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Abstract

We present ef�cient graph cut algorithms for three problems: (1) �nding a region in an image, so that the
histogram (or distribution) of an image feature within the region most closely matches a given model; (2) co-
segmentation of image pairs and (3) interactive image segmentation with a user-provided bounding box. Each
algorithm seeks the optimum of a global cost function based on the Bhattacharyya measure, a convenient alternative
to other matching measures such as the Kullback–Leibler divergence. Our functionals are not directly amenable to
graph cut optimization as they contain non-linear functions of fractional terms, which make the ensuing optimization
problems challenging. We �rst derive a family of parametricbounds of the Bhattacharyya measure by introducing an
auxiliary labeling. Then, we show that these bounds areauxiliary functionsof the Bhattacharyya measure, a result
which allows us to solve each problem ef�ciently via graph cuts. We show that the proposed optimization procedures
converge within very few graph cut iterations. Comprehensive and various experiments, including quantitative and
comparative evaluations over two databases, demonstrate the advantages of the proposed algorithms over related
works in regard to optimality, computational load, accuracy and �exibility.
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I. I NTRODUCTION

Finding accurately a meaningful region in an image, for instance a person in a photograph or an
organ in a medical scan, is a subject of paramount importancein computer vision for its theoretical and
methodological challenges, and numerous useful applications. Current major application areas include
content-based image retrieval [1], image editing [2], medical image analysis [3], remote sensing [4],
surveillance [5] and many others. The problem we tackle in this study consists of segmenting one
or several images into two regions (a foreground and a background), so that an image feature (e.g.,
color, textures, edge orientations, motion) within the segmentation regions follows some availablea
priori information. Such priors are necessary to obtain semantic segmentations that are unattainable with
unsupervised algorithms [6], [7], [8]. The following variants of the problem are of broad interest in
computer vision:

� Co-segmentation of image pairs:Introduced initially in the work of Rother et al. [9], the problem
amounts to �nding the same object (foreground) in a pair of images. Facilitating segmentation of an image
using minimal prior information from another image of the same object, co-segmentation has bestirred
several recent investigations [10], [2], [11], [12], [13] and has been very useful in object recognition and
image retrieval [14], [1], [15], [9], as well as image editing [2] and summarization [16].

� Interactive image segmentation:Of great practical importance in image editing, interactive
segmentation uses minimal user interaction, for instance simple scribbles or bounding boxes, to learn
prior information from the current image. Embedding clues on user intention facilitates segmentation, and
has been intensively researched in recent years [17], [18],[19], [20], [21], [22].

� Segmentation with of�ine learning:Segmenting a class of images with similar patterns occurs in
important applications such as medical image analysis. In this case, of�ine learning of prior information
from segmented training images is very useful [23], [24].

� Tracking: In the context of tracking a target object throughout an image sequence, one can segment
the current frame using image feature cues learned from previously segmented frames [25], [26].

A sub-problem which arises in these variants is the problem of �nding a segmentation region consistent
with a model distribution of the image feature [27], [28], [25], [29]. This requires optimization of a global
measure of similarity (or discrepancy) between distributions (or histograms). In this connection, several
recent studies proved that optimizing global measures outperforms standard algorithms based onpixelwise
information in the contexts of co-segmentation [9], [11], [13], segmentation [30], [23], [31] and tracking
[32], [33], [25]. Moreover, region-based image similaritymeasures can be very useful in image retrieval
[9]. The following discusses prior art in this direction andthe contributions of this study.

A. Prior art

1) Active contours and level sets:The use of a global similarity measure in image segmentationoften
leads to challenging optimization problems. The solutionswere generally sought following gradient-based
optimization via active contour (or level set) partial differential equations [34], [27], [23], [31], [25],
[29]. An Euler-Lagrange equation of contour motion is derived so as to increase the consistency between
the foreground region enclosed by the active contour and a given model [25], [29] or to maximize the
discrepancy between the two segmentation regions [31], thereby reaching a local optimum at convergence.
Several measures were studied within the active contour framework, for instance, the Kullback–Leibler
divergence [29], the Earth Mover's distance [27] and the Bhattacharyya coef�cient [23], [25], [31]. The
Bhattacharyya coef�cient has a �xed (normalized) range, which affords a conveniently practical appraisal
of the similarity, and several other desirable properties [35]. We will discuss some of these properties in
the next section.

Along with an incremental gradient-�ow evolution, active contours may require a large number of
updates of computationally onerous integrals, namely, thedistributions of the regions de�ned by the curve
at each iteration and the corresponding measures. This can be very slow in practice: it may require up to
several minutes on typical CPUs for a color image of a moderatesize [28]. Furthermore, the robustness
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of the ensuing algorithms inherently relies on a user initialization of the contour close to the target region
and the choice of an approximating numerical scheme of contour evolution.

2) Graph cuts:Discrete graph cut optimization [36], [37], [38], which views segmentation as a label
assignment, has been of intense interest recently because it can guarantee global optima and numerical
robustness, in nearly real-time. It has been effective in various computer vision problems [39], for instance,
segmentation [19], [21], [40], [20], tracking [41], [42], motion estimation [43], visual correspondence [44]
and restoration [37]. Unfortunately, only a limited class of functions can be directly optimized via graph
cuts. Therefore, most of existing graph cut segmentation algorithms optimize a sum of pixel dependent
or pixel-neighborhood dependent data and variables. Global measures of similarity between distributions
have been generally avoided because they are not directly amenable to graph cut optimization. Notable
exceptions include the co-segmentation works in [9], [13],[11], [10] as well as the interactive segmentation
algorithms in [45], [46]. For instance, in the context of co-segmentation of a pair of images, the problem
consists of �nding a region in each image, so that the histograms of the regions are consistent. Rother et
al. [9] pioneered optimization of theL1 norm of the difference between histograms with a trust region
graph cut (TRGC) method. They have shown that TRGC can improve a wide spectrum of research: it
outperformed standard graph cut techniques based on pixelwise information in the contexts of object
tracking and image segmentation, and yielded promising results in image retrieval. Unfortunately, TRGC
is very sensitive to initializations [10]. In [13], Mukherjee et al. suggested to replace theL1 by the
L2 norm, arguing that the latter affords some interesting combinatorial properties that be�t graph cut
optimization. After linearization of the function, the problem is solved by graph cuts [47], [48] via roof-
duality relaxation [49]. However, such relaxation yields only a partial solution with some pixels left
unlabeled. How to label these pixels without loosing ties tothe initial problem is an important question
[10]. Moreover, the optimization in [13] builds a graph whose size is twice the size of the image. In [10],
the authors combine dual decomposition [50] and TRGC to solvethe Lp optimization problems in [9],
[13], yielding an improvement in optimality. Hochbaum and Singh proposed to maximize the dot product
between histograms [11], which results in a sub-modular quadratic function optimization solvable with a
single graph cut. Unfortunately, the growth of the graph size in [11] behaves quadratically.

