fiducials from
the input images. The FLE is the root mean-squared difference
in locations when selecting the same fiducial multiple times
in an image [35]. The TRE used 17 points from two image
pairs. For the FLE, 5 distinct points were defined on the CT
image. On 5 separate days, corresponding points in the MR
image were identified producing a total of 25 point sets. These
errors were used to validate the registration.

After registration, the original CT images were thresholded
at 0 HU, setting any negative values to 0 HU and leaving
other values unchanged. This removed most of the soft-tissue
details and was done because the MR presents the tissue detail
with more clarity, so the CT tissue detail is undesirable forthe
fused image. For all 20 patients the MR images were found to
have a maximum intensity of about 700, and the CT images
were found to have a maximum intensity of about 1400. In
view of this, the CT intensities were divided by two so that the
MR and CT histograms would have similar intensity ranges
prior to fusion. This was needed to eliminate bias in the fusion
algorithm due to differing intensity ranges in the input images.
MR and CT histograms are shown in Fig. 2 and Fig. 3 shows a
flow chart describing the registration and pre-processing steps.
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Fig. 2. Histograms of all the images, a) Histogram of all 40 MR images,
b) Histogram of all 40 CT images, c) Histogram of all 40 CT imagesafter
Preprocessing (excluding pixels with an intensity of 0) andhistogram of all
40 MR images.

Fig. 3. Flow chart of the image fusion process: The MR is registered to the
CT image. The CT is thresholded and its histogram is adjusted to match the
MR. Finally the images are fused.

B. The Parameters of our Fusion Method

After preprocessing was completed, fusion could be carried
out. For the purpose of these experiments,c1 was set equal
to 0.001(Imax)

2

c2
, c2 equal to0.40 (Nl) andNl equal to20, with

Imax being the maximum intensity value in both inputs.Nl and
c1 were tuned manually to balance image quality and speed of
computation.c2, was set empirically for smoothness. Constant
c1 was set in relation to the maximum value in the data term
and in relation toc2.

C. Statistical Evaluation of the Fused Images

We compared each of the MR and CT images to the fused
result within: (1) the regions of soft tissues, and (2) the regions
of bone structures. The soft-tissue details consisted of the
discs, nerves, and cerebral spinal fluid from the MR image,
and the bone details were from the CT image, with a specific
focus on the bone cortex. The trabecular bone does not contact
soft tissue and so was omitted. We created image masks of the
tissue and bone details for each patient. The tissue masks were
created by manual segmentations of the MR images, and the
bone masks were obtained by thresholding the CT images at a
user selected HU for each image and then manually correcting
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Fig. 4. Sample masks for validating the quality of the fusion algorithm. Top
left: sample MR image, Top right: soft tissue Mask, Bottom Left: sample CT
image, Bottom right: bone detail mask

any errors. Figure 4 shows sample masks of the tissue and bone
detail.

We defined a fusion error as the mean absolute-value
difference between the MR/CT images and the fused images
in the tissue regions defined by the masks. For the MR images,
we calculated the following two errors:

eMR, Tissue=

∑

MTissue
|IMR − Ifused|

area of the tissue mask
(10)

eMR, Bone=

∑

MBone
|IMR − Ifused|

area of the bone mask
(11)

where IMR is the intensity of the MR image for a given
pixel, Ifused is the intensity of the fused image at a given
pixel andMTissue, MBone are the non-zero domains of the two
masks. Similarly, two additional errors,eCT, Bone andeCT, Tissue

were defined for the CT images. Ideally, there should be
no tissue differences between the MR images and the fused
images in the tissue regions (eMR, Tissue = 0) and no bone
difference between the CT images and the fused images in
the bone regions (eCT, Bone = 0). The hypothesis we tested
was that the error obtained for the MR images is lower than
the one obtained for the CT images within soft-tissue regions,
i.e. eMR, Tissue < eCT, Tissue, and higher within bone regions
eMR, Bone> eCT, Bone.

