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Abstract—This study investigates the recovery of region boundary patterns in an image by a variational level set method which drives

an active curve to coincide with boundaries on which a feature distribution matches a reference distribution. We formulate the scheme

for both the Kullback-Leibler and the Bhattacharyya similarities, and apply it in two conditions: the simultaneous recovery of all region

boundaries consistent with a given outline pattern, and segmentation in the presence of faded boundary segments. The first task uses

an image-based geometric feature, and the second a photometric feature. In each case, the corresponding curve evolution equation

can be viewed as a geodesic active contour (GAC) flow having a variable stopping function which depends on the feature distribution

on the active curve. This affords a potent global representation of the target boundaries, which can effectively drive active curve

segmentation in a variety of otherwise adverse conditions. Detailed experimentation shows that the scheme can significantly improve

on current region and edge-based formulations.

Index Terms—Image segmentation, boundary patterns, boundary feature distributions, active curves, level sets, similarity measures.

Ç

1 INTRODUCTION

IMAGE segmentation is a long standing, extensively
researched topic in image processing for its theoretical

and methodological challenges, and numerous useful
applications. Current major application areas include
medical image analysis, remote sensing, robotics, and
surveillance [1], [2], [3], [4].

Active contour variational formulations, which define
image domain partitions by closed regular plane curves,
have been widely used. The corresponding Euler-Lagrange
equations are evolution equations which drive the curves to
coincide with relevant region boundaries. Implemented via
level sets [5], the evolution equations have led to effective,
numerically efficient, and stable algorithms in a variety of
settings [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. The
objective functional data terms, which measure the con-
formity of the image to model descriptions, are basically of
one of two types, edge-based, when they evaluate an image
function along the active curve, or region-based when they
refer to the image within the region enclosed by the curve.
Therefore, the corresponding curve evolution velocities are
due to the image exclusively along or within the curve.

The Snake model [16] and the geodesic active contour
(GAC), which adopted a more effective curve representation

[17], were precursors of a vast literature on edge-based
active curve image segmentation [14], [16], [17], [18], [19],
[20], [21]. Typically, a decreasing function of the image
gradient is integrated along the geodesic contour so that it
settles on high-contrast boundaries which are thought to
characterize the desired regions. In general, geodesics are
seriously challenged when the desired boundaries have
segments of low gradient, as is common in many applica-
tions. For instance, in magnetic resonance imaging (MRI)
and computed tomography (CT) medical images, the organs
to segment can have weak, almost nonexistent contrast with
neighboring structures. In such cases, the geodesic leaks
away from the desired boundary and can vanish.

By referring to the image over regions, the region-based
schemes are significantly less sensitive to weak boundary
gradient than the geodesic schemes [2], [6], [22], [23]. In
general, this is due to a global model description of the image
within the extent of each desired region, which penalizes
movements of the active curves in or out of the regions they
are intended to delineate. Both parametric [6], [24], [25], [26]
and nonparametric [8], [10], [11] image descriptions have
been used for the purpose. However, and in spite of this
accrued robustness, the region-based active curve evolution
can be seriously challenged, by definition, when the regions
to segment have similarly distributed segments [9]. When
these segments occur between regions, the placement of the
separating boundary becomes largely ambiguous.

There are methods which combine the advantages of
both edge-based and region-based models by using a
linear combination of two or more such terms [14], [27],
[28]. However, current methods are not applicable when
the desired regions are characterized by the distribution of
a feature on their boundary, i.e., when region boundaries
are considered patterns described by a feature distribution
rather than simply the location of the feature as with
typical geodesic descriptions. Two examples where this
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description of boundaries by a feature distribution is
befitting are in Fig. 1. One example, Figs. 1a and 1b, is of
an image where regions occur with boundaries that are
either rectangular or ellipsoidal outline. For each outline
pattern there are two regions of varying appearance and
the goal of segmentation is to extract, in a single
instantiation, the regions of each of the two patterns.
Matching the distribution of boundary curvature, mea-
sured from the image gradient, against a model distribu-
tion, has extracted both rectangular regions in one case
(Fig. 1a) and both ellipsoidal regions in the other (Fig. 1b),
without prior knowledge of the number of regions. Note
that a shape prior constraint will not be able to segment all
of the regions of the same figure, unless one such prior is
used for each region, and each with an accompanying
close by initialization, which supposes an information
about the image not available for practical purposes, such
as the number of objects as well as the section of the image
domain where each occurs [29], [30]. Because a shape prior
is an image-independent term added to the segmentation
functional so as to bias a detected region to have a given
geometric outline modulo a transformation (such as rigid
or affine) [7], [31], [32], [33], a shape prior constraint will
also require additional optimization over pose transforma-
tions or a constraint on the curve deformation with respect
to a reference shape [34], [35].

The other example, Fig. 1c, shows an image from a
cardiac MRI sequence of the left ventricle (LV). The red and
green boundaries are accurate delineations of the inner and
outer ventricle boundaries by curves along which the image
distribution matches a model distribution. Yet, both bound-
aries are severely faded in places, and parts of the inner
cavity have an image distribution closely resembling that of
the ventricle wall. Also, the ventricle wall and its outer
surrounding context have parts which look similar. These
image particularities are examples of the general segmenta-
tion ailments discussed earlier. Note that the outer and inner
ventricle boundaries have the same shape, in which case a
shape prior will not distinguish them unless the active curve
is initialized rather close to the desired boundary, an action
which may require manual intervention.

The purpose of this study is to investigate a level set
variational segmentation method which drives an active
curve to coincide with boundaries on which a feature
distribution matches a reference distribution. We have

addressed the problem earlier in [36]. This TPAMI version
expands on [36] with a broader, more informative discus-
sion of the subject and a more rigorous, wider investigation
which includes the use of geometric features along
contours. Several new experiments with distributions of
curvature computed from the image have been added to
enhance the photometric feature experimentation.