The cost functions in [9], [13], [11] are based on theunnormalizedhistogram, which depends on the
size (or scale) of the region. Therefore, they do not afford ascale-invariant description of the class of
target regions. The ensuing co-segmentation algorithms enforce the number of foreground pixels to be the
same in both images. Therefore, they are seriously challenged when the target foregrounds have different
sizes [10]. In such dif�cult co-segmentation cases, or in other applications where the size of the target
region is different from the size of the learning region, forinstance, tracking an object whose size varies
over an image sequence, the unnormalized histogram requires additional optimization/priors with respect
to region size [9]. Furthermore, in information theory, it transpires that anLp measure does not afford
the best appraisal of the similarity between distributions[35].

B. Contributions

This study investigates ef�cient graph cut algorithms for three problems: (1) �nding a region in an image,
so that the distribution (kernel density estimate) of an image feature within the region most closely matches
a given model distribution; (2) co-segmentation of image pairs and (3) interactive image segmentation
with a user-provided bounding box. Each algorithm seeks theoptimum of a global functional based on the
Bhattacharyya measure, a practical alternative to other matching measures such as the Kullback-Leibler
divergence. Our functionals are not directly amenable to graph cut optimization as they contain non-
linear functions offractional terms, which make the ensuing optimization problems challenging1. We �rst
derive a family of parametric bounds of the Bhattacharyya measure. Then, we show that these bounds are

1Note that most of related methods useunnormalizedhistograms, e.g., [9], [13], [11], which do not give rise to fractional terms. In our
case, the use of distributions is more �exible (e.g., it affords scale invariance), but comes at the price of a more challenging optimization
problem (due to fractional terms).
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auxiliary functions(See Section II-A2) of the Bhattacharyya measure, a result which allows us to solve
each problem ef�ciently via graph cuts. We show that the proposed optimization procedures converge
within very few graph cut iterations. Comprehensive and various experiments, including quantitative and
comparative evaluations over two data sets, demonstrate the advantages of the proposed algorithms over
related works in regard to optimality, computational load,accuracy and �exibility. These advantages are
summarized as follows.

� Computational load:The proposed bound optimization brings several computational advantages
over related methods. First, it builds graphs that have the same size as the image, unlike the graph cut
methods in [13], [11]. Second, the ensuing algorithms converge in very few iterations (typically less than
5 iterations). This will be demonstrated in the experiments. Third, the algorithm is robust to initialization
and does not require sophisticated initialization procedures as with TRGC [9]. It is possible to use trivial
initializations.

� Accuracy and optimality:Quantitative comparisons with related recent methods overa several
public databases demonstrate that the proposed framework brings improvements in regard to accuracy and
solution optimality.

� Flexibility: Unlike the unnormalized histogram models in [9], [13], [11], the proposed framework
yields co-segmentation and segmentation algorithms, which handle accurately and implicitly variations in
the size of the target regions because the Bhattacharyya measure references kernel densities and, therefore,
is scale-invariant.

We presented preliminary results of this work at the CVPR conference [28]. This TPAMI version
expands signi�cantly on [28]: It contains new theoretical justi�cations and algorithms, reports new ex-
periments/comparisons and includes new discussions, details and illustrations. The following summarizes
the most important differences with the CVPR version:

� The bound in [28] is an approximate (not exact) auxiliary function. Although the approximation in
[28] yielded a competitive performance in practice, there is no theoretical guarantee that the energy
decreases at each iteration. In this extended version, we re-wrote the bound so as to obtain an exact
(not approximate) auxiliary function, and derived a completely new proof based on rigorous analytical
arguments. The new arguments guarantee that the energy willnot increase during iterations.

� The CVPR version addresses the problem of �nding a single-image segmentation consistent with
a known (�xed) model distribution. This journal submissionaddresses two other problems where
model distributions are unknown variables that have to be estimated with the segmentations: (i) co-
segmentation of image pairs; and (ii) interactive image segmentation with a user-provided bounding
box.

� All the experiments in [28] are based on the exact knowledge of the ground truth color distribution2.
However, such assumption is not valid in most of practical scenarios where the actual distribution
is not known exactly. In this journal extension, we provide several new sets of experiments. We
added a signi�cant number of realistic segmentation/co-segmentation examples along with quantitative
evaluations and comparisons with recent methods.

Finally, it is worth mentioning the recent studies in [46], [51], which extended the bound-optimization
ideas of our CVPR paper [28] and showed competitive performances in the context of interactive segmen-
tation. Using the Bhattacharyya measure and bound optimization, the authors of [46] stated segmentation
as a sequence of distribution-matching processes combinedwith an additional Bhattacharyya term that
maximizes the discrepancy between the foreground and background distributions. Experimentally, the
methods in [46], [51] showed improvements over standard algorithms based on pixelwise log-likelihood
information [20], [19], [21].

