Spine Image Fusion via Graph Cuts

Brandon Miles, Ismail Ben Ayedylember, |IEEE,, Max W. K. Law, Greg Garvin, Aaron Fensteenior Member,
IEEE, Shuo Li

Abstract—This study investigates a novel CT/MR spine image [2]. Here, both the CT and MR modalities provide comple-
fusion algorithm based on graph cuts. This algorithm allows mentary information. In order to properly visualize theatetl
physicians to visually assess corresponding soft tissue and bonybone and soft tissue structures, the images must be mentally

detail on a single image eliminating mental alignment and _. . .
correlation needed when both CT and MR images are required aligned and fused together. Detecting changes on unregiste

for diagnosis. We state the problem as a discrete multi-label opti- Uncombined images is an error prone task [3] . Therefore, it
mization of an energy functional that balances the contributions is highly desirable to fuse these two modalities into a ngl

of three competing terms: (1) a squared error, which encourage jmage showing the clinically significant CT and MR details
the solution to be similar to the MR input, with a preference 54 \ye|| as their relative locations on a single image. Thi wi

to strong MR edges; (2) a squared error, which encourages the th df tal iuxt iti h .
solution to be similar to the CT input, with a preference to strong remove the need for mental juxtaposition when examining

CT edges; and (3) a prior, which favors smooth solutions by en- Multiple views. Our goal is to provide and validate such a
couraging neighboring pixels to have similar fused-image values. system.
We further introduce a transparency-labeling formulation, which Here we present a novel method for image fusion of the
significantly reduces the computational load. The proposed graph spine, which preserves the bone structures and soft tissue
cut fusion guarantees nearly global solutions, while avoiding the o . . L. . .
pixelation artifacts that affect standard wavelet based methods detail in a single |mag§. Spine 'm*?‘@!e fusion ha§ the poﬂentla
We report several quantitative evaluations/comparisons over 0 enable more effective and efficient evaluations of spine
40 pairs of CT/MR images acquired from 20 patients, which disorders, more so as the number of spine scans increages ver
demonstrate a very competitive performance in comparisons to rapidly. For instance, in the United States, there has been a
the existing methods. We further discuss various case studies, 30004 increase in lower spine MR scans in the period between
and give a representative sample of the results. 1994 and 2006 [4], and the percentage of adults who have
Index Terms—Image Fusion, Graph Cuts, Medical Imaging, gyffered from back pain is 75% [5].
Spine. Multi-modality image fusion has been studied in other
fields, with applications varying from multifocal [6] to ge-
I. INTRODUCTION ographical images [7]. In medicine, image fusion has been

OR spine diseases and injuries, it is common for @sed for brain imaging [8], [9], MRI-SPECT fusion [10],
patient to receive both an MR and a CT scan becau€Bilepsy treatment planning [11], liver ablation [12] anditil
of their individual benefits. MR images depict useful softsubtraction angiography [13]. For the spine, registered an
tissue details including the spinal discs, nerves, cetepinal overlaid CT and MR spine images have been used for surgery
fluid and spinal cord. Therefore, it is the primary modality tPlanning [1], [14] and evaluation of bone implants [2]. A
diagnose protruding and degenerated discs. CT imagedycle¥favelet based approach to image fusion has been proposed by
depict bony structures, especially the bone cortex, afigwiLi et al. [6]. The two input images were fused in the wavelet
the assessment of damaged joints or osteophyte growth (b&i@ynain, and an inverse transformation was applied to peduc
spurs at the margins of a joint). the result. Other variations of this technique include teli
Radiologists currently display MR and CT images side byavelet decomposition [7], the contourlet transform [85]]
side, when both images are available. This does provide th&#g curvelet transform [16] and the complex wavelet tramsfo
with all the available image information, but its accediipi [17], [18]. The wavelet or transform based methods can suffe
is limited to visual correlation between the two imagiesan from pixelation artifacts when two dissimilar images arsefd.
be difficult to determine whether narrowing of a spinal Cana]his is a result of the decimations involved in the wavelet
is caused by tissue or bone from clinical MR images hend’é@nSfOI’m as well as the translation dependence of standard
both CT and MR can be employed [1]. Using both CT an@avelets. This may result in small details being distorted,
MR images, as opposed to relying on a single modality c@ading to a significant loss in image quality. Pathologheat t
benefit diagnosis and treatment of osteophytes and degenesfould have been visible may no longer be seen.
discs that impact bone and nerve structures. In additioh bot Variational fusion methods have also been investigatep-[19