Feature distributions are potent global representations
of region boundaries [37] which can effectively drive
active curve segmentation in a variety of otherwise
adverse conditions. We formulate the scheme for both
the Kullback-Leibler and the Bhattacharyya similarities,
and apply it in two particularly relevant conditions, the
simultaneous recovery of all region boundaries consistent
with a given outline pattern and segmentation in the
presence of faded region boundary segments. The first
task uses a geometric feature, rather than a photometric
feature as does the second task. Fig. 1 illustrates a case of
each of these two tasks. Detailed experimentation (Sec-
tion 4) shows that the scheme is valid and can improve on
region and edge-based methods. Compared to the region-
based formulations in [8], [9], and [11], the objectives of
the proposed functionals are fundamentally different. For
instance, the formulations in [8], [9], and [11] would not
distinguish, and it is not their purpose, between the
elliptical and rectangular regions in Figs. 1b and 1c
because these regions have exactly the same image
distributions. The marginal similarity with these studies
is in using global measures, but the curve evolution
equations we obtained are quite different. Such a
difference will be evidenced in the experiments.

Interestingly, each of the evolution equations we
obtained can be viewed as a GAC having a variable
stopping function. However, the stopping functions have
two fundamental differences with the usual GAC stopping
function. First, they are functions of both the image and the
curve, when the GAC stopping function depends only on
the image. Second, they reference global information,
namely, the feature distribution, rather than just pixel-wise,
as with GAC; such richer information should afford better
boundary detection behavior. We will give an interpretation
of this behavior.

The remainder of this paper is organized as follows:
Section 2 describes the formulation in detail, including the
objective function and the similarity measure used. The
corresponding Euler-Lagrange curve evolution equations for
both the Kullback-Leibler divergence and the Bhattacharyya
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Fig. 1. The segmentation targets (a) elliptical objects and (b) rectangular objects. Only the targeted objects should be segmented. In (c), the
segmentation targets the left ventricle in an MRI sequence in spite of weak inner and outer boundary segments with neighboring image objects.



measure and the level set equations are derived in Section 3.
Section 4 describes the experimental results using geometric
and photometric features on various synthetic and real
images. Section 5 contains a conclusion.

2 FORMULATION

The formulation in this study seeks region boundaries along
which the distribution of a representation feature is closest
to that of a model.

2.1 Objective Function

Let I : � � IR2 ! IR be an image function, � : ½0; 1� ! � a
simple closed plane parametric curve, and F : � � IR2 !
F � IR a feature function from the image domain � to a
feature space F . Let P� be a kernel density estimate of the
distribution of F along �:

8f 2 F P�ðfÞ ¼
H
� Kðf � F�Þds

L�
; ð1Þ

where F� is the restriction of F to �, L� is the length of �,

L� ¼
I
�

ds; ð2Þ

and K is the estimation kernel. In this work, we consider the
Gaussian kernel of width h:

KðzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�h2
p exp�

z2

2h2 : ð3Þ

Given a model feature distributionM, let DðP�;MÞ be a
similarity measure between P� and M. The purpose is to
determine ~� such that

~� ¼ arg min
�
DðP�;MÞ: ð4Þ

To apply this formulation, we need to specify the feature
function, the model, the similarity, and a scheme to conduct
the objective functional minimization in (4).

2.2 Features

There are two fundamental types of boundary representa-
tion features. One type is photometric, where the feature is
a function of the image. Examples of such features are the
image, F ¼ I, its gradient norm F ¼ krIk, and, more
generally, scalar image filter outputs. The other type of
feature function is geometric, which pertains to the
boundary form, irrespective of the image function. The
curvature is in this category. This is a singular feature
because it can be estimated from the image under
the assumption that the region boundary normals coincide
with the isophote normals:

F ¼ �I ¼ div
rI
krIk

� �
: ð5Þ

This is quite convenient and important from an
implementation point of view because curvature estimation
over the image domain is done once and at the onset.
However, it remains intrinsically tied to the boundary
geometry and not to the image function. Studies have
shown that curvature histograms, which can be viewed as

empirical marginal distributions of the shape considered a
random variable, are useful statistics to describe closed
regular plane shapes [37]. Ideally, a geometric description is
invariant to the shape position, orientation, and size. It must
also be robust to the distortions which normally affect the
shape. Curvature, which is the rate of change of the tangent
angle along the contour [38], is invariant to translation and
rotation but varies with scale. However, this variability is
taken into account by an affine transformation of the
curvature values so that they always correspond to the
same set of bins. For practical means, this normalization
makes the histograms unaffected by scale. A curvature
histogram alone is not, of course, sufficient to describe
shape in general. Although it has served our purpose in this
study (Section 4), other features have been necessary for a
more general encoding of planar shapes [37]. A geometric
feature which, unlike curvature, cannot be estimated from
the image function would be useful only in conjunction
with a photometric feature because the image is the
essential support for boundary pattern detection.

Each of the two fundamental types of features, photo-
metric and geometric, corresponds to a fundamental
application of the formulation. Geometric features are
necessary when the target object boundary has no specific
photometric description, either because the description
varies with the picture in which the object appears (e.g.,
as in Fig. 5, where objects can appear with different colors/
textures and/or over different backgrounds) or because
there are no photometric features which would distinguish
the target from other objects in the image (as in Fig. 2).
Photometric features are necessary when photometry, not
geometry, is distinctive of the target region boundary. The
automatic detection of the left ventricle wall in Fig. 10 is an
example of this case.

2.3 Model

A model in our context is an exemplar of the shape of
interest, to be used to estimate, via a histogram, a model
distribution of the representation feature. An exemplar
should be able to represent the boundary shape of the
objects of interest up to allowable transformations such as
position, orientation, scale, and nonlinear class noise. There
are several sensible ways to draw a model of a targeted
shape. One way is to manually trace (using a graphics
manipulation package) the contour of an object in the class
of those targeted, and use a histogram of the representation
feature along the trace as the model distribution. Alter-
natively, this typical object contour may be extracted by an
active geodesic curve, or a region-based segmentation
algorithm such as Chan-Vese’s [39], using an initialization
that is close to and contains the object. When the
representation feature pertains to the object contour
geometry (e.g., curvature), one can manually draw a
cartoon of the object contour and use it to estimate the
model distribution of the geometric feature. In general, the
application images determine the choice of a model
selection scheme over others. We will show examples of
each model learning scheme (Section 4).