The remainder of this paper is organized as follows. The nextsection details the cost functions and the
bound optimization. First, we start with the problem of �nding a region consistent with a known (�xed)

2In [28], the model is learned from the ground-truth segmentation of the testing image. The purpose of such experiments was to compare
the performance of the proposed optimization technique to standard prior-art algorithms (e.g., level sets) in regard to optimality and speed.
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model distribution. Then, we extend the formulation to co-segmentation and interactive segmentation,
where region models become variables that have to be estimated iteratively with the segmentations. Section
III discusses comprehensive experiments, including the application of the algorithms to various scenarios
as well as quantitative evaluations and comparisons with other methods. Section IV contains a conclusion.

II. GRAPH CUTS WITH GLOBAL BHATTACHARYYA TERMS

A. Finding a region consistent with a known (�xed) model distribution

1) The cost function:Let C = [0; 1]n be ann-dimensional color space, andI = ( I 1; I 2; : : : ; I N ) a
given image, whereI i 2 C denotes the color of pixeli andN is the number of pixels in the image. Each
segmentation ofI can be identi�ed by a binary vectorx = ( x1; x2; : : : ; xN ), with x i = 1 indicating that
pixel i belongs to the target region (foreground) andx i = 0 indicating background membership. Each
segmentationx yields a distribution over colorsc 2 C within the corresponding foreground region:

px (c) =
P

i x i K i (c)
jx j

(1)

wherejxj =
P

i x i is the size of the foreground region corresponding to binaryvectorx. Possible choices
of K i are the Dirac function� (I i � c) = 1 if I i = c and0 otherwise, which yields the normalized histogram,

or the Gaussian kernel(2�� 2)
n
2 exp� k I i � ck2

2� 2 , with � the width of the kernel. The purpose of the algorithm is
to seek a segmentationx so that the corresponding foreground color distributionpx most closely matches
a known target distributionq. To achieve this, we use the negative Bhattacharyya coef�cient:

B (xjq) = �
Z

C

p
px (c)q(c) (2)

The range ofB(xjq) is [� 1; 0], 0 corresponding to no overlap between the distributions and� 1 to a perfect
match. Thus, our objective is to minimizeB(xjq) with respect tox. The Bhattacharyya coef�cient has
the following geometric interpretation. It corresponds tothe cosine of the angle between theunit vectors
(
p

px (c); c 2 C)T and (
p

q(c); c 2 C)T (These vectors are unit if we use theL2 norm). Therefore, it
considers explicitlypx andq as distributions by representing them on the unit hypersphere. Note that the
Bhattacharyya coef�cient can also be regarded as the normalized correlation between(

p
px (c); c 2 C)T

and(
p

q(c); c 2 C)T .
The Bhattacharyya coef�cient has a �xed (normalized) range,which affords a conveniently practical

appraisal of the similarity. This is an important advantageover other usual similarity measures such as
the Kullback–Leibler divergence or theLp norms. It is worth noting that the distribution-matching term
is not invariant with respect to illumination changes. Thiswill be demonstrated in the experiments.

To avoid complex segmentations and isolated fragments in the solution, we add a regularization term
to our objective function:

S(x) =
X

f i;j g2N

wi;j [1 � � (x i � x j )] (3)

whereN is the set of neighboring pixels in a t-connected grid (t = 4; 8 or 16). Pairwise weightswi;j

are typically determined either by the color contrast and/or spatial distance between pixelsi and j . Our
purpose is to minimize the following function with respect to x:

E(xjq) = B(xjq) + �S (x); (4)

with � a positive constant. As we will eventually use graph cuts in the main step of our algorithm, we
assumewi;j � 0, which meansS(x) is a sub-modularfunction of binary segmentationx; See [38].
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2) Ef�cient bound optimization:A function ~h(x; y) is called auxiliary function ofh at y if it satis�es
the following properties:

h(x) � ~h(x; y) 8x (5)

h(y) = ~h(y; y) (6)

When cost functionh cannot be minimized directly, one can minimize a sequence ofauxiliary functions,
starting at some initialy (0) . At each iterationt, t = 1; 2; : : :, this amounts to solving:

y (t+1) = argmin
x

~h(x; y (t )) (7)

Properties (5) and (6) guaranteeh(y (t+1) ) � h(y (t )) and, ifh is bounded from below, the auxiliary-function
moves in (7) converge to a local minimum ofh; See [52].

boundary ofx

boundary ofy

yi = 1
x i = 0

yi = 1
x i = 1

yi = 0
x i = 0

Fig. 1. Derivation of the auxiliary function aty : We assume the foreground region of some �xedy includes the variable foreground region
de�ned by x . Fixed y corresponds to the solution obtained at a previous iteration.

To minimize E(xjq) in a bound optimization framework, we need to design an auxiliary function
~B(x; y jq) for the negative Bhattacharyya coef�cientB(xjq). At each step, we assume the scenario depicted
in Fig. 1, where the foreground region of some �xedy includes the foreground region de�ned byx, i.e.,
x � y . Let us start by expressingpx as a multiple ofpy by choosing3 some functionsf andg such that

px (c) =
f (c;x; y)
g(c;x; y)

py (c) (8)

As it will become clear later, the choice of speci�c forms off and g will be important in deriving an
auxiliary function ofB(xjq). Regardless, plugging (8) intoB(xjq) yields:

B(xjq) = �
Z

C

q
py (c)q(c)

s
f (c;x; y)
g(c;x; y)

dc (9)

The main computational dif�culty of (9) comes from the non-linear ratio function
q

f (c;x ;y )
g(c;x ;y ) , which is

not directly amenable to powerful optimizers such as graph cuts. In the Lemma that follows, we circumvent
this dif�culty by showing that this ratio function can be bounded by a linear combination off and g
when these functions are within interval[0; 1].

Lemma 1: 8� 2 [0; 1
2 ] and if f; g 2 [0; 1], we have:

�

s
f
g

� �g � (1 + � )f (10)

3For equality to hold, we need to choosef andg so that(g = 0) ) (f = 0 _ py = 0) .
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Fig. 2. The geometry of inequality (10) for� = 0 (left) and � = 1
2 (right). The approximating plane (upper bound) is depicted by the

wireframe mesh whereas the solid blue surface corresponds to function �
q

f
g . The red dots at (1, 1, -1) correspond to the tightness condition

in (12) whenx = y (speci�cally, f = g = 1 ). Notice that the neighborhood of the green dot at(1; 0; � 1:5) corresponds to lower values of

�
q

f
g and, therefore, lower values of the negative Bhattacharyya coef�cient.