modalities can aid post operative follow up after spinagety [23]. These methods consist of finding the optimum of an
energy functional, often via standard continuous optitivza
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in computer vision, and led to very efficient algorithms in
image segmentation [24], [25], stereo vision [26] and image
restoration [27]. For object recognition, graph cuts hagerb  «
employed to segment planar surfaces from depth images [28].
Both depth and intensity values were combined as inputs to a
graph cut based segmentation algorithm. Graph cuts hawe als
been used to determine the optimal fusion rules for comginin
subbands of a beamlet transform [29]. Although this method
utilizes a graph cut approach for combining subbands, it is
still a transform based method and therefore is limited by
the transformation performed. To the best of our knowledge,
graph cut formulations have not been previously studietién t
context of variational approaches to image fusion.

In this study, we state image fusion as a discrete multi-
label optimization problem, which can be solved efficiently
with graph cuts [26], [30], [31], via the well-known swap or
alpha-expansion moves [26]. The proposed energy function
[32] balances the contributions of three competing terrh}: (

a squared error, which encourages the solution to be similar
to the MR input, with preference to strong MR edges; (2) a
squared error, which encourages the solution to be sirmdlar t
the CT input, with preference to strong CT edges; and (3) a
prior, favoring smooth solutions by encouraging neighigri
pixels to have similar fused-image values. We further intro
duce a transparency-labeling formulation, which signifia
reduces the computational load. The proposed graph-cut fu-
sion guarantees nearly global solutions, while avoiding th
pixelation artifacts that affect standard wavelet basethous.
We report several quantitative evaluations/comparisees 40
pairs of CT/MR images acquired from 20 patients. The results
demonstrate very competitive performance in comparisons t
existing variational and transform-based methods [6],[[#)].

This work is a significant extension of a preliminary con-
ference version [32]. The dataset was increased from 9 to 20
patients, resulting in validation on 40 image slices. A camp
ison to Piella’s variational method and validation resbised
on the structural similarity information measure (SSIMyda
also been added. Two more clinical case studies have also bee
included. In section Il we present our formulation of image
fusion as a graph cut labeling problem. This is followed by
a description of the dataset, its registration, preprangsand
fusion in section Ill. We further discuss various case ssdi
and give a representative sample of the results in IV with a
discussion following in V.

with £ C Z denoting a closed finite set of integers (the
possible output intensities).
Data termD is defined as:
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whereu; : @ - R anduy; : © — R denote the
input images, andR; is the [-label region defined by
{p € QA(p) =1}. wy and wy are weights defined as
follows:
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S1 52
w, = Wo = 4
! S1+ So 2 S1 + 89 ( )

K is a kernel, for instance, a box filtes; andw, bias the
solution towards strong edgesin andus, respectively.
The data term balances the contributions of two compet-
ing terms:

1. A squared error which, encourages the solution to be
similar to the first inputu;, with preference to strong
edges inuy; and

2. A squared error which, encourages the solution to be
similar to the second input,, with preference to strong
edges inus.

Smoothness terrR favors smooth solutions by encour-
aging neighboring pixels to have similar fused-image
values:

)
{p.a}yeN

with A/ being a set containing all pairs of pixelsandq
in a local neighborhood af andr (A(p), A(q)) is defined
by the truncated absolute value:

r(Ap); Alg)) = min (cz, |I, — )

with ¢o being a positive constant.

(6)

B. Alpha-blending Reformulation

The above formulation requires a one-to-one correspon-

Il. FORMULATION dence between the labels and pixel intensities. Therefbee,
A. Multi-label Formulation number of labels needed to express the output image is equal

We state image fusion as the following multi-label optimizal® the number of all possible pixel values. This may lead
tion problem: to a high computational load in the case of images with

_ large dynamic ranges, as is common in medical imaging. To
A* =min E(\) with E(\) = D(\) + c1R(N) reduce the number of labels, we reformulate the data term as
a transparency labeling. This is done by expressing theubutp

where:
image as a function af; andus via a transparency ima
« Variable )\ is a labeling function that assigns each point iQ/ithga(p) €[0,1] ¥ p elﬂ: 12 P y g8

image domainf2 to a labell, which describes the intensity
of the fused image at that point:

A:peQ— Ap) €L,

1)

Ug = auy + (1 — a)us

)

@) whereu,, denotes the output fused image.



