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Abstract

We present ef cient graph cut algorithms for three probleifiy nding a region in an image, so that the
histogram (or distribution) of an image feature within thegion most closely matches a given model; (2) co-
segmentation of image pairs and (3) interactive image setatien with a user-provided bounding box. Each
algorithm seeks the optimum of a global cost function basethe Bhattacharyya measure, a convenient alternative
to other matching measures such as the Kullback—Leiblargiance. Our functionals are not directly amenable to
graph cut optimization as they contain non-linear fundiofifractional terms, which make the ensuing optimization
problems challenging. We rst derive a family of parametsmunds of the Bhattacharyya measure by introducing an
auxiliary labeling. Then, we show that these boundsaandliary functionsof the Bhattacharyya measure, a result
which allows us to solve each problem ef ciently via grapltscWWe show that the proposed optimization procedures
converge within very few graph cut iterations. Comprehensind various experiments, including quantitative and
comparative evaluations over two databases, demonstratadvantages of the proposed algorithms over related
works in regard to optimality, computational load, accyraad exibility.
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. INTRODUCTION

Finding accurately a meaningful region in an image, foranse a person in a photograph or an
organ in a medical scan, is a subject of paramount importancemputer vision for its theoretical and
methodological challenges, and numerous useful apmigstiCurrent major application areas include
content-based image retrieval [1], image editing [2], alimage analysis [3], remote sensing [4],
surveillance [5] and many others. The problem we tackle is 8tudy consists of segmenting one
or several images into two regions (a foreground and a badkglh), so that an image feature (e.g.,
color, textures, edge orientations, motion) within the nsegtation regions follows some availabde
priori information. Such priors are necessary to obtain semaagmentations that are unattainable with
unsupervised algorithms [6], [7], [8]. The following vamis of the problem are of broad interest in
computer vision:

Co-segmentation of image pairBitroduced initially in the work of Rother et al. [9], the pien
amounts to nding the same object (foreground) in a pair cigms. Facilitating segmentation of an image
using minimal prior information from another image of thergaobject, co-segmentation has bestirred
several recent investigations [10], [2], [11], [12], [13jcahas been very useful in object recognition and
image retrieval [14], [1], [15], [9], as well as image edgif2] and summarization [16].

Interactive image segmentatior©f great practical importance in image editing, interagtiv
segmentation uses minimal user interaction, for instamegle scribbles or bounding boxes, to learn
prior information from the current image. Embedding cluasuser intention facilitates segmentation, and
has been intensively researched in recent years [17], [18], [20], [21], [22].

Segmentation with of ine learningSegmenting a class of images with similar patterns occurs in
important applications such as medical image analysishigndase, of ine learning of prior information
from segmented training images is very useful [23], [24].

Tracking: In the context of tracking a target object throughout an iensgquence, one can segment
the current frame using image feature cues learned fromquely segmented frames [25], [26].

A sub-problem which arises in these variants is the problemding a segmentation region consistent
with a model distribution of the image feature [27], [28]5]2[29]. This requires optimization of a global
measure of similarity (or discrepancy) between distriimsi (or histograms). In this connection, several
recent studies proved that optimizing global measuresesittpns standard algorithms basedmxelwise
information in the contexts of co-segmentation [9], [11[3], segmentation [30], [23], [31] and tracking
[32], [33], [25]. Moreover, region-based image similarityeasures can be very useful in image retrieval
[9]. The following discusses prior art in this direction atie contributions of this study.

A. Prior art

1) Active contours and level set3he use of a global similarity measure in image segmentatitan
leads to challenging optimization problems. The solutimese generally sought following gradient-based
optimization via active contour (or level set) partial diential equations [34], [27], [23], [31], [25],
[29]. An Euler-Lagrange equation of contour motion is ded\so as to increase the consistency between
the foreground region enclosed by the active contour andr@nginodel [25], [29] or to maximize the
discrepancy between the two segmentation regions [31gblyereaching a local optimum at convergence.
Several measures were studied within the active contomnewark, for instance, the Kullback—Leibler
divergence [29], the Earth Mover's distance [27] and the Biddaryya coef cient [23], [25], [31]. The
Bhattacharyya coef cient has a xed (normalized) range, ethaffords a conveniently practical appraisal
of the similarity, and several other desirable properti&s.[We will discuss some of these properties in
the next section.