Proof: See appendix.
Fig. 2 illustrates the geometry of inequality (10), with theupper bound corresponding to� = 0 on the

left side and the upper bound corresponding to� = 1
2 on the right side.

If we choosef andg to be within interval[0; 1], then Lemma 1 yields an upper bound onB(xjq) for
some �xed y:

B(xjq) � �
Z

C

q
py (c)q(c)

�
(1 + � )f (c;x; y) � �g (c;x; y)

�
dc (11)

To obtain an auxiliary function that satis�es (6), the choice of f andg should ensure that bound (10)
is tight whenx = y, i.e., we should have:

s
f (c;x; x)
g(c;x; x)

= (1 + � )f (c;x; x) � �g (c;x; x) (12)

We propose the following choices forf andg:

f (c;x; y) =
P

i x i K i (c)
P

i yi K i (c)

g(c;x; y) =
jxj
jy j

(13)

It is easy to verify that these satisfy both the multiplicative form in (8) and also the tightness condition
in (12) whenx = y (speci�cally, f = g = 1, which corresponds to the red dots at (1, 1, -1) in Fig.
2). Plugging this choice off andg into the upper bound in (11) yields the following auxiliary function
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~B(x; y jq) for the negative Bhattacharyya coef�cientB(xjq) at anyx � y :

~B(x; y jq) = �
Z

C

q
py (c)q(c)

�
(1 + � )

P
i x i K i (c)

P
i yi K i (c)

� �
jx j
jy j

�
dc

=
X

i

�
� (1 + � )

Z

C

q
py (c)q(c)

K i (c)
P

i yi K i (c)
dc� �

B (y jq)
jy j

�
x i

= (1 + � )B(y jq)
| {z }

Constant

+
X

i

"
(1 + � )yi

jy j

Z

C

s
q(c)
py (c)

K i (c)dc

#

(1 � x i )

| {z }
background summation

+
X

i

�
� �B (y jq)

jy j

�
x i

| {z }
foreground summation

(14)

For a �xed y, equation (14) is amodular (linear) function of binary variablesx i . We have arranged the
expression as the sum of a constant (independent ofx) and two summations ofunary coef�cients, one
over the background region and the other over the foreground. Notice that these unary coef�cients are
independent of binary variablex. They depend only on �xedy. Condition x � y can be enforced by
adding a very large constant to the unary coef�cient of eachi within the foreground's summation ifi
veri�es yi = 0.

This development leads us to the following proposition:

Proposition 1. For any� 2 [0; 1
2 ], function ~B satis�es

B(xjq) � ~B(x; y jq) 8x � y (15a)

B(xjq) = ~B(x; xjq) (15b)

and, therefore,~B(x; y jq) is an auxiliary function ofB(xjq) at y for x � y .

Proof: The bound condition in (15a) follows directly from the result we obtained in (11). Also, the
tightness condition (12), which can be easily veri�ed for our choice off andg, proves (15b).

If ~B(x; y jq) is an auxiliary function ofB(xjq), it is straightforward to see that~E(x; y jq) = ~B(x; y jq)+
�S (x) is an auxiliary function ofE(xjq). Following equation (7), the main step of our algorithm is:

y (t+1) = argmin
x

~E(x; y (t ) jq) (16)

A pseudo-code of the algorithm is given inAlgorithm 1. SinceS(x) is submodular and~B(x; y jq) is
modular in x, then auxiliary function ~E(x; y jq) is submodular inx. In combinatorial optimization, a
global optimum of such submodular functions can be computedef�ciently in low-order polynomial time
with a single graph cut by solving an equivalent max-�ow problem; In this work, we use the max-�ow
algorithm of Boykov and Kolmogorov [36].

Role of parameter � : In this section, we give an interpretation to parameter� using Fig. 2, which
illustrates the geometry of inequality (10). Let us �rst consider the case� = 0 depicted by the left
side of Fig. 2. In this case, the minimum of the approximating-plane function (i.e., the upper bound
depicted by the wireframe mesh) occurs at the red dot at (1, 1,-1). Speci�cally, f = g = 1, i.e., x = y.
This means that the new segmentation obtained at the currentiteration is similar to the segmentation
recorded at the previous iteration. For� > 0, which we illustrate by the right side of the �gure for
� = 1

2, the minimum of the upper bound occurs in the neighborhood ofthe green dot at(1; 0; � 1:5).

Notice that such a neighborhood corresponds to lower valuesof �
q

f
g and, therefore, lower values of

the negative Bhattacharyya coef�cient; See the lower surface of the �gure. In fact,� controls the slope
of the upper-bound plane; the higher� , the steeper the slope. More importantly, for low values of the
negative Bhattacharyya coef�cient (Speci�cally, when function f andg are close to the coordinates of the
green dot), increasing� tighten the gap between the bound and the original function.Therefore, when



8

Algorithm 1: Finding a region consistent with a model
1) Iter. t = 0:

a) Initialize the �xed labeling toy (0)

b) Set� = � 0 � 0
2) Repeat the following steps until convergence:

a) Update the current labeling by optimizing the auxiliary function overx via a graph cut:

y (t+1) = argmin
x :x � y ( t )

~E(x; y (t ))

b) If � � 1
2 , go to step d)

c) If � > 1
2 (This step is necessary only when� 0 > 1

2)
� If the actual energy does not increase, i.e.,E(y (t+1) ) � E(y (t )):

– Go to step d)
� If the actual energy increases, i.e.,E(y (t+1) ) > E (y (t )):

– Decrease� : �  �� , with � 2 [0; 1[
– Return to step a)

d) t  t + 1

� increases, the bound yields a better approximation of the energy. In other words, higher values of�
favor lower values of the negative Bhattacharyya coef�cient. Consequently, when we have a strict upper
bound (� 2 [0; 1

2 ]), one expect that� = 1
2 yields the best solution; We will con�rm this experimentally.