Based on this formulation, we rewrite the data term in (3pinimum of the energy functional. One can also use alpha-

as follows: expansion moves [26] to optimize energy functions of thenfor
_ E. It is well-known that alpha-expansion moves guarantee a
D) = Z{:ZDP (Ap)) solution that is within a constant factor of the global optim
pe ) [26]. However, experimentally, it is well established thatap
= Z Z [wl (ua(p,1) —u1(p))® + moves outperform alpha expansions [26]. Therefore, in this
l€La pER, work, we used swap moves with the edge weights defined in

Table I; whereey; ,,, denotes an edge between a label and a

+ a al - 2
w2 (ta(p, 1) = u2(p)) } pixel, andey, ,, an edge between two adjacent pixels.

(8)
TABLE |
where WEIGHTS ASSIGNED TO THE EDGES OF THE GRAPH FOR MINIMIZING THE
l l PROPOSED FUSION ENERGY
wolp) = ) + (1= 5 Ju) (€L @
l l edge weight for
with £, being a new (reduced) set of non-negative iNteger {1 p} | wy (ua(@,l) — u1)? + wa (ua(p, 1) —u2)? |p € Q1 € Lo
labels {0,1,2,..., N;}, parameterized by the user specified {p,q} 7(lp, lq) p,q €Q
number of labelsV;.
I1l. METHODS

C. Graph Cut Optimization
Our problem is amenable to efficient graph cut optimization 11iS rétrospective study was approved by the Human Sub-
[26], [30], [31]. An illustration of the multi-label graphut Ject.s Ethics Board of We;tern L_Jnlversny, with the re_qweem
problem is provided in Fig. 1. Exactly one label is given t&°" Informed consent being waived. Twenty patient image set
each pixel in the image, with associated data and smoothn¥&{€ randomly selected with the criteria of patients having
costs assigned to the links in the graph. To formulate thi d both a lumbar MR a_nd CT scan within a one-year time
optimization letg = (V, €) be a weighted graph, with a set period. None of these patients had fre_lctures, _but otheasl@
of nodes anct a set of weighted edges contains a node such as degenerate / protrudlng discs, spinal stenoss qnd
for each pixel inQ2 and for each label if,,. There is an edge 0§teophytes were present. The Images were acquired using
¢(p.q) DEtWeen every pair of nodgsg. A cutC C £ is a set either a Magnatom or Avanto Siemens 1.5T MR scanner

of edges that separates all the label nodes from each ottygfiMmens AG, Erlangen, Germany), with varying CT scanners

thereby creating a sub-graph for each label. The minimufi€Pending on the location the CT images were obtained.
cut problem consists of finding a cdtwith the lowest cost. | N¢ MR scans were acquired using a 3D T2 weighted pulse

The cost of this minimum cut, denotéd|, equals the sum of sequence, and the CT scans were acquired from either helical

the edge weights ig. By properly setting the weights of the©' axial slice CT images. No contrast was used in either scan.

graph, one can use a series of swap moves from combinatofidf lumbar spine was assumed to be rigid between scans,
optimization [30] to efficiently compute the minimum-cospecause the patients were scanned in a feet first pronegmsiti

cuts corresponding to a minimum of functionl resulting in very similar postures.. We evaluatgd the predos
method over 40 pairs of CT/MR images acquired from these
Labels 20 patients. Twenty pairs were from the center sagittakslic
and 20 were from the left side of the patient through the nerve
root bundle. T2-weighted 3D MR images were used because
they clearly present the discs, nerve root bundle and carebr
spinal fluid. The 3D MR/CT images were then registered and
\ o preprocessed. Finally the images were fused as sets of 2D
Daa: w10+ )~ images because radiologists typically view 3D volumes as
@) (b) stacks of 2D images.
IFig- Il. r{%n ?Ilust[latifén of the gr?ph-C_ut _problelmt:) a})Agrang\/B mgshsible Validation was completed based first on visual results of
el shouing e date st of SSsigng  bel 1 2 nod=mmNESS the fusion, studying clarty of the detail presented in the
the labeling of the graph. fused image, and second via a statistical comparison of the
clinically significant bone and tissue transferred to thsefii
A swap move starts with a labeled graph and determines farages. Four clinical case studies were then examined to
a given pair of labelsp and ¢, whether each node having aillustrate the potential clinical value of this techniqueur
value inp, ¢ should (1) retain its current label or (2) be updatethethod was compared to four methods: (A) an averaging of
to the other label in the pair. Each swap is accomplishélde two images, and three methods from recent literature: (B
globally in an exact manner by finding the minimum cuthe discrete wavelet transform (DWT) [6] (C) the contourlet
on a binary graph consisting of only two labels. This camansform (CLT) [8] and (D) Piella’s variational method [19
be extended to the multi-label case by iterating over the Setese methods were implemented using the parameters listed
of all possible pairs of labels. The minimum cut is selected their papers. Table Il contains a summary of these festure
at each stage, with the final labeling corresponding to a