2.4 Similarity

The Kullback-Leibler divergence and the negative of the
Bhattacharyya coefficient are two common similarity

836 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 5, MAY 2012



functions between distributions. Several studies have used
them for foreground-background image segmentation [39].
An experimental study [40] has given some validity to the
Bhattacharyya distance by showing that for a variety of
distributions the number of misclassified pixels by max-
imum likelihood and minimum description length (MDL)
increases with increasing Bhattacharyya distance between
the foreground and background distributions. Efficient
applications of the Bhattacharyya distance have been
reported in [8] and [11] in active contour segmentation. It
has also been implemented to match the distribution along
contours of a local image average to the distribution along a
model object boundary [36]. As well, the Kullback-Leibler
divergence has been part of effective image segmentation
formulations [8], [41], [42], [43]. Studies which mention or
use both measures have presented them as alternatives.

We implemented the minimization in (4) for both the
Kullback-Leibler divergence and the Bhattacharyya dis-
tance as the similarity function D. The Kullback-Leibler
divergence between P� and M is

DðP�;MÞ ¼ KLðP�;MÞ ¼
Z
F
MðfÞ log

MðfÞ
P�ðfÞ

df; ð6Þ

and the negative of the Bhattacharyya coefficient is

DðP�;MÞ ¼ �BðP�;MÞ ¼ �
Z
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�ðfÞMðfÞ

q
df: ð7Þ

Higher values of the Kullback-Leibler divergence indi-
cate smaller overlaps between the distributions. The range
of the Bhattacharyya coefficient is ½0; 1�, 0 corresponding to
no overlap between the distributions and 1 to a perfect
match. The symmetry of the similarity function with respect
to its two distribution arguments (the Kullback-Leibler
divergence is not symmetric) is not an issue here because
we want to asses how close a variable distribution is to a
fixed (model) distribution. However, we will see that the
curve evolution equations, derived next, show that the
Bhattacharyya flow is more general. Moreover, the ½0; 1�

range of the Bhattacharyya coefficient affords a conveni-
ently practical appraisal of the similarity.

The simpler analytical expression of the Bhattacharyya
distance affords a computational advantage, albeit relatively
modest considering the high computational capacities of
current common computers. Also, a brief look ahead at the
curve evolution equations (13) and (17) shows that the
expressions are the same except for the first term which is
constant and equal to 1 for the Kullback-Leibler (13) and is
the Bhattacharyya distance (the maximum of which is 1) in
(17). Therefore, the Bhattacharyya distance offers a more
general expression, which potentially affords a better
representation of similarity in (4). However, in all the
examples where we experimented with both similarities,
there were no noticeable differences in the results (Section 4).

Next, we derive the Euler-Lagrange descent equations
corresponding to (4) for both the Kullback-Leibler and the
Bhattacharyya similarities.

3 MINIMIZATION

The data term in (4) is a measure of similarity between
distributions over the boundary representation curve �. The
use of such similarity measures in image segmentation
often leads to challenging optimization problems because it
involves nonlinear functions of integrals, or sums in the
discrete case, over the segmentation boundaries or regions.
A discretization of this term will not conform to graph cut
optimization usually used in image segmentation [44], [45],
[46], [47], [48],which requires that the objective function be a
sum over the segmentation boundary or region of pixel-
dependent penalties. For instance, the data term in [44] is a
linear combination of sums over the segmentation regions
of minus the log likelihood of pixel data given the
histograms of the regions, and the data term in [45] is a
sum over the segmentation boundary of the dot product
between the normal to the boundary and a fixed vector
field. Measures of similarity between distributions have
been generally avoided in the context of graph cuts because
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Fig. 2. Detection of regions whose boundaries are consistent with learned outline patterns. Each row depicts a segmentation of the image
corresponding to a different model of curvature learned a priori. For example, for the first row the model of curvature is learned independently of the
shape of a single rectangle and, for the second row, it is learned from a single ellipse with approximately the same aspect ratio as in the figure. In this
example, several regions in the image correspond to the same shape instance (a rectangle or an ellipse). By learning the model distribution of
(image-based) curvature from a single rectangle or ellipse, the proposed method can successfully delineate all the regions consistent with the
learned pattern without additional optimization over pose transformations and without prior knowledge of the number of regions. Columns: (a) initial
curve positions, (b) training images and contours, (c) the final segmentations, and (d) segmentation with the GAC model [17] (upper) and the RL
piece-wise constant model [6] (lower). The Kullback-Leibler divergence has been used for this example.



they cannot be expressed in such forms. The recent studies
in [49] and [50] are notable exceptions which optimized a
distribution-similarity measure over the segmentation
region via graph cuts. To do so, Ben Ayed et al. [49] and
Mukherjee et al. [50] used relaxations via bounds or
approximations of the cost function so as to befit graph
cut optimization. However, in our case, the problem
involves a similarity measure over the boundaries, not
regions. Therefore, the approximations in [49] and [50] are
not applicable. Instead, we will address the problem in (4)
by continuous optimization via the associated Euler-
Lagrange �-evolution descent equations. These equations
are derived next.

Another important argument in favor of continuous
optimization is the fact that graph-cut approaches are prone

to the well-known grid bias (or metrication error) [51].
Reducing metric artifacts can be done by increasing the

number of neighboring graph nodes, but this may result in
a heavy computation and memory load [45].

Let � be embedded in a one-parameter family of curves

indexed by (algorithmic) time t: �ðs; tÞ : ½0; 1� � IRþ ! �,
and deriving the Euler-Lagrange descent equation:

@�

@t
¼ � @D

@�
: ð8Þ

3.1 Kullback-Leibler Divergence

For DðP�;MÞ ¼ KLðP�;MÞ, we have

@D
@�
¼ @KL

@�
¼
Z
F
MðfÞ @

@�
log
MðfÞ
P�ðfÞ

� �
df

¼ �
Z
F
MðfÞ @

@�
log

H
� Kðf � F�ðsÞÞds

L�

 !
df

¼ 1

L�
@L�
@�
�
Z
F
MðfÞ @

@�
log

I
�

Kðf � F�ðsÞÞds
� �

df;

ð9Þ

where, we recall, F� is the restriction of F to �. Assuming
feature F is independent of �, both curve length L� and the

second integral in (9) can be written as
H
� hds, where h is

independent of �, and their functional derivative with

respect to � is of the form [17]

@
H
� hds

@�
¼ �h�þrh � ~nð Þ~n; ð10Þ

where ~n is the inward unit normal to � and � its mean
curvature function. Therefore,

@

@�
log

I
�

Kðf � F�ðsÞÞds
� �

¼
@
@�

H
� Kðf � F�ðsÞÞdsH

� Kðf � F�ðsÞÞds

¼ �Kðf � F�Þ�þrKðf � F�Þ � ~nH
� Kðf � F�ðsÞÞds

~n;

ð11Þ

and, using (2),
@L�
@� ¼ ��~n.