In summary,� controls the quality of the approximation for low values of the negative Bhattacharyya
coef�cient: the higher� , the better the approximation.Recall that one cannot increase arbitrary� as
a value of� > 1

2 does not guarantee anymore that the energy does not increasewithin each iteration.
However, one can see from Fig. 2 that, up to some values of� > 1

2, most of the blue surface still lies
below the upper-bound plane, even though we do not have a strict bound anymore. Therefore, it is natural
to introduce inAlgorithm 1 additional optional steps, which guarantee that the energy does not increase
even for an initial choice of� bigger than1

2 (Steps 2.c inAlgorithm 1). These steps allow to choose the
best trade off between approximation quality and optimality guarantee; we will con�rm experimentally
the bene�ts of such steps. Starting from an� > 1

2, we verify whether the bound optimization did not
increase the energy at the current iteration, i.e.,E(y (t+1) ) � E(y (t )). If this is the case, we accept the
obtained solution and proceed to next iterationt + 1, while keeping the same� > 1

2. Otherwise, we reject
the obtained solution and re-optimize the auxiliary function at iterationt, but with a smaller value of� .

B. Co-segmentation of image pairs

The co-segmentation problem amounts to �nding the same foreground region in a pair of images. It has
attracted an impressive research effort recently [11], [13], [9], [10]. Let I 1 and I 2 be two given images.
The purpose is to simultaneously segment these images so that the foreground regions have consistent
image distributions and smooth boundaries. We formulate the problem as the optimization of the following
cost function with respect to two binary variablesu and v, the �rst encoding a segmentation ofI 1 and
the second a segmentation ofI 2:

F (u; v) = B(ujpv )
| {z }

Co-segmentation

+ � f S(u) + S(v)g
| {z }
Regularization

(17)

We adopt an iterative two-step algorithm, with functionalF decreasing at each step: the �rst step �xes
u and minimizesF with respect tov, whereas the second step seeks an optimalu with v �xed. Both
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steps amount to �nding a region consistent with a �xed model distribution and, therefore, can be solved
usingAlgorithm 1 presented in the previous section. The principle steps of the proposed co-segmentation
procedure are summarized inAlgorithm 2.

Algorithm 2: Co-segmentation of image pairs
1) Iter. l = 0. Initialize u; v : ui = vi = 1 8i .
2) Repeat the following steps until convergence.

a) Fix u and updatev with Algorithm 1 as follows:

v (l+1) = argmin
v

F (u (l ) ; v )

= argmin
v

E(v jpu ( l ) )

b) Fix v and updateu with Algorithm 1 as follows:

u (l+1) = argmin
u

F (u; v (l+1) )

= argmin
u

E(ujpv ( l +1) )

c) l  l + 1

C. Image segmentation with a user-provided bounding box

In this section, we extendAlgorithm 1 to interactive image segmentation. In this case, the model
distribution is not assumed known (or �xed). Given a user-provided box bounding the foreground region
(cf. the examples in Fig. 11), the background model is updated iteratively along with the segmentation
process and is used to �nd a two-region partition of the imagedomain. LetI denote a given image and
R bounding the region (image sub-domain) within the bounding box. A segmentation ofR bounding can be
identi�ed by binary labelingx = ( x1; x2; : : : ; xN ), with x i = 1 indicating that pixeli belongs to the target
region (foreground) andx i = 0 indicating background membership (N is the number of pixels within
R bounding ). The algorithm consists of optimizing with respect tox a sequence of cost functions of the
following form:

G(xjN (k� 1)) = B(�xjN (k� 1)) + �S (x); (18)

where �x = ( �x1; �x2; : : : ; �xN ), with �x i = 1 � x i . Model distributionN (k� 1) is a variable, which has to be
updated along with the segmentation. Given an initialN (0) learned from image data outside the bounding
box (i.e., within a region in
 n R bounding , where
 denotes the image domain), the algorithm iterates
two steps. One step seeks inR bounding a background region consistent with current modelN (k� 1) and
is similar to Algorithm 1, whereas the other step re�nes the model using the current segmentation. An
illustration of this two-step algorithm is depicted in Fig.3. The principle steps of the proposed interactive
segmentation algorithm are summarized inAlgorithm 3.

Let us examine the iterative behavior ofAlgorithm 3. At the �rst iteration (k = 1), model N (0) is
learned from outside the bounding box. Because the optimization in (18) seeks a relevant region inside
the bounding box, the initial labeling is guaranteed to change. At iteration (k > 2), we have two cases:

1) N (k� 1) matches perfectlyN (k� 2): This causes the algorithm to converge because the energies
optimized at the current and previous iterations are the same.

2) N (k� 1) does not exactly matchN (k� 2): In this case, the energy is updated and so is the labeling.
As illustrated by the example in Fig. 10, this happens in a fewiterations (typically less than 10). In fact,
the optimization in (18) ensures only a best possible match betweenN (k� 1) and N (k� 2), not an exact
match. Also, the smoothness constraint in�uences the solution and, therefore, can causeN (k� 1) to deviate
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Algorithm 3: Segmentation with a user-provided bounding box
1) Iter. k = 0:

a) Initialize R bounding with a user-provided bounding box.
b) ComputeN (0) with image data outsideR bounding , using for instance the distribution ofI in a

strip of width w around the bounding box.
2) For each iter.k; k = 1; 2; : : : , repeat the following steps until convergence.

a) Updatex at iterationk with Algorithm 1 as follows

x (k) = argmin
x

G(xjN (k� 1))

b) Update the background model at iterationk as follows:

N (k)(c) =
P

i �x i K i (c)
j �x j

(19)

slightly from N (k� 2). During a few iterations, the background model is updated, thereby approaching the
distribution of image data in the neighborhood of the target-region boundaries.