TABLE I
IMPLEMENTATION DETAILS AND PARAMETERS FOR THE THREE METHOD$ROM LITERATURE

Discreet Wavelet [6] Contourlet Transform [8] Piella Variational [19]
« Subbands: 3 subbands e Subbands: 4 subbands, with 4,8,16 di- e Parametersn = 0.1, 8 = 0.5, v = 0.3,
o Wavelet: Haar wavelet rectional subbands in levels 2,3,4 (lowest 6t =0.15
o Lowpass Rule: pixel-wise averaging detail to highest) e Kernel w - Gaussiang = 0.1
« Highpass Rule:pixel-wise selection of the o Filters: Lowpass 9-7 Filter, directional e Polynomial J' n =7, a =10, k = 0.25
coefficient with the largest maximum value PKVA
« Lowpass Rule:local energy in a 3x3 win+
dow
« Highpass Rule:local contourlet contrast

A. Registration and Pre-Processing
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The input volumes were registered, using a rigid 3D versc§°-1s
based transform in ITK [33]. The optimizer used maximizatio £’
of Mutual Information (MI) [34] to align soft tissue details & oM g I e S
present in both images (note the soft tissue details in the e mens
CT image are suitable for registration, but MR is better for _ . _ _
diagnosis). For the purpose of aligning soft tissue each S?fmzs'tog'f;ﬁfc’?{iﬁ?ié’fé%" fgié’:;ggshgtokgf;‘;?roaf”;lf‘;g”c‘;oimgg’;‘;‘
image was thresholded from -255 to 255 Houndsfield Unitgeprocessing (excluding pixels with an intensity of 0) #itogram of all
(HU) or -255 to 0 HU if needed. This kept many of thet0 MR images.
soft tissue details, but removed most of the bone detailh Bot
image_s were then scaled to an intensity ran_gg_of 0to 2_5 Threshold CT Fuse
to be in the same range. The transform was initialized using CT Image and Adjust ;

o
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two corresponding user-selected points, one from the CT and Histogram images

the other from the MR image. After this, Ml was calculated

from the voxels in both images, and the versor transform way Rigid

iteratively updated based on Ml of the two images at each stey, MR Image Registration Output Fused
Using the obtained optimal transform, the original MR image MR to CT Image
(without intensity scaling) was transformed and resamjped

the voxel spacing of the CT image. Fig. 3. Flow chart of the image fusion process: The MR is regest to the

. . . CT image. The CT is thresholded and its histogram is adjustedatch the
Manual points were selected in the 3D images for the targ@k. Finally the images are fused.

registration error (TRE) and the fiducial localization erro

(FLE) evaluation. The TRE is the mean post registration Eu-

clidean distance between corresponding pairs of fidudiata f B. The Parameters of our Fusion Method

the inputimages. The FLE is the root mean-squared diff@enc ager preprocessing was completed, fusion could be carried
in locations when selecting the same fiducial multiple timesi,: For the purpose of these experimeniswas set equal

in an image [35]. The TRE used 17 points from two imagge. 0.001(Ima)? ¢» equal t00.40 (N;) and N, eq;JaI t020. with
pairs. For the FLE, 5 distinct points were defined on the gj) bepifflg th,e r2naximum iﬁtensitl)/ value iln both inpuzljél and

. . . . X .

image. On 5 separate days, coresponding points in the c?awere tuned manually to balance image quality and speed of