Along with an incremental gradient- ow evolution, active@mours may require a large number of
updates of computationally onerous integrals, namelydibigibutions of the regions de ned by the curve
at each iteration and the corresponding measures. Thiseagrlg slow in practice: it may require up to
several minutes on typical CPUs for a color image of a modesiaee [28]. Furthermore, the robustness



of the ensuing algorithms inherently relies on a user iltiion of the contour close to the target region
and the choice of an approximating numerical scheme of corgwolution.

2) Graph cuts: Discrete graph cut optimization [36], [37], [38], which wie segmentation as a label
assignment, has been of intense interest recently becauae guarantee global optima and numerical
robustness, in nearly real-time. It has been effective rroua computer vision problems [39], for instance,
segmentation [19], [21], [40], [20], tracking [41], [42],0tion estimation [43], visual correspondence [44]
and restoration [37]. Unfortunately, only a limited clagsunctions can be directly optimized via graph
cuts. Therefore, most of existing graph cut segmentatigorghms optimize a sum of pixel dependent
or pixel-neighborhood dependent data and variables. Gloleasures of similarity between distributions
have been generally avoided because they are not directiyante to graph cut optimization. Notable
exceptions include the co-segmentation works in [9], [1B1], [10] as well as the interactive segmentation
algorithms in [45], [46]. For instance, in the context of ®egmentation of a pair of images, the problem
consists of nding a region in each image, so that the higtogy of the regions are consistent. Rother et
al. [9] pioneered optimization of thé,; norm of the difference between histograms with a trust mregio
graph cut (TRGC) method. They have shown that TRGC can improvée spectrum of research: it
outperformed standard graph cut techniques based on péeeiwformation in the contexts of object
tracking and image segmentation, and yielded promisingltees image retrieval. Unfortunately, TRGC
is very sensitive to initializations [10]. In [13], Mukheg et al. suggested to replace the by the
L, norm, arguing that the latter affords some interesting doatbrial properties that bet graph cut
optimization. After linearization of the function, the fmlem is solved by graph cuts [47], [48] via roof-
duality relaxation [49]. However, such relaxation yieldslyoa partial solution with some pixels left
unlabeled. How to label these pixels without loosing tiesh® initial problem is an important question
[10]. Moreover, the optimization in [13] builds a graph wkasze is twice the size of the image. In [10],
the authors combine dual decomposition [50] and TRGC to stiied , optimization problems in [9],
[13], yielding an improvement in optimality. Hochbaum anddh proposed to maximize the dot product
between histograms [11], which results in a sub-moduladatec function optimization solvable with a
single graph cut. Unfortunately, the growth of the graplesiz[11] behaves quadratically.

The cost functions in [9], [13], [11] are based on timenormalizedhistogram, which depends on the
size (or scale) of the region. Therefore, they do not afforscale-invariant description of the class of
target regions. The ensuing co-segmentation algorithf@@nthe number of foreground pixels to be the
same in both images. Therefore, they are seriously chatémghen the target foregrounds have different
sizes [10]. In such dif cult co-segmentation cases, or ihestapplications where the size of the target
region is different from the size of the learning region, ifmstance, tracking an object whose size varies
over an image sequence, the unnormalized histogram recadtditional optimization/priors with respect
to region size [9]. Furthermore, in information theory, rarispires that ah, measure does not afford
the best appraisal of the similarity between distributi¢3ts].

B. Contributions

This study investigates ef cient graph cut algorithms foree problems: (1) nding a region in an image,
so that the distribution (kernel density estimate) of angeBeature within the region most closely matches
a given model distribution; (2) co-segmentation of imagespand (3) interactive image segmentation
with a user-provided bounding box. Each algorithm seek®gtenum of a global functional based on the
Bhattacharyya measure, a practical alternative to othechimag measures such as the Kullback-Leibler
divergence. Our functionals are not directly amenable tplgrcut optimization as they contain non-
linear functions offractional terms, which make the ensuing optimization problems chgiteg'. We rst
derive a family of parametric bounds of the Bhattacharyyasuea Then, we show that these bounds are

INote that most of related methods usenormalizedhistograms, e.g., [9], [13], [11], which do not give rise to fractibterms. In our
case, the use of distributions is more exible (e.g., it affords scaleriamee), but comes at the price of a more challenging optimization
problem (due to fractional terms).



auxiliary functions(See Section 1I-A2) of the Bhattacharyya measure, a resulthnvallows us to solve
each problem ef ciently via graph cuts. We show that the psmal optimization procedures converge
within very few graph cut iterations. Comprehensive andowiexperiments, including quantitative and
comparative evaluations over two data sets, demonstratadtiantages of the proposed algorithms over
related works in regard to optimality, computational load¢uracy and exibility. These advantages are
summarized as follows.