This gives

@�

@t
¼ �

L�
~n� �

L�

Z
F

MðfÞ
P�ðfÞ

Kðf � F�Þdf
� �

~n

þ ~n

L�
r
Z
F

MðfÞ
P�ðfÞ

Kðf � F�Þdf
� �

� ~n

¼ 1

L�
1�

Z
F

MðfÞ
P�ðfÞ

Kðf � F�Þdf
� �

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Stopping force

2
6664

þr
Z
F

MðfÞ
P�ðfÞ

Kðf � F�Þdf
� �

� ~n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Refinement force

3
7775~n;

ð12Þ

which can be written as

@�

@t
¼ GKLðP�;M; F�Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Stopping

�rGKLðP�;M; F�Þ � ~n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
refinement

0
B@

1
CA~n: ð13Þ

The evolution (13) is of an ordinary geodesic active contour
form [17] except that the function of space and time GKL
multiplying the curvature can, at some times during curve
evolution, evaluate to negative at some points, i.e., it does
not necessarily evaluate to positive everywhere at all times.
However, the evolution is not to be assimilated to an
inverse heat flow [52], [53] because, first, GKL does not
necessarily evaluate to negative everywhere and at all
times, as with inverse heat flow, and, second, the evolution
speed is also modulated by the gradient of this function
projected on the curve normal, rGKL � ~n. The equation
behavior can be examined according to two cases.

Case 1. The curve is close to the desired boundary. When
in the vicinity of the target boundary, close to adhering, the
curve has a feature density close to the reference density,
i.e., P ðF�ðpÞÞ �MðF�ðpÞÞ, which implies that GKL � 0. Con-
sequently, the curve behavior is predominantly modulated
by the gradient term, which drives it to adhere to the
desired boundary because it constrains it to move so as to
coincide with local highs in the model and curve distribu-
tions similarity, just as the common GAC gradient term
guides the curve toward local highs in image contrast [17].

Case 2. The curve is distant from the desired boundary.
Away from the target boundary, the curve and its model are
dissimilar and their feature distributions have little overlap.
Therefore, for most points p on the curve, and recalling that
(13) references points on the curve, not on the model, we
have P ðF�ðpÞÞ >MðF�ðpÞÞ and, consequently, GKL > 0.

The preceding argument points to a stable behavior of
the evolution equation in general. In the event GKL at some
point evaluates to negative at some time during curve
evolution, the gradient term rGKL � ~n acts as a stabilizer of
the curvature term because, as previously mentioned, it
constrains the curve to move along its normal to fit highs in
the similarity between its feature distribution and the model
distribution. There has been no evidence to the contrary in
all our experiments. All tests were in agreement with a
stable descent algorithm to maximize the similarity between
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the evolving curve feature distribution and the reference
distribution (Section 4).

A final pointer to an expected good evolution behavior is
the presence of global information in the descent equation,
namely, the feature distribution (histogram), in addition to
pixel-wise information. In general, global information
affords added strength to local descriptions. In practice,
the descent equation is discretized following [5] and
involves choosing an appropriate time step according to a
data dependent recipe.

3.2 Bhattacharyya Measure

We have

@D
@�
¼ � @B

@�
¼ � 1

2

Z
F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MðfÞ
P�ðfÞ

s
@P�ðfÞ
@�

df: ð14Þ

To compute this functional derivative, we need to compute
@P�ðfÞ
@� :

@P�ðfÞ
@�

¼
L� @

@�

H
� Kðf � F�ðsÞÞds�

@L�
@�

H
� Kðf � F�ðsÞÞds

L2
�

:

ð15Þ

Similarly to the previous section (see (11)), the application
of (10) to

H
� Kðf � F�ðsÞÞds and to L� in the numerator in

(15) gives, after some algebraic manipulations,

8f 2 F ; @P�ðfÞ
@�

¼ 1

L�
ð�Kðf � F�Þ�

þrKðf � F�Þ � ~nþ P�ðfÞ�Þ~n:
ð16Þ

Embedding this result in (14) leads to, after algebraic
manipulations,

@�

@t
¼ 1

2L�
BðP�;MÞ�

Z
F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MðfÞ
P�ðfÞ

s
Kðf � F�Þ df

 !
�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Stopping force

2
66664

þr
Z
F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MðfÞ
P�ðfÞ

s
Kðf � F�Þ df

 !
� ~n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Refinement force

3
77775~n:

ð17Þ

Here also, the evolution equation can be viewed as a
geodesic evolution with a variable stopping function GBh.
Since BðP�;MÞ is explicitly independent of image coordi-
nates, rBðP�;MÞ ¼ 0. Therefore, we can write evolution
(17) in GAC-like form:

@�

@t
¼ GBhðP�;M; F�Þ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Stopping

�rGBhðP�;M; F�Þ � ~n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
refinement

0
B@

1
CA~n; ð18Þ

where

GBhðP�;M; F�Þ ¼ BðP�;MÞ�
Z
F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MðfÞ
P�ðfÞ

s
Kðf � F�Þdf:

ð19Þ

The Bhattacharyya evolution equation can be inter-

preted in a way similar to the Kullback-Leibler flow. Away

from the desired boundary, we can assume that the curve

and the model are dissimilar and, therefore, that the feature

and the reference distributions have little overlap, which

implies for most pixels that P ðF�ðpÞÞ > MðF�ðpÞÞ and,

consequently, GBh > 0. When the curve is close to adhering

to the target boundary, P ðF�ðpÞÞ �MðF�ðpÞÞ, which implies

that GKL � 0 and that the curve behavior would be

predominantly driven by the gradient term to adhere to

the desired boundary. In the event GBh in the stopping term

evaluates to negative sometimes at some some points, the

refinement term acts as a stabilizer to produce a stable

descent equation.