It is worth noting thatAlgorithm 3 has an important advantage over optimizing pixelwise image-
likelihood functions, as is common in the existing interactive segmentation algorithms [20], [18], [17].
These algorithms require learning both foreground and background models.Algorithm 3 relaxes the need
for estimating the foreground model and, therefore, is lessprone to errors in estimating model distributions.

Target region boundary

Learning the background model at iterk (N (k))

x
(k)
i = 1


 n Rbounding

Rbounding

Bounding box

Segmentation boundary at iterk

Learning the initial background model (N 0)

Fig. 3. Illustration of the two-step segmentation with a user-provided bounding box (Algorithm 3): background modelN ( k ) is re�ned
iteratively with the binary labeling.

III. E XPERIMENTS

This section contains three parts, each describing an evaluation of one of the three proposed algorithms.
For all the experiments, the photometric variable is color speci�ed in RGB coordinates.
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A. Finding a region consistent with a �xed model distribution(Algorithm 1)

1) Examples: Fig. 4 shows examples of segmentations where the training and testing images are
different but depict the same type of target regions. Each row in the �gure corresponds to an example
of target regions. The target-region categories are very diverse, including animals, cars, monuments and
humans in sport scenes. These images were obtained from the iCoseg database introduced in the work
of Batra et al. [2]. Given a model learned from a manual delineation of the target region in a single
training image, we show howAlgorithm 1 can delineate different instances of the target region in several
other images. The training image and its manual segmentation are shown in the �rst column of each
row. The rest of the columns shows the segmentation obtainedwith Algorithm 1. In these examples,
the color distributions, shapes and sizes of the target objects do not match exactly. The target object
undergoes signi�cant variations in shape/size in comparison to the learning image, which precludes the
use of shape priors to drive the segmentation process.Algorithm 1 handles implicitly these variations
because no assumptions were made as to the size, shape, or position of the target object. Furthermore, in
some cases, the background regions are cluttered and are signi�cantly different from the training-image
background. For these scenarios, using a background model as in standard likelihood-based methods [21],
[20], [18], [17] would not be helpful. For this set of experiments, we used the following parameters:
� = 0:5; � = 1 � 10� 4, with standard spatial distance pairwise weights [19] and a4-connected grid. A
3-dimensional histogram based on963 bins was used as a distribution.

2) Effect of� : Fig. 5 depicts typical results, which demonstrate the effect of the initial value of�
on the obtained solutions. We run several tests and plotted (i) the energy obtained at convergence as a
function of the initial value of� (�rst row, right side); and (ii) the evolution of the energy as a function of
the iteration number for different values of� 0 (�rst row, left side). Notice that the energy at convergence
is a monotonically decreasing function of� , but becomes almost constant starting from some value of
� (� � 1). As expected, for� 2 [0; 1

2] (i.e., when we have a strict upper bound),� = 1
2 yielded the

best solution (lowest energy). These results are consistent with the interpretation we gave earlier to� : �
controls how well the bound approximates the energy for highvalues of the Bhattacharyya coef�cient;
the higher� , the better the approximation. We also observe that� > 1

2 can improve slightly the obtained
solutions but, starting from some value of� , the performance ofAlgorithm 1 remains approximately the
same. This con�rms the bene�ts of the additional optional steps that we added to our algorithm, and is
expected. As discussed earlier, one can see from Fig. 2 that,up to some� > 1

2, most of the blue plane
still lies below the surface, even though it is not a strict lower bound anymore. The second row of Fig.
5 depicts the images we used in this set of tests. The trainingimage and its manual segmentation are
shown in the �rst column of the �gure. From the second to �fth column, we show the segmentations
obtained for different values of� 0. For this set of experiments, we used the following parameters along
with standard contrast-sensitive pairwise weights [20] and an 8-connected grid:� = 1 � 10� 4; Number
of bins: 923; � = 0:8.

3) Quantitative evaluations and comparisons in regard to optimality and computational load:We
carried out quantitative evaluations and comparisons on the Microsoft GrabCut database [9], which contains
50 images with ground truth segmentations. This subset of experiments compare the proposed bound
optimizer to fast trust region [53], which is an iterative graph cut optimization technique recently proposed
to tackle non-linear segmentation functionals. The purpose is to evaluate each optimization technique in
regard to solution optimality and computation load. Therefore, similarly to the experiments in [53], [30],
[9], we used the ground truth distribution as a target. For each of the algorithms, we computed the following
performance measures: (i) the energy obtained at convergence, (ii) the number of graph cuts required to
reach convergence and (iii) the average error, i.e., percentage of misclassi�ed pixels in comparison to
the ground truth. For both algorithms, we used the same initialization (the initial foreground segment is
the whole image domain) and parameters along with standard spatial-distance pairwise weights and an
8-connected grid:� = 1 � 10� 5; Number of bins:923. ForAlgorithm1, we used� 0 = 5 and� = 0:8. Table
I reports the statistics of all the performance measures over the GrabCut data, indicating thatAlgorithm 1
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Fig. 4. Examples of segmentations for various target-region categories, including animals, cars, monuments and humans in sport scenes.
Given a model learned from a training image in the �rst column (A manualsegmentation is depicted by the green curve), objects of the same
category are obtained withAlgorithm 1 in several other images (red curves). In these examples, the color distributions, shapes and sizes of
the target objects do not match exactly. The target objects undergo substantial variations in shape/size in comparison to the learning images,
which precludes the use of shape priors to drive the segmentation process. Furthermore, in some cases, the background regions are cluttered
and are signi�cantly different from the training-image backgrounds. For these scenarios, the standard log-likelihood criterion, which requires
a reliable background model, is not applicable.
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Fig. 5. Illustration of the effect of� on the solutions obtained byAlgorithm 1. First row, right side: the energy obtained at convergence
as a function of the initial value of� ; First row, left side: the evolution of the energy as a function of the iteration number for different
values of� 0 . Second row, �rst column: The training image and its manual segmentation. Second row, columns from second to �fth: The
segmentations obtained for different values of� 0 .