Computational load:The proposed bound optimization brings several computatiadvantages
over related methods. First, it builds graphs that have #messize as the image, unlike the graph cut
methods in [13], [11]. Second, the ensuing algorithms cayevén very few iterations (typically less than
5 iterations). This will be demonstrated in the experimeftsrd, the algorithm is robust to initialization
and does not require sophisticated initialization proceslas with TRGC [9]. It is possible to use trivial
initializations.

Accuracy and optimalityQuantitative comparisons with related recent methods aveeveral
public databases demonstrate that the proposed framewiagsbmprovements in regard to accuracy and
solution optimality.

Flexibility: Unlike the unnormalized histogram models in [9], [13], [li#je proposed framework
yields co-segmentation and segmentation algorithms, whandle accurately and implicitly variations in
the size of the target regions because the Bhattacharyyaumeaaderences kernel densities and, therefore,
is scale-invariant.

We presented preliminary results of this work at the CVPR ewnfce [28]. This TPAMI version
expands signi cantly on [28]: It contains new theoreticabiji cations and algorithms, reports new ex-
periments/comparisons and includes new discussiond/datal illustrations. The following summarizes
the most important differences with the CVPR version:

The bound in [28] is an approximate (not exact) auxiliarydiion. Although the approximation in
[28] yielded a competitive performance in practice, ther@d theoretical guarantee that the energy
decreases at each iteration. In this extended version, weate the bound so as to obtain an exact
(not approximate) auxiliary function, and derived a corntgdienew proof based on rigorous analytical
arguments. The new arguments guarantee that the energgavilhcrease during iterations.

The CVPR version addresses the problem of nding a singlegensegmentation consistent with
a known (xed) model distribution. This journal submissi@addresses two other problems where
model distributions are unknown variables that have to lenated with the segmentations: (i) co-
segmentation of image pairs; and (ii) interactive imagersagation with a user-provided bounding
box.

All the experiments in [28] are based on the exact knowledgbeground truth color distributicn
However, such assumption is not valid in most of practicanscios where the actual distribution
is not known exactly. In this journal extension, we providesal new sets of experiments. We
added a signi cant number of realistic segmentation/agrsentation examples along with quantitative
evaluations and comparisons with recent methods.

Finally, it is worth mentioning the recent studies in [4@1], which extended the bound-optimization
ideas of our CVPR paper [28] and showed competitive perfoomsaim the context of interactive segmen-
tation. Using the Bhattacharyya measure and bound optiiloigahe authors of [46] stated segmentation
as a sequence of distribution-matching processes combuitbdan additional Bhattacharyya term that
maximizes the discrepancy between the foreground and bawkd distributions. Experimentally, the
methods in [46], [51] showed improvements over standardréatgns based on pixelwise log-likelihood
information [20], [19], [21].

The remainder of this paper is organized as follows. The segtion details the cost functions and the
bound optimization. First, we start with the problem of ndia region consistent with a known ( xed)

2In [28], the model is learned from the ground-truth segmentation of #tinteimage. The purpose of such experiments was to compare
the performance of the proposed optimization technique to standardaprialgorithms (e.g., level sets) in regard to optimality and speed.



model distribution. Then, we extend the formulation to egfaentation and interactive segmentation,
where region models become variables that have to be estintatatively with the segmentations. Section
[l discusses comprehensive experiments, including thpdicgdion of the algorithms to various scenarios
as well as quantitative evaluations and comparisons witeranethods. Section IV contains a conclusion.

[I. GRAPH CUTS WITH GLOBAL BHATTACHARYYA TERMS
A. Finding a region consistent with a known ( xed) model dtsition

1) The cost function:iLet C = [0; 1]" be ann-dimensional color space, ardd= (14;1,;:::;In) @
given image, wheré; 2 C denotes the color of pixelandN is the number of pixels in the image. Each
segmentation of can be identi ed by a binary vectot = ( x1;X2;:::;Xn), With X; = 1 indicating that

pixel i belongs to the target region (foreground) and= 0 indicating background membership. Each
segmentatiorx yields a distribution over colore 2 C within the corresponding foreground region:

P
i XiKi(C)
X

P
wherejxj = ; X; is the size of the foreground region corresponding to birvagtorx. Possible choices
of K; are the Dirac function(l; ¢)=1 i2f I; = candO otherwise, which yields the normalized histogram,