Each of the four errors were calculated for each patient.
Some of the data was found to be non-normal using a Shapiro-
Wilks test [36], thus a non-parametric Wilcoxon test [37] was
used to compare sets of errors. The tissue errors:eMR, Tissue

and eCT, Tissue were compared to each other and the bone
errors:eCT, Bone and eMR, Bone, where also compared, in order
to determine if there was a statistical significance difference
between them for the 40 patient image sets. These calculations
were performed for each of the five fusion methods using

version 20 of the SPSS statistical software (SPSS Inc., an IBM
Company, Armonk, NY).

D. Additional Metrics for Evaluation

In addition to the above statistical tests, we have also
examined the sensitivity and specificity or our algorithm along
with the structural similarity in the masks [38]. For classi-
fication, we have defined true and false positives/negatives
(TP,FP,TN,FN) per pixel as:

• TPtissue and TNbone if (eMR, Tissue< eCT, Tissue)
• FPtissue and FNbone if (eMR, Tissue≥ eCT, Tissue)
• TNtissue and TPbone if (eMR, Bone> eCT, Bone)
• FNtissue and FPbone if (eMR, Bone≤ eCT, Bone)

Sensitivity and specificity were calculated for each using the
total number of TPs, FPs, TNs and FNs normalized over
the image masks, which we denote bynTP, nFP, nTN, and
nFN. Sensitivity and specificity are defined in (12). Since
the tissue sensitivity is equal to the bone specificity and the
bone sensitivity is equal to the tissue specificity, only thetwo
sensitivity values have been reported:

Sensitivity=
nTP

nTP+ nFN

Specificity=
nTN

nTN + nFP
(12)

The structural similarity metric [38] is defined as:

SSIM(x, y) =
(2µxµy + C1) (2σxy + C2)

(

µ2
x + µ2

y + C1

) (

σ2
x + σ2

y + C2

) (13)

where µx, µy, σx, σy, σxy represent the means in the x and
y images, the variances in the x and y images and the
covariance of the two images respectively. This metric has
been applied over a local window for pixels within the given
masks, comparing the MR images to the fused images in the
tissue mask, and the CT images to the fused images in the
bone masks. The window was defined as an 11x11 Gaussian
kernel withσ = 1.5. C1 = 0.01 andC2 = 0.03 are positive
constants.

IV. RESULTS

In the following, we describe a representative sample of the
fusion results, report several statistical evaluations, and discuss
four clinical case studies based on our fusion method.

A. Registration Validation

The TRE [35] was found to be1.9 ± 0.6 mm with a CT
voxel spacing of 3 x 0.3 x 0.3 mm for the tested images. The
FLE was found to be0.8 ± 0.4 mm. This demonstrates that
the registration accuracy is sub-voxel, since the TRE is greater
than the FLE, but less than the diagonal size of the voxels.
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Fig. 5. Sample fused Images: top left - input CT, top right inputMR, middle fused images: A) averaging method, B) discrete wavelet transform, C) contourlet,
D) Piella’s variational method, E) our proposed graph cut method, bottom row: magnified images within the region of interest indicated in the images above.

B. Sample Images

Figure 5 shows sample input images, including the regis-
tered CT and MR inputs and the results of the five fusion
methods. It shows that the algorithms perform very differently
in preserving the CT/MR details. As expected, the averaging
method (A) loses many details, whereas the wavelet method
(B) introduces block-structure artifacts because it does not
account for shift invariance. The contourlet method (C) sig-
nificantly blurs the MR details and adds noise to the CT
detail, making it difficult to identify the nerve structuresand
bones. The variational method (D) preserves the details, but
significantly reduces the intensity range of the solution. The
graph cut result (E) depicts sharp MR and CT details, has a
much larger dynamic range than Piella’s method (D), and is
artifact-free.