TABLE I
Comparisons over the GrabCut data set of the proposed bound optimizer (Algorithm 1) with the fast trust region optimization in [53].

Method Bound optimization (Algorithm 1) Fast Trust Region [53]
Average energy � 0:9518 � 0:9247

Number of lower energies 35 15
Number of graph cuts (Median, Min, Max) (4; 3; 8) (77; 5; 911)

Average error 1:32% 3:43%

yields a competitive performance in regard to optimality and speed. In particular, the proposed algorithm
obtained lower energy values for35 out of the50 images while requiring a much lower number of graph
cuts. Fig. 6 plots for both algorithms the energy and error atconvergence versus the image number.

4) Failure cases:Fig. 7 depicts examples of failure ofAlgorithm1. The �rst, second and third columns
show three instances whereAlgorithm 1 did not succeed to fully detect the target region, given themodel
learned from the image in the �rst column. These failures aredue to the fact that the Bhattacharyya measure
is sensitive to signi�cant variations in color distributions between the learning and testing images. Such
variations occur with illumination changes, for instance.

B. Co-segmentation of image pairs (Algorithm 2)

Fig. 8 illustrates the iterative behavior of the co-segmentation algorithm on a pair of bear images, where
the target regions have completely different shapes and sizes. The �rst three columns depict the images and
segmentation boundaries at each iteration, whereas the last two columns display the foreground regions
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Fig. 6. Comparisons ofAlgorithm 1 with the fast trust region optimization in [53]. Left: Energy at convergence versus the image number;
Right: Error at convergence versus the image number.

Fig. 7. Examples of failure ofAlgorithm 1. The �rst column shows the learning image; the rest of the images showthree instances where
Algorithm 1 did not succeed to fully detect the target region. The parameters are� = 0 :5 and � = 1 � 10� 4 . We used standard spatial
distance pairwise weights [19] and a 4-connected grid. A 3-dimensionalhistogram based on963 bins was used as a distribution.

obtained at convergence. At the �rst iteration, the obtained foregrounds included signi�cant parts from
the backgrounds because the initial model distribution wascomputed over the whole domain of one of
the images. Then,Algorithm 2 re�ned the solution at convergence because the model distributions were
updated iteratively along with the segmentations.

Fig. 9 depicts several other co-segmentation examples, which illustrate the effectiveness ofAlgorithm2.
For each example, we show the segmentation boundaries and foreground regions obtained at convergence.
It is worth noting that, in some of these examples, the foreground regions have signi�cantly different
sizes. The proposed co-segmentation algorithm can handle implicitly such variations in the size of the
target regions, without the need additional optimization/priors with respect to region size. This is due to
the fact that the Bhattacharyya measure does not constrain the target regions to be of equal sizes, which is
an important advantage over the co-segmentation models in [13], [9]. Based onunnormalizedhistograms,

Iter 1 Iter 2 Iter 3 Iter 5 (convergence) obtained foregrounds

Fig. 8. The iterative behavior of the proposed co-segmentation algorithm(Algorithm 2). A 3-dimensional histogram based on323 bins was
used as a distribution. The parameters are� = 3 � 10� 4 , � = 0 :8 and� 0 = 5 :8, used in conjunction with standard spatial distance pairwise
weights [19] and a 4-connected grid.
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Fig. 9. Examples of co-segmentations withAlgorithm 2. For each example, we show the segmentation boundaries and foreground regions
obtained at convergence. A 3-dimensional histogram based on323 bins was used as a distribution. The parameters are� = 3 � 10� 4 ,
� = 0 :8 and � 0 = 5 :8.

the models in [13], [9] assume the foreground regions have the same size. In these examples, we used
standard spatial distance pairwise weights [19] and a 4-connected grid.

1) Quantitative evaluations and comparisons:We carried out a quantitative accuracy evaluation of
Algorithm 2 on the co-segmentation database introduced in [10], whichincludes 20 pairs of images. The
experiments in [10] used this database to evaluate several co-segmentation models, including theL1 model
in [9], the L2 model in [13] and the dot product model in [11], as well as several optimization techniques,
including trust region graph cut [9] and dual decomposition[10], among others. Due to the dif�culty of
obtaining a ground truth for co-segmentation, the data is based on composites of 40 different backgrounds
with 20 foregrounds. We followed the same experimental setting as [10]: we runAlgorithm 2 not only on
the original images but also on foreground regions of different sizes by rescaling one of the images to70,
80, 90 and200 percent of the original size. In particular, [10] showed that the performances of [13], [9]
degrade when the foreground regions have different sizes. Table II lists the average errors forAlgorithm2
and the errors reported in the comparisons in [10]. Except [11], all the methods yielded approximately the
same performance for the original images. However, when theforeground regions have different sizes, the
accuracies of [13], [9] degraded signi�cantly. On the contrary, the performance ofAlgorithm 2 is stable.
For more dif�cult co-segmentation examples where the foregrounds have different sizes, the models in
[13], [9] remove incorrectly some parts of the foregrounds [10]. Based on unnormalized histograms, these
models assume the foreground regions have the same size.Algorithm 2handles accurately variations in the
size of the target regions, and does so implicitly, i.e., without additional optimization/priors with respect
to region size. This is an important advantage over the models in [13], [9]. For this set of experiments,
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TABLE II
Accuracy evaluations on the co-segmentation database introduced in [10]: average error forAlgorithm 2 and the co-segmentation

algorithms in [9], [13], [11]. The performances of [9], [13], [11]were reported in the experimental-comparison study in [10].

Method Algorithm 2 Method in [9] Method in [13] Method in [11]
average error (original) 2:8% 3:2% 2:9% 8:8%

average error (Re-sized to90%) 2:9% 4:2% 4% 8:1%
average error (Re-sized to80%) 2:6% 5:2% 6:2% 7%
average error (Re-sized to70%) 2:8% – – –
average error (Re-sized to200%) 3:3% – – –

TABLE III
Accuracy evaluations on the GrabCut database: average error forAlgorithm 3 and two other algorithms optimizing the image

log-likelihood cost, one based on Dual Decomposition (DD) [18] and the other on Expectation-Maximization (EM) [20].� = 1 :5 � 10� 4 ;
Number of bins:963 ; � 0 = 5 ; � = 0 :8. The initial background model is estimated from the image within a strip of width20 pixels around

the bounding box.