Image were identified producing a total of 25 point sets. Eheéomputation@, was set empirically for smoothness. Constant

errors Werg ”SeF’ 0 vahda}g the reglstratlon. c1 was set in relation to the maximum value in the data term
After registration, the original CT images were threshdldeyq in relation tocs.

at 0 HU, setting any negative values to 0 HU and leaving
other values unchanged. This removed most of the softeissu o )
details and was done because the MR presents the tissule d&taSatistical Evaluation of the Fused Images
with more clarity, so the CT tissue detail is undesirabletiar We compared each of the MR and CT images to the fused
fused image. For all 20 patients the MR images were found fiesult within: (1) the regions of soft tissues, and (2) thggars
have a maximum intensity of about 700, and the CT image$ bone structures. The soft-tissue details consisted ef th
were found to have a maximum intensity of about 1400. ldiscs, nerves, and cerebral spinal fluid from the MR image,
view of this, the CT intensities were divided by two so that thand the bone details were from the CT image, with a specific
MR and CT histograms would have similar intensity rangdecus on the bone cortex. The trabecular bone does not ¢ontac
prior to fusion. This was needed to eliminate bias in thedisi soft tissue and so was omitted. We created image masks of the
algorithm due to differing intensity ranges in the input gea. tissue and bone details for each patient. The tissue magies we
MR and CT histograms are shown in Fig. 2 and Fig. 3 showseeated by manual segmentations of the MR images, and the
flow chart describing the registration and pre-processiegss bone masks were obtained by thresholding the CT images at a
user selected HU for each image and then manually correcting



version 20 of the SPSS statistical software (SPSS Inc., kh IB
Company, Armonk, NY).

D. Additional Metrics for Evaluation

In addition to the above statistical tests, we have also
examined the sensitivity and specificity or our algorithrong
with the structural similarity in the masks [38]. For classi
fication, we have defined true and false positives/negatives
(TP,FP, TN,FN) per pixel as:

o TPissue @aNd TNyone if (GMR, Tissue < €CT, Tissue)
o FPRissue and FNyone if (eMR, Tissue > €CT, Tissué
e TNiissue and TRone if (eMR, Bone > €CT, Bone)
e FNiissue and FRone if (eMR, Bone < €cT, Bone)

Sensitivity and specificity were calculated for each usimg t
total number of TPs, FPs, TNs and FNs normalized over
the image masks, which we denote ByP, nFP, n TN, and
mFN. Sensitivity and specificity are defined in (12). Since
Fig. 4. Sample masks for validating the quality of the fusiayoathm. Top  the tissue sensitivity is equal to the bone specificity are th
left: sample MR image, Top right: soft tissue Mask, Bottom Le&mple CT bone Sensitivity is equal to the tissue specificity onIy tthe
image, Bottom right: bone detail mask o !

sensitivity values have been reported:

any errors. Figure 4 shows sample masks of the tissue and bone Sensitivity= ﬁ
detail. "TBJTFNHFN
We defined a fusion error as the mean absolute-value Specificity= ﬁ) (12)
difference between the MR/CT images and the fused images nIN+N
in the tissue regions defmed by the masks. For the MR imagesynq siryctural similarity metric [38] is defined as:
we calculated the following two errors:
|Iwr — B (2uzpy + C1) (2044 + C2)
EMR, Tissue = ZMTISSUJ MR. fused| (10) SS|M(£,y> - ( 2 + 2 +C )( 2 + 2+C) (13)
’ area of the tissue mask Hz + [y 1)\0z Ty 2
3 |Tur — Tiused where p,, 1y, 02, 0y, 04y represent the means in the x and
EMR, Bone = Moone (11) vy images, the variances in the x and y images and the

area of the bone mask covariance of the two images respectively. This metric has

where Iyr is the intensity of the MR image for a givenpeen applied over a local window for pixels within the given

pixel, Ituseq is the intensity of the fused image at a givefnasks, comparing the MR images to the fused images in the
pixel and Mrissue Mpone are the non-zero domains of the tWaissye mask, and the CT images to the fused images in the
masks. Similarly, two additional erroreer, Bone @Ndecr, Tissie  hone masks. The window was defined as an 11x11 Gaussian

were defined for the CT images. Ideally, there should §&rnel witho = 1.5. C, = 0.01 and C, = 0.03 are positive
no tissue differences between the MR images and the fusgghsiants.

images in the tissue regionsmz Tissue = 0) and no bone

difference between the CT images and the fused images in

the bone regionsetr sone = 0). The hypothesis we tested IV. RESULTS

was that the error obtained for the MR images is lower than

the one obtained for the CT images within soft-tissue regjion |n the following, we describe a representative sample of the
I.€. emR, Tissue < €cr, Tissue @nd higher within bone regionsfysion results, report several statistical evaluationd, discuss

EMR, Bone > €CT, Bone four clinical case studies based on our fusion method.
Each of the four errors were calculated for each patient.