3.3 Level Set Implementation

Active curve �ðs; tÞ : ½0; 1� � IRþ ! � is implicitly repre-

sented by the zero level set of a function �ðx; tÞ : �� IRþ !
IR, i.e., � ¼ fx 2 � j �ðx; tÞ ¼ 0g. Recall [5] that when �

evolves according to

@�ðs; tÞ
@t

¼ V ðs; tÞ ~nðs; tÞ; ð20Þ

then � evolves according to

8x 2 �;
@�ðx; tÞ
@t

¼ V ðx; tÞkr�ðx; tÞk; ð21Þ

with the convention that � > 0 inside the zero level set and
~n is oriented inward. Therefore, the level set evolution
equations corresponding to the flows (13) and (18) are
given by

V ðx; tÞ ¼ GðP�;M; F ðxÞÞ ��ðx; tÞ

� rGðP�;M; F ðxÞÞ � r�ðx; tÞkr�ðx; tÞk ;
ð22Þ

where G is GKL for the Kullback-Leibler flow and GBh for the
Bhattacharyya. These stopping functions are variable of the
curve and therefore must be updated during evolution using
the sample feature distribution within a narrow band �

around the zero level set of � [5]:

P�ðfÞ ¼
R
��<�ðxÞ<� Kðf � F ðxÞÞdxR

��<�ðxÞ<� dx
: ð23Þ

�� is the mean curvature function of �:

��ðx; tÞ ¼ div
r�ðx; tÞ
kr�ðx; tÞk

� �
; 8x 2 �: ð24Þ

Geodesic evolution is often quickened by an additional
constant speed c along the curve normal [17], resulting in
the level set motion [13]:

@�ðx; tÞ
@t

¼ ðV ðx; tÞ þ cÞkr�ðx; tÞk: ð25Þ
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The algorithm can be summarized as follows:

Algorithm 1. Feature distribution matching method

4 EXPERIMENTS

We will describe two sets of experiments and comparisons
illustrating various applications of the proposed formula-
tion; one uses a geometric feature, namely, curvature, and
the other photometric features, namely, the image gradient
and a neighborhood image average. In general, the choice of
a feature will depend on the application. The purpose of the
first set of experiments (Section 4.1) is to demonstrate that
the method can effectively extract, in a single instantiation,
all of the regions in an image whose (geometric) feature
boundary distribution follows a learned outline pattern.
The examples include evaluations over color images from
the ETHZ database [54], [55] and over medical images. The
purpose of the second set of experiments (Section 4.2) is to
show that the formulation can efficiently segment images in
the presence of regions which have fading contrast at some
of their boundary segments. The examples include a task of
anatomical tracking.

In the experiments with the photometric features, we
compared this study contour distribution matching func-
tional (abbreviated CDM hereafter) to the following
functionals:

RDM. The region-based distribution matching func-
tional in [8]. Optimization of this functional seeks a region
so that the image distribution within the region most closely
matches a learned model.

RL. The region-based likelihood functional commonly
used in image segmentation [6], [10], [14], [48]. Optimiza-
tion of this functional seeks a two-region partition max-
imizing the conditional probability of pixel data given the
learned models within the segmentation regions.

ROP. Concatenation of RDM and the region-based
overlap functional in [9], which embeds information about
the overlap between the distribution of the image data
within the segmentation regions.

GAC. The classical geodesic active contour functional
[17] commonly used in image segmentation as an edge-
based constraint, which biases the segmentation boundaries
toward high gradients of image data.

With the geometric feature, it was relevant to compare
to RL, GAC, and GAC-SP which is GAC with a shape
prior term.

In all the experiments, the feature distribution is
estimated using the kernel width h ¼ 1 and the narrow
band parameter � ¼ 1.

4.1 Image-Based Geometric Feature: Extraction of
Region Boundaries of a Given Outline Pattern

The purpose here is to recover region boundaries consistent
with an outline pattern without prior knowledge of the
number of regions. Intensity-based methods would not
allow doing this because, as illustrated in the simple
synthetic image of Fig. 2, the targeted regions may have
the same intensity distribution as unwanted differently
shaped regions. Instead, we will use a geometric feature,
namely curvature. As explained in Section 2.2, curvature is
estimated from the image under the assumption that the
region boundary normals coincide with the isophote
normals. Using curvature affords a scheme which handles
differences in the pose and number of targeted regions. This
is in sharp contrast with shape prior methods which require
the knowledge of the number of regions and inclusion of
pose parameters in the optimization. We begin by showing
synthetic examples which we used to verify the relevance of
curvature as a feature for the scheme to locate all of the
instances of a targeted shape in an image. We follow with
real images, including a tracking example. Since we have no
knowledge about the target object’s position, the initial
contour is systematically placed wide out in the image
domain to ensure that it encloses all objects. In spite of
narrow banding, we noted that this can cause the progres-
sion of the CDM curve to be slow in reaching object
boundaries. To accelerate the evolution toward region
boundaries, we add a nonweighed GAC term to the
functional (any term which would guide the curve evolu-
tion toward high-contrast boundaries would be acceptable).
However, when region boundaries are reached, the GAC
term weakens considerably and the CDM becomes pre-
ponderant because it causes the curve to adhere to the
desired boundaries but move away from all others and
vanish. The addition of a GAC term is an implementation
aid to faster execution which does not affect the meaning of
the CDM functional. It also has the beneficial side effect of
reinforcing the positivity of the term multiplying curvature
in the evolution equation.

4.1.1 Synthetic Examples

The purpose is to verify in a very simple example that the
formulation can detect all of the shapes of the given class,
irrespective of scale (and position). Fig. 2 is a synthetic
image of a row of three ellipses of appearances, but with
approximately the same aspect ratio and a row of different
rectangles. The purpose is to segment either all of the
rectangular regions, in one instantiation, or all of the
ellipsoidal regions but not both. The model curvature (5)
distributions are learned from one rectangle and one ellipse
independently from those appearing in Fig. 2. Fig. 2c show
two final segmentations of the squares (upper) and the
ellipses (lower). Fig. 2b show the training images with the
contours, and Fig. 2a show the initial positions.

The contour evolves first toward high-contrast bound-
aries. Once the region boundaries are reached, the proposed
CDM flow causes the active curve to remain in coincidence
with the desired boundaries but leave and vanish from the
others. For example, along the boundary of the rectangles
(second row), the feature distribution does not match the
model distribution of curvature along an ellipse. Therefore,
the contour continues to evolve inside the rectangles, and
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delineates only the elliptical regions at convergence.
Evidently, neither region-based segmentation (via RL, for
instance) nor edge-based segmentation (via GAC, for
instance) will be able to distinguish one type of regions
from the other (last column of Fig. 2).