Px(0) = (1)

n kIj ck . . . .
or the Gaussian kerné?  ?)zexp EE , with  the width of the kernel. The purpose of the algorithm is
to seek a segmentationso that the corresponding foreground color distribugiprmost closely matches
a known target distribution. To achieve this, we use the negative Bhattacharyya coeitcie

BXd= ' pOH0 @
The range oB(xjq) is[ 1,; 0], 0 corresponding to no overlap between the distributions ahtb a perfect
match. Thus, our objective is to minimiZz&(xjq) with respect tox. The Bhattacharyya coef cient has
the following geometricpinﬂpretation. It correspondghie cosine of the angle between tineit vectors
( pe(c);c2 C)T and( g(c);c2 C)T (These vectors are unit if we use the norm). Therefore, it
considers explicitlyp, andq as distributions by representing them on the unit hypegsphote that the
Bhat@c@yya coef cient can also be regarded as the narethicorrelation betweefi p,(c);c2 C)T
and( q(c);c2C)".

The Bhattacharyya coef cient has a xed (normalized) rangsich affords a conveniently practical
appraisal of the similarity. This is an important advantager other usual similarity measures such as
the Kullback—Leibler divergence or thg, norms. It is worth noting that the distribution-matchingnte
is not invariant with respect to illumination changes. Thifl be demonstrated in the experiments.

To avoid complex segmentations and isolated fragmentsarstiution, we add a regularization term
to our objective function: X
S(x) = wii [T (i xp)] 3)

fi;j 92N
whereN is the set of neighboring pixels in a t-connected gtid=(4; 8 or 16). Pairwise weightsw;;
are typically determined either by the color contrast andfmtial distance between pixalsandj. Our
purpose is to minimize the following function with respectxt:

E(xjg) = B(xjg) + S (x); (4)

with  a positive constant. As we will eventually use graph cutshia iinain step of our algorithm, we
assumew;; 0, which meansS(x) is a sub-modularfunction of binary segmentatiox; See [38].



2) Efcient bound optimization:A function f(x;y) is called auxiliary function oh aty if it satis es
the following properties:
h(x) h(x;y) 8x ©))

h(y) = A(y;y) (6)

When cost functiorh cannot be minimized directly, one can minimize a sequenceugiliary functions,
starting at some initiay . At each iteratiort, t = 1;2;:::, this amounts to solving:

y®™® =argmin  A(x;y") (7)

Properties (5) and (6) guaranteg/(*?)  h(y®) and, ifh is bounded from below, the auxiliary-function
moves in (7) converge to a local minimum lf See [52].

boundary ofy

boundary ofx

Xi:0
yi =0

Fig. 1. Derivation of the auxiliary function at: We assume the foreground region of some xedhcludes the variable foreground region
de ned by x. Fixedy corresponds to the solution obtained at a previous iteration.

To minimize E(xjg) in a bound optimization framework, we need to design an auyilfunction
B(x;yjq) for the negative Bhattacharyya coef cieBi(xjq). At each step, we assume the scenario depicted
in Fig. 1, where the foreground region of some xgdncludes the foreground region de ned ky i.e.,

X Y. Let us start by expressing as a multiple ofp, by choosing some functiong andg such that

f(c;x;y)
——— P (0 (8)
a(c:x;y)
As it will become clear later, the choice of specic forms ofand g will be important in deriving an
auxiliary function ofB (xjqg). Regardless, plugging (8) in®(xjq) yields:

Z q s

N f(c:x;y)
B(xjg) = . py (9)a(c) aCxy)

P (0) =

(9)

q Fy7v Ty
The main computational dif culty of (9) comes from the ndndar ratio function (=), which is

not directly amenable to powerful optimizers such as grajb.dn the Lemma that follows, we circumvent
this dif culty by showing that this ratio function can be boded by a linear combination df and g
when these functions are within inter& 1].

Lemma 1: 8 2 [0; 1] and iff;g 2 [0;1], we have:
s _
fa g @+ Hf (20)

3For equality to hold, we need to chookeandg so that(g=0) ) (f =0 _py =0).