Some of the data was found to be non-normal using a Shapiro-

Wilks test [36], thus a non-parametric Wilcoxon test [37]swa, Registration Validation

used to compare sets of errors. The tissue erragg; Tissue

and ecr, Tissue Were compared to each other and the bone The TRE [35] was found to bé&.9 + 0.6 mm with a CT
errors: ect, gone @Nd emr, Bone Where also compared, in ordervoxel spacing of 3 x 0.3 x 0.3 mm for the tested images. The
to determine if there was a statistical significance difieee FLE was found to beé).8 + 0.4 mm. This demonstrates that
between them for the 40 patient image sets. These calawgatithe registration accuracy is sub-voxel, since the TRE iatgre
were performed for each of the five fusion methods usirtgan the FLE, but less than the diagonal size of the voxels.



Fig. 5. Sample fused Images: top left - input CT, top right iniR, middle fused images: A) averaging method, B) discrete veawsdnsform, C) contourlet,
D) Piella’s variational method, E) our proposed graph cut mettbottom row: magnified images within the region of interesligated in the images above.

B. Sample Images well at discriminating between tissue and bone for the mid
Figure 5 shows sample input images, including the regigices (high MR, low CT), but have less differentiation powe
tered CT and MR inputs and the results of the five fusiol" the left slices. For the bone masks, on both the left and
methods. It shows that the algorithms perform very diffégen mid slices the intensities prior to fusion are between 208 an
in preserving the CT/MR details. As expected, the averagif§0: With the MR values around 100 or less. This shows clear
method (A) loses many details, whereas the wavelet meth@éferentiation between bony and tissue detail in the masks

(B) introduces block-structure artifacts because it does n
account for shift invariance. The contourlet method (C} si®p. Satistical Results

nificantly blurs the MR details and adds noise to the CT The results of the fusion errors for our graph-cut method

detail, making it difficult to identify the nerve structurasd P X
bones. The variational method (D) preserves the details, B5UC shown in Fig. 7. These show thaig sone IS greater than

significantly reduces the intensity range of the solutione T ecTgone €I7ON in all images as was hypothesized. For the tissue

graph cut result (E) depicts sharp MR and CT details, has go > MR Tissue Is fairly constant at about 50 for all images,
much larger dynamic range than Piella’s method (D) ‘and \@h cctTissue €ING much lower on the left images, than the
artifact-free ' mid images, but higher thaaur Tissue fOr the majority of

subjects.
_ For all five methods, Table Il reports the mean values of
C. Evaluation of Masks EMRTissue ECT Tissue €CTBone @Nd evRr,Bone OVEr the 40 image

We have calculated the mean intensity in the tissue amdts. These were measured in pixel intensity. Table Il also
bone masks, for all the MR and CT images. This provideows p-values for the pairwise and independent Wilcoxon
a frame of reference for the fusion error calculations artdsts comparingemr Tissue With ectTissue @Nd ectone With
to evaluate the effectiveness of the masks. These intesisitivr,sone again over the 40 sets of patient images.
are shown in Fig. 6, with separate graphs for the left sdgitta As expectedecrt gone = €MR,Bone @Nd EMR Tissue = ECT Tissue
slices through the nerve root bundle and mid sagittal slicéer the averaging method. For the wavelet/contourlet netho
through the center of the subject. For the tissue mask, in thes Tissuewas slightly higher thaacr rissue This is the opposite
left slices the MR values are about 50, whereas the CT valugfsvhat is desired. On the contrary, for the proposed gragh-c
are between 50 and 100, for the mid slices the CT values anethod and Piella’s methogyr Tissue iS lower thanecr Tissue
about 50, whereas the MR values range between 100-250 Adirthe methods, except averaging, yieldest sone < emR,Bone
most patients. This demonstrates that the tissue maslkarperfOverall, the proposed graph cut method resulted in the lbwes
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With the exception of the averaging methegr Tissue Was

to our purpose. We obtained a meagrgone Value of 57.0 found to be pair-wise statistically different froagr tissue @nd
based on the CT intensity dynamic range of 700. For the sefitgone Was found to be pair-wise statistically different from
tissuesenmr Tissue = 46.6. Note that Piella’s method yielded theemr gone The independent Wilcoxon tests showed that only
highesteur Tissue FOr bone regions, all the methods, excefRiella’s method and our graph cut method were statistically
ours, yielded approximately the saraergone significantly different when analyzed as a group.