4.1.2 Real Image Examples

The purpose of this experiment is to show the advantage
over standard algorithms such as GAC in the case of
multiple occurrences of the desired object in a real image.
Fig. 3 depicts an example of segmentation of vertebrae in a
CT scan of the human spine. The distribution of curvature
has been approximated by a histogram along the outline of
an exemplar vertebra. Although the results are not totally
accurate, CDM (Fig. 3a) has been able tot correctly segmen
two vertebrae, do a decent outlining of the others (the poor
segmentation of the upper vertebra is due to border effects
as no initialization could include this vertebra), and ignore
the bone structures on the right. Of course, region-based
methods cannot handle this example because the image

profile within the vertebrae is very similar to that of other
surrounding structures. Edge-based functionals such as
GAC will bias the active contour to all high image gradients
which do not correspond necessarily to the edges of the
vertebrae. GAC (Fig. 3b) has not been able to do as well on
the vertebrae and has included the bone structures on the
right.

For this example, we plotted in Fig. 4a the model
distribution and the distribution of curvature on the active
curve at convergence. The proposed curve evolution
method recovered accurately the model. The Bhattacharyya
measure obtained at convergence is equal to 0.98, which
means a very close match. In Fig. 4b, we plotted the
evolution of the optimized Bhattacharyya measure as a
function of the number of iterations. An inspection of the
graph shows that there is a minor transient decrease from a
maximum at iteration 175 before leveling off after iteration
230. This is also happening at about iteration 500 in the
graph of Fig. 4, although the transient decrease is even
slighter. This behavior is probably an artifact of the
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Fig. 3. Segmentation of spine bones in a CT image. The model distribution is learned beforehand from a manual segmentation of a single rectangular
bone (the middle one). (a) Final contour position. (b) Segmentation with the GAC model. The proposed functional succeeded in guiding the active
curve toward the spine bones while omitting the other neighboring parts which have a similar intensity profile. The Bhattacharyya coefficient has
been adopted for this example.

Fig. 4. Segmentation of spine bones in a CT image. (a) Distribution of the curvature along the final curve and the model distribution. (b) Evolution of
the functional as a function of the number of iterations.



combined effect of digital curve processing and equivocal
object boundaries causing the curve to drift incidentally
about a local minimum of the functional in the immediate
vicinity of the desired boundary. The principal digital
approximations in this application occur with 1) the
discretization of the active curve via the zero level set,
2) the estimation of the derivatives in the calculation of
curvature, and 3) the binning of curvature values (for
histogram calculations).

4.1.3 ETHZ Database

In this section, we use images from the ETHZ database
[54], [55]. This data set contains about 200 images of
objects of one of fives types of shapes, such as bottles and
Apple logos. It has been used to test algorithms which
detect and then recognize objects in images. The objects
appear in various sizes, positions, colors, and there are
within-class variations in shape. The ground truth object
shape is provided with each image. Also provided is an
edge map obtained by the Berkeley natural boundary
detector [56], [57]. Although many of the database images
are not of use to validate our algorithm, others afford a
good testbed. To be of use in our application, an image
should, of course, contain several distinct objects to be
able to show the detection of the relevant object while
ignoring the others. Moreover, the target object should be
present in other images, modulo interesting shape varia-
tions, to be able to learn a model independently of the test
image. Also of use are the images which contain several
instances of the relevant object, ideally each modulo a
variation in the shape, to show that the algorithm can
detect all of the instances.

For each class of objects, we learn the model histogram
on the ground truth of an image different from the test
images. Given the model histogram, it is then expedient to
effect the algorithm on the edge map rather than the image.
In all the examples, this resulted in an efficient fast
implementation of the algorithm.

Fig. 5 depicts a sample of the results obtained with the
ETHZ data set. The first row contains the test images.
The initial curves, which are placed so as to enclose all the
objects, are also shown in these images. The second row
contains the edge maps of the images in the the first row.
The model curvature histograms are evaluated on the
model shapes in the images of the third row. A single model
shape is used for a class of objects and it comes from an
image different from the test images. The last four rows
show positions of the evolving curve until convergence
depicted in the last row of Fig. 5. When an object boundary
is reached, the distribution matching flow causes the curve
to coincide with the desired boundaries but close away
from the nondesired ones and vanish.

As done in all the tests described above, the initial
contour must be placed so as to enclose all the desired
objects in the image, for instance by being wide enough to
enclose all objects. When the initial contour does not contain
a desired object, or contains it only partially, the detection
will fail. This is shown in Fig. 6. In Fig. 6a in the first row,
there are three different initial contours all enclosing the
desired object. As a result, they all converge to coincide

with the target object (the bottle) as shown in images
Fig. 6b, Fig. 6c, and Fig. 6d of the first row, while ignoring
the other objects. In the second row, Fig. 6a shows an
initialization which does not enclose the desired object
(bottle). As a result, the algorithm fails to detect the desired
boundary (see Fig. 6b). Fig. 6c has been constructed by
copying a rectangular portion from the image background
and pasting it so as to occlude partially the bottle. The
resulting bottle image no longer resembles the model and
should be ignored by the active curve because the
formulation has no explicit provision to handle occlusion.
Fig. 6d shows that this is the case as the contour passes
through the desired boundary. A shape prior with pose
parameters started close to the object would have been able
to recover the desired contour.

We tested the dependence of the results on the training
by segmenting one image using three distribution models
different from the actual image. Fig. 7a shows the input
image with the initial contour for all the three experiments.
Columns (b), (c), and (d) of Fig. 7 show the results
corresponding to each distribution model: The model
shapes are shown in the first row and the final curve
positions in the second row. They all converge to coincide
with the target object (the bottle) with some minor
differences.

When a desired object occurs more than once in the
same image, a shape prior will not be able to segment all of
the regions in the image. Moreover, shape priors which
include pose parameters require an initialization that is
close to the target object, which is often impractical. In
Fig. 8, we show the results obtained on two different test
images using the GAC model with a template matching
shape prior term as in [58]. For both images, the template
used actually corresponds to one of the objects in the
image, the smallest ellipse in the first image and the black
cup to the right of the second image. Using one of the
desired objects as the template simplifies the problem
because this forgoes the need to optimize with respect to
the pose parameters. As expected, the contours evolved
toward the objects corresponding to the templates but
missed all the other desired object instances.