C. Evaluation of Masks

We have calculated the mean intensity in the tissue and
bone masks, for all the MR and CT images. This provides
a frame of reference for the fusion error calculations and
to evaluate the effectiveness of the masks. These intensities
are shown in Fig. 6, with separate graphs for the left sagittal
slices through the nerve root bundle and mid sagittal slices,
through the center of the subject. For the tissue mask, in the
left slices the MR values are about 50, whereas the CT values
are between 50 and 100, for the mid slices the CT values are
about 50, whereas the MR values range between 100-250 for
most patients. This demonstrates that the tissue masks perform

well at discriminating between tissue and bone for the mid
slices (high MR, low CT), but have less differentiation power
for the left slices. For the bone masks, on both the left and
mid slices the intensities prior to fusion are between 200 and
300, with the MR values around 100 or less. This shows clear
differentiation between bony and tissue detail in the masks.

D. Statistical Results

The results of the fusion errors for our graph-cut method
are shown in Fig. 7. These show thateMR,Bone is greater than
eCT,Bone error in all images as was hypothesized. For the tissue
errors,eMR,Tissue is fairly constant at about 50 for all images,
with eCT,Tissue being much lower on the left images, than the
mid images, but higher thaneMR,Tissue for the majority of
subjects.

For all five methods, Table III reports the mean values of
eMR,Tissue, eCT,Tissue, eCT,Bone and eMR,Bone over the 40 image
sets. These were measured in pixel intensity. Table III also
shows p-values for the pairwise and independent Wilcoxon
tests comparingeMR,Tissue with eCT,Tissue and eCT,Bone with
eMR,Bone, again over the 40 sets of patient images.

As expected,eCT,Bone = eMR,Bone and eMR,Tissue = eCT,Tissue

for the averaging method. For the wavelet/contourlet methods
eMR,Tissuewas slightly higher thaneCT,Tissue. This is the opposite
of what is desired. On the contrary, for the proposed graph-cut
method and Piella’s methodeMR,Tissue is lower thaneCT,Tissue.
All the methods, except averaging, yieldedeCT,Bone< eMR,Bone.
Overall, the proposed graph cut method resulted in the lowest
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Fig. 6. Masks Values before fusion, a) Tissue mask and left slices, b) Tissue mask and mid slices, c) Bone mask and left slices, d) Bone mask and mid
slices

5 10 15 20

50
100
150
200
250

Tissue Fusion Error (Left Slices)

Patient Number

e T
is

su
e

 

 

MR Tissue CT Tissue
(a)

5 10 15 20

50
100
150
200
250

Tissue Fusion Error (Mid Slices)

Patient Number

e T
is

su
e

 

 

MR Tissue CT Tissue
(b)

5 10 15 20

50

100

150

200
Bone Fusion Error (Left Slices)

Patient Number

e B
o

n
e

 

 

MR Bone CT Bone
(c)

5 10 15 20

50

100

150

200
Bone Fusion Error (Mid Slices)

Patient Number

e B
o

n
e

 

 

MR Bone CT Bone
(d)

Fig. 7. Fusion Error for our graph cut method: a)eTissue for the left slices, b)eTissue for the mid slices c)eBone for the left slices and d)eBone for the mid
slices

eCT,Bone, and the lowesteMR,Tissue, which corresponds well
to our purpose. We obtained a meaneCT,Bone value of 57.0
based on the CT intensity dynamic range of 700. For the soft
tissueseMR,Tissue= 46.6. Note that Piella’s method yielded the
highesteMR,Tissue. For bone regions, all the methods, except
ours, yielded approximately the sameeCT,Bone.

With the exception of the averaging methodeMR,Tissue was
found to be pair-wise statistically different fromeCT,Tissueand
eCT,Bone was found to be pair-wise statistically different from
eMR,Bone. The independent Wilcoxon tests showed that only
Piella’s method and our graph cut method were statistically
significantly different when analyzed as a group.
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TABLE III
MEAN FUSION ERROR VALUES FOR THE20 PATIENT DATA SETS AND

STATISTICAL-SIGNIFICANCE TEST RESULTS FOR THE FUSION METHODS.