TABLE Ill
MEAN FUSION ERROR VALUES FOR THE20 PATIENT DATA SETS AND
STATISTICAL-SIGNIFICANCE TEST RESULTS FOR THE FUSION METHODS

Visual Inspection - Abnormal Vertebrae and Cord damage
The third case study shows spinal cord damage (Fig. 11) and
an abnormal vertebrae on a single fused image. The cord

Method EMR,Tissue ecTTissue | Ppaimise | Pindependent| damage is not visible on the CT image, while the abnormal
Averaging 64.2+ 26.0| 64.2+ 26.0 1 1| vertebrae is difficult to see on the MR image. The fused image
DWT [6] 64.9+ 26.1| 63.9+ 25.9| < 0.001 0.707

Contourlet [8] | 73.4+ 28.6| 642+ 249 | < 0.001 00g3| Presents both. ,
Piella [19] 152.84+ 52.6 | 175.94+ 54.0 0.002 0.006 | Visual Inspection - Osseous Erosion Secondary to Pannus
Graph Cuts 46.6+ 123 | 81.74+ 52.6 0.006 0.020 | In this patient with rheumatoid arthritis (Fig. 10), panngs

Method €CT,Bone eMR,Bone | Praiwise | Pindependent| €roding the posterior aspect of the dens. On the MR, the
Averaging 825+ 19.8| 825+ 19.8 1 1| chronic pannus is dark and cannot be distinguished from the
DWT [6] 819+ 19.7| 83.7+£19.8| <0.001 0.583 | ynderlying bony cortex. On the CT, the margins of the bone

Contourlet [8] | 82.6+ 19.7| 89.04 18.6 | < 0.001 0.121 I but Softi trat | The relati
Piella [19] 84.1+ 40.6 | 188.74+ 48.0 | < 0.001| < 0.001| are well seen, but soft-issue contrast IS poor. The reialp
Graph Cuts 57.0+ 11.9 | 108.0+ 36.2 | < 0.001| < 0.001| of the pannus to the underlying bone is best seen on the fused

E. Additional Metrics
The images have also been analyzed for the sensitivity and

specificity of the number of correctly fused pixels alonghwit

image.

V. DISCUSSION

We have investigated a novel CT/MR spine image fusion

the structural similarity between the inputimages and tised  @lgorithm based on graph cuts. We have successfully fused
images within the mask regions (Table IV).

TABLE IV
MEAN SENSITIVITY FOR TISSUE AND BONE DETAILS ALONG WITH MEAN

SSIM INDEX MEASURES FOR ALL FIVE METHODS

MR and CT images to create a single fused image, providing
a new and effective combined modality for diagnosis. Images
were registered, pre-processed and then fused. This has bee
tested on 40 sets of clinical images from 20 patients. Thehgra
cut results show better performance than the averagingateth

Method Sensitivity | Sensitivity SSIM SSIM and the three state-of-the-art methods from the literafOue
Tissue Bone Tissue Bone method successfully transfers bone detail and soft tisetesld
Averaging 0+0 0+0 |0.59+0.32/0.08+ 0.04 to the resulting fused image, with only a 57.0 difference in
DWT [6] |0.51+ 0.01|0.764 0.17|0.54+ 0.32| 0.11+ 0.06 i ; ; ; TS
Contourlet [8] [ 0.50+ 0.01| 0.75+ 0.17|0.22 4 0.30| 0.12 + 0.08 Intensity valqes for the pong details angl 46.6 mtensMﬁctm.t
Piella [19] |0.86+ 0.11|0.87+ 0.08|0.32+ 0.31| 0.15+ 0.11 for the _soft—tlssge details, in a dynqmlc range of 700. Vlsua
Graph Cuts |0.63+ 0.12|0.844 0.09| 0.52+ 0.33|0.21+ 0.12 inspection confirms these results, with graph cuts showieg t

sharpest detail for both the bone and soft tissue details.