4.1.4 A Tracking Example

Fig. 9 depicts tracking of both the left ventricle cavity (first
row) and the right ventricle (second row) using the
curvature as feature. For each frame, the model distribu-
tions were learned from the result of the previous frame.
The first frame of the sequence was segmented manually.
Based on the learned outline pattern, the proposed method
succeeds to distinguish between the left and the right
ventricles in the considered sequence.

4.2 Photometric Feature: Segmentation in the
Presence of Fading Contrast along Boundary
Segments

In this set of experiments, we show application of the
proposed curve evolution to difficult situations where parts
of the target boundary correspond to weak transitions of
image data. This frequently occurs in medical images. We
ran several experiments of segmentation and tracking of the
left ventricle inner and outer boundaries in cardiac
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magnetic resonance image sequences. To explicitly demon-
strate the positive effect of the proposed contour-based
functional, we first give two typical segmentation examples.
In these examples, we run tests that show how the proposed
functional can lead to improvements in accuracy over other
region-based and edge-based functionals. Then, we give a
representative sample of the tracking results supported by

quantitative performance evaluations by comparisons with

manual delineations.

4.2.1 Segmentation of the Inner Boundary of the LV

Accurate LV segmentation is acknowledged as a difficult

problem, and is essential in automating the diagnosis of

cardiovascular diseases [28]. A typical example is shown in
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Fig. 5. A sample of the results on the ETHZ data set. Row 1: Initial curve. Row 2: Edge contours. Row 3: Shape model. Rows 4-6: Intermediate curve

positions. Row 7: Final curve position. The Kullback-Leibler divergence has been adopted for these examples.



Fig. 10 where the purpose is to find the boundary between
the heart cavity and the background. The manual segmenta-
tion by an expert is depicted by the green curve in Fig. 10b.
This example is difficult because the papillary muscles
within the cavity and the background are connected and
have the same intensity profile. Therefore, a part of the target
boundary corresponds to very weak image transitions, i.e.,
the norm of the image gradient is null or nearly null.

To illustrate how the proposed functional CDM refines
the segmentation in such cases, we report comparisons with
the curve evolution methods based on RDM, RL, ROP, and
GAC. For all the functionals, we used the same initialization
depicted by the red curve in Fig. 10c, and learned model
distributions from the ground truth. We assessed the
similarities between the ground truth and the segmenta-
tions obtained with CDM, GAC, RL, RDM, and ROP using
two measures: the Dice Metric (DM) [28] and the Root Mean
Squared Error (RMSE) with symmetric nearest neighbor
correspondences [59]. The Dice Metric is region-based and
is given by1 DM ¼ 2Aam

AaþAm
, with Aa, Am, and Aam denoting

the areas of the automatically detected region (region inside
the curve), the corresponding ground-truth region, and the
intersection between them, respectively. The RMSE is
contour-based, and measures the distance between manual
and automatic boundaries over N points as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðx̂i � ~xiÞ2 þ ðŷi � ~yiÞ2
vuut ; ð26Þ

where ðx̂i; ŷiÞ is a point on the automatic boundary and
ð~xi; ~yiÞ the corresponding point on the manual bound-
ary [59].

For comparative purposes, we report the DM and
RMSE corresponding to all the functionals in Table 1,
and show the curve at convergence (red curve) with the
ground truth curve (green curve) in Fig. 10.

The geodesic active contour, biases the curve toward
high gradients of the image (Fig. 10e), thereby yielding the

lowest conformity to the ground truth, i.e., the highest
RMSE and the lowest DM (refer to Table 1). Furthermore,
region-based functionals fail to accurately recover the target
boundary due to the lack of relevant image information on
the curve (refer to Figs. 10f, 10g, and 10h). The CDM,
contrarily to the other methods, accurately refined the
results. As depicted by the red curve in Fig. 10d, it stopped
the curve at convergence in a position very similar to the
ground truth, yielding the lowest RMSE and highest DM,
which correspond to the best conformity to the ground
truth (refer to Table 1). This example explicitly illustrates
the usefulness of the proposed curve evolution in the
application at hand. To quantitatively demonstrate the
positive effect of the proposed functional, we report in
Table 2 the following statistics of the segmentations
obtained with RDM, ROP, and CDM:

. Contour-based similarity measure. The Bhattacharyya
measure of similarity between the distribution of
image feature within a narrow band around the
curve and a model, i.e., CDM at convergence.

. Region-based matching measure. The Bhattacharyya

measure of similarity between the distribution of

image feature inside the curve at convergence and a

model, i.e., RDM at convergence.
. Region-based overlap measure. The Bhattacharyya mea-

sure of similarity between the distribution of image

feature inside and outside the curve at convergence.
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(a) (b)

Fig. 8. Results using the GAC model with a shape prior term. (a) and
(b) Final curve positions.

Fig. 6. Effect of initialization and occlusion. Top row: (a) Different
initializations, (b)-(d) corresponding final curve positions. Bottom row:
(a) Initialization with a curve which does not contain the desired object
(the bottle) and (b) position of the curve showing it has missed the
object; (c) image with occlusion; the object contour no longer resembles
the bottle model and should be ignored by the moving curve and (d)
position of the curve corresponding to (c) after it has missed the object
boundary.

Fig. 7. Segmentation results dependence on varying model distributions.
(a) Initial curve. (b)-(d) Three different models (top) and the correspond-
ing final curve positions (bottom).

1. Note that DM is always in ½0; 1�, where DM equal to 1 indicates a
perfect match between manual and automatic segmentations.



For all the considered methods, we obtained almost the

same region-based measures (refer to the first two rows in

Table 2), although the segmentation results at convergence

are different as shown in Figs. 10d, 10g, and 10h. On the

contrary, curve evolution with CDM increased the contour-

based similarity, leading to a measure very different from

the ones obtained with RDM and ROP (refer to the last rows

in Table 2).

These statistics show that the region-based functionals in

[9] and [8] fail in this example, whereas the distribution of an

image feature on the contour can limit the space of possible

solutions to a contour very close to the ground truth.
For this example, we plotted the distribution of the image

feature along the final contour and the model in Fig. 11a.