Method eMR,Tissue eCT,Tissue PPairwise PIndependent

Averaging 64.2± 26.0 64.2± 26.0 1 1
DWT [6] 64.9± 26.1 63.9± 25.9 < 0.001 0.707

Contourlet [8] 73.4± 28.6 64.2± 24.9 < 0.001 0.083
Piella [19] 152.8± 52.6 175.9± 54.0 0.002 0.006

Graph Cuts 46.6± 12.3 81.7± 52.6 0.006 0.020

Method eCT,Bone eMR,Bone PPairwise PIndependent

Averaging 82.5± 19.8 82.5± 19.8 1 1
DWT [6] 81.9± 19.7 83.7± 19.8 < 0.001 0.583

Contourlet [8] 82.6± 19.7 89.0± 18.6 < 0.001 0.121
Piella [19] 84.1± 40.6 188.7± 48.0 < 0.001 < 0.001

Graph Cuts 57.0± 11.9 108.0± 36.2 < 0.001 < 0.001

E. Additional Metrics

The images have also been analyzed for the sensitivity and
specificity of the number of correctly fused pixels along with
the structural similarity between the input images and the fused
images within the mask regions (Table IV).

TABLE IV
MEAN SENSITIVITY FOR TISSUE AND BONE DETAILS ALONG WITH MEAN

SSIM INDEX MEASURES FOR ALL FIVE METHODS.

Method Sensitivity Sensitivity SSIM SSIM
Tissue Bone Tissue Bone

Averaging 0 ± 0 0 ± 0 0.59± 0.32 0.08± 0.04
DWT [6] 0.51± 0.01 0.76± 0.17 0.54± 0.32 0.11± 0.06

Contourlet [8] 0.50± 0.01 0.75± 0.17 0.22± 0.30 0.12± 0.08
Piella [19] 0.86± 0.11 0.87± 0.08 0.32± 0.31 0.15± 0.11

Graph Cuts 0.63± 0.12 0.84± 0.09 0.52± 0.33 0.21± 0.12

These results show that the averaging method has 0 sen-
sitivity. The DWT and contourlet methods performed lower
than the other two methods, with Piella’s methods having the
highest sensitivity for both CT and MR and graph cuts having
the second highest for both. In regards to the SSIM index, the
averaging method performed best on the MR data, followed by
the DWT and Graph Cut methods. Piella’s methods and the the
contourlet transformed did much poorer. For bone details the
graph cut method did the best, followed by Piella’s method,
the contourlet method, the DWT and finally averaging.

F. Case Studies

Visual Inspection - Lumbar Spine, Joint and Disc Disease
We present the first clinical case study for our fusion technique
in Fig. 8. In the first case, the patient had a protruding spinal
disc and damaged facet joint. The disc can be seen in the
MR image as a hypointense region, whereas the facet joint
is visible in the CT image. There is significant osteoarthritis
in the joint. The fused image clearly shows both of these
pathologies in a single image, allowing for a better diagnosis.
Visual Inspection - Osteophyte Growth The second case
study shows osteophyte growth (see Fig. 9), which is the
formation of bony spurs at the margins of a joint. On the MR
image alone, it is difficult to see the location of the osteophyte.
The CT shows the osteophyte, but none of the surrounding soft
tissue. The fused image shows both the formation of the bony
spurs and the surrounding soft tissue on a single image.