Method Algorithm 3 DD + image likelihood [18] EM + image likelihood [20]
average error 7:49% 10:5% (reported in [18]) 8:1% (reported in [18])

Run time (seconds) 14:03 576 (reported in [18]) –

we used the following parameters along with standard contrast-dependent pairwise weights [20] and a
16-connected grid:� = 1 � 10� 4; Number of bins:323; � 0 = 5; � = 0:8.

C. Interactive segmentation with a user-provided bounding box (Algorithm 3)

1) Quantitative evaluations:We carried out quantitative and comparative evaluations ofAlgorithm
3 on the Microsoft GrabCut database [9], which contains 50 images with ground truth segmentations.
Each image comes with a bounding box that has been automatically computed from the ground truth
[18]. Similar experiments on the same data4 were reported in [18] to evaluate two other algorithms
optimizing the log-likelihood cost, one based on Dual Decomposition (DD) optimization [18] and the
other on an Expectation-Maximization (EM) procedure [20].The third and fourth rows of Fig. 11 depicts
two examples from the GrabCut data. The error is computed as the average percentage of misclassi�ed
pixels inside the bounding box. The errors reported in TableIII demonstrate thatAlgorithm 3 can yield a
competitive performance in the context of interactive image segmentation. For this quantitative evaluation,
the parameters ofAlgorithm 3 were �xed for all the images in the data set as follows:� = 1:5 � 10� 4;
Number of bins:963; � 0 = 5; � = 0:8. The initial background model is estimated from the image within
a strip of width20 pixels around the bounding box. We used standard spatial distance pairwise weights
[19] and a 4-connected grid.

2) Examples:In this section, we show several examples that illustrate how Algorithm 3 can delineate
target foreground regions using only a bounding box. The typical example in Fig. 10 illustrates the fast
convergence ofAlgorithm 3. The �rst column depicts the image and the bounding box, whereas the
remaining columns show the segmentation boundary obtainedat iterations1, 3, 5, 7, 9 and 11. Fig.
11 depicts several other examples. For each example, we showthe bounding box and the segmentation
boundary/foreground region obtained at convergence. Learning iteratively the background model from the
current image was suf�cient to accurately delineate the target regions in most of these examples. This is an
important advantage over optimizing the image likelihood cost, as is common in the existing interactive
segmentation algorithms [20], [18], [17]. The image likelihood requires learning both foreground and
background models.Algorithm 3 relaxes the need for estimating the foreground model and, therefore, is
less prone to errors in estimating model distributions. Thelast row of Fig. 11 shows a failure example
whereAlgorithm 3 included a part from the background in the obtained target region. This is due to the

4Similar to [18], we used 49 images; the “cross” image was excluded because the bounding box corresponds to the whole image domain.
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Initialization Iter 1 Iter 3 Iter 5 Iter 7 Iter 9 Iter 11 (convergence)

Fig. 10. An example showing the fast convergence ofAlgorithm 3. The initial background model is estimated from the image within a
strip of width 10 pixels around the bounding box.� = 1 :5 � 10� 4 ; number of bins:963 ; � 0 = 5 :8; � = 0 :8.

similarity in color pro�les between the background and the target region. In these examples, we used
standard spatial distance pairwise weights [19] and a 4-connected grid.

IV. CONCLUSION

We proposed ef�cient graph cut algorithms for three problems: (1) �nding a region in an image, so
that the distribution of image data within the region most closely matches a given model distribution; (2)
co-segmentation of image pairs and (3) interactive image segmentation with a user-provided bounding
box. Following the computation of an original bound of the Bhattacharyya measure, we reformulated
each problem as an auxiliary function optimization via graph cuts. Various realistic examples along
with quantitative and comparative evaluations demonstrated the performances, speed and �exibility of
the proposed algorithms.

Acknowledgment: The authors would like to thank Lena Gorelick, Frank R. Schmidt and Yuri Boykov
for providing the code of the fast trust region technique proposed recently in [53].

APPENDIX A

In this appendix, we give a proof of Lemma 1.
Proof: Consider the following parametric functionH � : [0; 1] ! R+ :

H � (g) =
1

p
g

+ �g � (1 + � ) (A-1)

with � 2 R+ . The �rst derivative ofH � is:
dH�

dg
= �

1

2g
3
2

+ � (A-2)

The second derivative ofH � is strictly positive:

d2H �

dg2
=

3

4g
5
2

> 0 8g 2 [0; 1] (A-3)

Therefore,dH �
dg is strictly increasing in[0; 1], which yields the following inequality:

dH�

dg
<

dH�

dg
(1) = � �

1
2

(A-4)

From (A-4) one can see that,8� � 1
2, dH �

dg � 0, i.e., H � is strictly decreasing in[0; 1]. This yields:

8� 2 [0;
1
2

] and8g 2 [0; 1] H � (g) � H � (1) = 0 , i.e.,
1

p
g

� 1 + � � �g (A-5)
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Fig. 11. Examples of segmentations with a user-provided bounding box (Algorithm 3). For each example, we show the bounding box and
the segmentation boundary/foreground region obtained at convergence. The initial background model is estimated from the image within a
strip of width 10 pixels around the bounding box.� = 1 :5 � 10� 4 ; Number of bins:963 ; � 0 = 5 :8; � = 0 :8.

Now notice the following inequality:
p

f � f 8f 2 [0; 1] (A-6)

Combining (A-5) and (A-6) gives:
s

f
g

� f (1 + � � �g )

= (1 + � )f � �fg

� (1 + � )f � �g (A-7)

The last inequality in (A-7) is due to the fact that� �fg � � �g (becausef 2 [0; 1]). Multiplying each
side in (A-7) by� 1 and inverting the inequality proves the Lemma.
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