The proposed curve evolution method recovered accurately

the learned model. We also plotted in Fig. 11b the evolution
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Fig. 10. Detection of the inner boundary of the LV (endocardium) in a Magnetic Resonance image. The purpose is to find the boundary between the
heart cavity (foreground) and the background, as shown by the manual segmentation provided by an expert and depicted by the green curve in (b).
(d) The curve at convergence with the proposed functional CDM (red curve) superimposed on the ground-truth curve (green curve). (e)-(h) The
results with, respectively, GAC [17], RL [10], RDM [8], and ROP [9]. For all the functionals, we used the same initialization depicted by the red curve
in (c), and model distributions were learned from the ground truth. Image feature for CDM: Average intensity of pixel neighborhood (rectangular
neighborhood of size 5� 5 centered on the pixel). c ¼ 0 (no constant velocity). The curve evolution is limited to the yellow box containing the region
of interest in (a).

Fig. 9. Tracking of both the left ventricle cavity (first row) and the right ventricle (second row) in an MR sequence containing 25 frames (fx depicts
frame x). Feature: The curvature. For each frame, the model distributions were learned from the result of the previous frame. The first frame of the
sequence was segmented manually.



of the optimized functional, the Bhattacharyya measure in
this case, as a function of the iteration number. The
Bhattacharyya measure converged approximately to its
maximum possible value (BðP�;MÞ ¼ 0:99 � 1Þ).

4.2.2 Segmentation of the Outer Boundary of the LV

In the example depicted in Fig. 12, the purpose is to detect
the outer boundary of the LV (epicardium). This problem is
also acknowledged as difficult because the image gradients
between the bottom part of the LV and the background are
very small (refer to the manual delineation in Fig. 12a). The
model distribution is learned from a previous frame and
the initial curve is depicted with the red square in Fig. 12b.
The curve evolution is shown by several intermediate steps
in Fig. 12c. The proposed functional allowed successfully
stopping the curve at the bottom part of the LV, where the
background and heart myocardium are connected and have
approximately the same intensity profile. In comparison to

the expected delineation, the proposed method yielded a
RMSE equal to 1.66 pixels and a DM equal to 0.95. At
convergence, the Bhattacharyya measure is equal to 0.91,
whereas its initial value was 0.68.

4.2.3 Tracking Examples

Tracking the LV inner and outer boundaries in cardiac MR
sequences is an essential yet challenging task in cardiac
image analysis [28], [60]. We applied the proposed method to
a set of sequences in order to track LV inner and outer
boundaries. For each frame, the model distribution and the
initial curve are obtained from the result of the previous
frame. The first frame of each sequence is segmented
manually. The tracking performance appraisal is carried
out by comparison with independent manual segmentations
over five sequences. Each sequence contains 10 frames,
which amounts to segmenting 45 images automatically. We
give a representative sample of the results obtained in Fig. 13
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Fig. 11. Detection of the inner boundary of the LV. (a) Distribution of the image feature on the final curve and the model. (b) Evolution of the functional
as a function of the iteration number.

Fig. 12. Detection of the outer boundary of the LV (epicardium) in an MR image. Model distributionM is learned from a previous frame. c ¼ 0:1. The
image feature is the average intensity of pixel neighborhood (rectangular neighborhood of size 5� 5 centered on the pixel). (b)-(d) The initial curve,
several intermediate evolution steps, and the final curve (red curve), respectively, superimposed to the expected delineation (green curve).

TABLE 1
Evaluation of DM and RMSE (in Pixels)

Obtained by Curve Evolution
with the Proposed Functional (CDM) and Other Functionals

CDM yielded the lowest RMSE and highest DM and, therefore, the
best conformity to the ground truth.

TABLE 2
Left Ventricle Inner Boundary Example—Region-Based and
Contour-Based Bhattacharyya Similarity Measures Obtained

with RDM [8], ROP [9], and the Proposed Energy (CDM)



for visual inspection. The method succeeded in stopping the
curve at relevant positions where the image transitions
are very small. We report in Table 3 the statistics of the
performance measures (DM and RMSE). We obtained an
averageDM equal to 0.89 for the LV inner boundaries and to
0.93 for the outer ones. Note that an averageDM higher than
0.80 indicates an excellent agreement with manual segmen-
tations [61], and an average DM higher than 0.90 is,
generally, difficult to obtain [60]. For instance, the study in
[60] reports an average DM equal to 0.81. The performance
measures obtained demonstrate that the proposed func-
tional leads to competitive results.
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Fig. 13. A representative sample of the results of tracking the inner (endocardium) and outer (epicardium) boundary of the LV in five MR sequences,
each containing 10 frames (systole phase of the cardiac cycle). Image feature: Image gradient. c ¼ 0. sxfy depicts frame y in sequence x. A video of
sequence 2 is uploaded with the submission to illustrate the tracking.

TABLE 3
Tracking Performance Evaluation of the Proposed Curve
Evolution over Five Cardiac Sequences by Comparisons

with Independent Manual Segmentations—Means
and Standards Deviations of RMSE and DM



5 CONCLUSION

This study addressed the problem of recovering region
boundary patterns in an image by the minimization of an
active curve functional, which measures the similarity
between a feature distribution on the curve and a learned
model distribution. This distribution matching drives the
active curve until it settles on the boundaries of interest, i.e.,
boundaries on which the feature follows the model distribu-
tion. The method was formulated for the Kullback-Leibler
divergence and the Bhattacharyya measure. It was applied in
two challenging circumstances, specifically the extraction of
boundaries fitting a learned outline pattern and segmenta-
tion in the presence of boundaries with weakly contrasted
segments. The scheme used the distribution of a geometric
feature for the first task and an photometric feature for the
second task. The formulation is fundamentally different
from region-based schemes, which cannot distinguish
between regions having the same image distributions. The
evolution equations we obtained can be viewed as GACs
having variable stopping functions, which have two major
differences from the usual GAC stopping function. First, they
are functions of both the image and the curve, rather than just
the image, as with the usual GAC. Second, they use global
information, namely, the feature distribution on the curve,
rather than just pixelwise, as with GAC. Several experiments
confirmed that the proposed method outperforms region
and edge-based formulations in adverse conditions.
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