These results show that the averaging method has O senfhe statistical tests showed pairwise significance for the C
sitivity. The DWT and contourlet methods performed loweys MR error in every method except averaging, however, only
than the other two methods, with Piella’s methods having tifgella’s method and our graph cut method showed groupwise
highest sensitivity for both CT and MR and graph cuts havingatistical significance between errors, which is a stroteg.
the second highest for both. In regards to the SSIM index, tifis indicates that these two methods perform better than th
averaging method performed best on the MR data, followed byhers, in transferring bone detail and soft tissue detaihe
the DWT and Graph Cut methods. Piella’s methods and the tged image. With regard to the additional methods, P&lla’
contourlet transformed did much poorer. For bone detaés tiethod performed better than graph cuts in regards to the
graph cut method did the best, followed by Piella’s methodensitivity test. However, the graph cut method outperéatm
the contourlet method, the DWT and finally averaging.

F. Case Sudies

Piella’s method in terms of structural similarity, a testesd
Piella’s method is expected to perform well. In view of all
the numeric and visual results, the graph cut method can be

Visual Inspection - Lumbar Spine, Joint and Disc Disease concluded to outperform the existing state-of-the-arthods.

We present the first clinical case study for our fusion teghei

in Fig. 8. In the first case, the patient had a protruding dpina The subvoxel accuracy of the registration ensures that the
disc and damaged facet joint. The disc can be seen in flision errors are a result of the fusion techniques and not
MR image as a hypointense region, whereas the facet jomisregistration. A deformable registration could have rbee
is visible in the CT image. There is significant osteoarihritemployed; however, this was not needed since the registrati
in the joint. The fused image clearly shows both of thesgcuracy validates the assumption of rigidity.

pathologies in a single image, allowing for a better diagmos One note of interest is thaiur Tissue aNd ect Tissue fOr the
Visual Inspection - Osteophyte Growth The second case DWT are similar or lower than the averaging, contourlet and
study shows osteophyte growth (see Fig. 9), which is tli&ella’s methods, even though the DWT is visually worse than
formation of bony spurs at the margins of a joint. On the MRiella’'s method. The DWT also has a high SSIM value. There
image alone, it is difficult to see the location of the ostgdph was pairwise statistical significance of the fusion errorsiie

The CT shows the osteophyte, but none of the surrounding sBfVT, but no groupwise statistical significance. This indisat
tissue. The fused image shows both the formation of the boity poor ability to discriminate between tissue and bonaiet
spurs and the surrounding soft tissue on a single image. which is essential for clinical use.
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Damaged Facet

MR Image Fused Image CT Image

Fig. 8. Images of damaged spine: left - MR showing a protrudiisg ¢hypointense region); middle - Fused image showing the, die spinal cord and
the damaged facet joints; right - CT image showing damaged faires.

MR Image Fused Image CT Image

Fig. 9. Images of bony spur formation: left - in the MR, the optede is not identifiable; middle - in the fused image, the gstgte is clearly visible
along with the surrounding soft tissue; right - the CT imagevahthe osteophyte, but not the soft tissue.

MR Image Fused Image CT Image

Fig. 10. The arrows show the pannus eroding the posterigcagy the tip of the dens. The relationship between the pauamal the surface of the bone
is best seen on the fused image.

MR Image Fused Image CT Image

Fig. 11. Image of an abnormal vertebrae and cord damage: leftheiMR the cord damage is easily visible; center - the fused émtdge cord damage
and the abnormal vertebral body can be seen clearly; right Cfh image shows the abnormal vertebrae.
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We have also shown the benefit of our fusion system @r5] z. Youzhi, Q. Zheng, and Y. Jingyu, “Image Fusion Using wbkd
four clinical cases, where the fused image clearly shows
both the bone and soft tissue detail on a single image. This
highlights the pathology on a single image. Our method cars]
successfully combine CT and MR images of the lumbar spine,

while retaining the significant clinical detail. This elingites

[17

the need for radiologists to mentally align and fuse two

separate datasets, along with the associated potentiadrfos.

(18]

Although we do not intend to have fused images replace CT
and MR scans for clinical use, we do see this as a strong tool1g)

add to the current practice and aid radiologists in commieti
more accurate and quicker diagnosis.
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