Visual Inspection - Abnormal Vertebrae and Cord damage
The third case study shows spinal cord damage (Fig. 11) and
an abnormal vertebrae on a single fused image. The cord
damage is not visible on the CT image, while the abnormal
vertebrae is difficult to see on the MR image. The fused image
presents both.
Visual Inspection - Osseous Erosion Secondary to Pannus
In this patient with rheumatoid arthritis (Fig. 10), pannusis
eroding the posterior aspect of the dens. On the MR, the
chronic pannus is dark and cannot be distinguished from the
underlying bony cortex. On the CT, the margins of the bone
are well seen, but soft-tissue contrast is poor. The relationship
of the pannus to the underlying bone is best seen on the fused
image.

V. D ISCUSSION

We have investigated a novel CT/MR spine image fusion
algorithm based on graph cuts. We have successfully fused
MR and CT images to create a single fused image, providing
a new and effective combined modality for diagnosis. Images
were registered, pre-processed and then fused. This has been
tested on 40 sets of clinical images from 20 patients. The graph
cut results show better performance than the averaging method
and the three state-of-the-art methods from the literature. Our
method successfully transfers bone detail and soft tissue detail
to the resulting fused image, with only a 57.0 difference in
intensity values for the bone details and 46.6 intensity different
for the soft-tissue details, in a dynamic range of 700. Visual
inspection confirms these results, with graph cuts showing the
sharpest detail for both the bone and soft tissue details.

The statistical tests showed pairwise significance for the CT
vs MR error in every method except averaging, however, only
Piella’s method and our graph cut method showed groupwise
statistical significance between errors, which is a stronger test.
This indicates that these two methods perform better than the
others, in transferring bone detail and soft tissue detail to the
fused image. With regard to the additional methods, Piella’s
method performed better than graph cuts in regards to the
sensitivity test. However, the graph cut method outperformed
Piella’s method in terms of structural similarity, a test where
Piella’s method is expected to perform well. In view of all
the numeric and visual results, the graph cut method can be
concluded to outperform the existing state-of-the-art methods.

The subvoxel accuracy of the registration ensures that the
fusion errors are a result of the fusion techniques and not
misregistration. A deformable registration could have been
employed; however, this was not needed since the registration
accuracy validates the assumption of rigidity.

One note of interest is thateMR,Tissue and eCT,Tissue for the
DWT are similar or lower than the averaging, contourlet and
Piella’s methods, even though the DWT is visually worse than
Piella’s method. The DWT also has a high SSIM value. There
was pairwise statistical significance of the fusion errors for the
DWT, but no groupwise statistical significance. This indicates
its poor ability to discriminate between tissue and bone detail,
which is essential for clinical use.
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Fig. 8. Images of damaged spine: left - MR showing a protruding disc (hypointense region); middle - Fused image showing the disc, the spinal cord and
the damaged facet joints; right - CT image showing damaged facetjoints.

Fig. 9. Images of bony spur formation: left - in the MR, the osteophyte is not identifiable; middle - in the fused image, the osteophyte is clearly visible
along with the surrounding soft tissue; right - the CT image shows the osteophyte, but not the soft tissue.

MR Image CT ImageFused Image

Fig. 10. The arrows show the pannus eroding the posterior aspect of the tip of the dens. The relationship between the pannus and the surface of the bone
is best seen on the fused image.

MR Image CT ImageFused Image

Fig. 11. Image of an abnormal vertebrae and cord damage: left - inthe MR the cord damage is easily visible; center - the fused image: the cord damage
and the abnormal vertebral body can be seen clearly; right - the CT image shows the abnormal vertebrae.
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We have also shown the benefit of our fusion system on
four clinical cases, where the fused image clearly shows
both the bone and soft tissue detail on a single image. This
highlights the pathology on a single image. Our method can
successfully combine CT and MR images of the lumbar spine,
while retaining the significant clinical detail. This eliminates
the need for radiologists to mentally align and fuse two
separate datasets, along with the associated potential forerrors.
Although we do not intend to have fused images replace CT
and MR scans for clinical use, we do see this as a strong tool to
add to the current practice and aid radiologists in completing
more accurate and quicker diagnosis.
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