Fig. 2. The geometry of inequality (10) for = 0 (left) and = % (ji@t). The approximating plane (upper bound) is depicted by the
wireframe mesh whereas the solid blue surface corresponds to ﬁmnctiofa. The red dots at (1, 1, -1) correspond to the tightness condition
inq(lg) whenx = y (specically, f = g=1). Notice that the neighborhood of the green do{1atd; 1:5) corresponds to lower values of

‘a and, therefore, lower values of the negative Bhattacharyya coefcie

Proof: See appendix. [ |
Fig. 2 illustrates the geometry of inequality (10), with tingper bound corresponding to= 0 on the
left side and the upper bound corresponding te % on the right side.
If we choosef andg to be within interval[0; 1], then Lemma 1 yields an upper bound BKixjq) for
some xedy: Z q
B (xja) p(9a(c) (1+ )f(cxiy) g (cxy) de (11)

C

To obtain an auxiliary function that satis es (6), the chwiof f andg should ensure that bound (10)
is tight whenx = vy, i.e., we should have:

s
fexix) _ - -
o ~ A+ IEXxx gexx) (12)
We propose the following choices férandg: 5
i XK (c)
f C:X; =pt1— 7
(cx:y) i YiKi(c)
iX]
C;X;Y)=— 13
g(c;x;y) Vi (13)

It is easy to verify that these satisfy both the multiplicatform in (8) and also the tightness condition
in (12) whenx = y (specically, f = g = 1, which corresponds to the red dots at (1, 1, -1) in Fig.
2). Plugging this choice of andg into the upper bound in (11) yields the following auxiliamyniction



B(x;yjq) for the negative Bhattacharyy% coef cieBt(xjg) at anyx vy :

R —— XKi(© ]
B(X:Vij = 1 piZt =
(X9 « c py(C)q(;)(; v ) 1 YiKi(c) 1Y)
Ki(c) B(y]
= 1+ P—d — i
i ( ) c F:y(C)q(C) 1 YiKi(c) ‘ 1Y) §
X 7 S # X .
= @ gpoige S e @ xpr T 2D
Constant |- - Fzy ool fz }
background summation foreground summation

(14)

For a xedy, equation (14) is anodular (linear) function of binary variables;. We have arranged the
expression as the sum of a constant (independemt) @nd two summations aiinary coef cients, one
over the background region and the other over the foregroNtice that these unary coef cients are
independent of binary variabbe. They depend only on xed/. Conditionx y can be enforced by
adding a very large constant to the unary coef cient of eachithin the foreground's summation if
veriesy; =0.

This development leads us to the following proposition:

Proposition 1. For any 2 [0; 1], function B satis es

B(xjg) B(x;yjg) 8x 'y (15a)
B (xja) =B(x;xjq) (15b)

and, thereforeB(x;yjq) is an auxiliary function oB(xjg) aty for x vy.

Proof: The bound condition in (15a) follows directly from the rdswke obtained in (11). Also, the
tightness condition (12), which can be easily veri ed for @hoice off andg, proves (15b). [ |
If B(x;yjq) is an auxiliary function oB (xjQ), it is straightforward to see th&(x;yjq) = B(X;yjq)+
S (x) is an auxiliary function ofE (xjqg). Following equation (7), the main step of our algorithm is:

y©D = argmin  E(x;y"jo) (16)
X

A pseudo-code of the algorithm is given Agorithm 1. SinceS(x) is submodular andB(x;yjq) is
modular inx, then auxiliary functionE(x;yjq) is submodular inx. In combinatorial optimization, a
global optimum of such submodular functions can be compatedently in low-order polynomial time
with a single graph cut by solving an equivalent max- ow piegh; In this work, we use the max- ow
algorithm of Boykov and Kolmogorov [36].

Role of parameter : In this section, we give an interpretation to parameteusing Fig. 2, which
illustrates the geometry of inequality (10). Let us rst cmter the case = 0 depicted by the left
side of Fig. 2. In this case, the minimum of the approximaaane function (i.e., the upper bound
depicted by the wireframe mesh) occurs at the red dot at (41)1Specically,f = g=1,i.e.,x =Y.
This means that the new segmentation obtained at the cutegation is similar to the segmentation
recorded at the previous iteration. For 0, which we illustrate by the right side of the gure for

= % the minimum of the upper bound occurs in the neighb(?rboomefgreen dot af1;0; 1.5).

Notice that such a neighborhood corresponds to lower vabfies fa and, therefore, lower values of
the negative Bhattacharyya coef cient; See the lower serfaicthe gure. In fact, controls the slope
of the upper-bound plane; the higher the steeper the slope. More importantly, for low valueshaf t
negative Bhattacharyya coef cient (Speci cally, when ftion f andg are close to the coordinates of the
green dot), increasing tighten the gap between the bound and the original funcildverefore, when



Algorithm 1: Finding a region consistent with a model
1) lter.t =0:
a) Initialize the xed labeling toy @
b) Set = o 0
2) Repeat the following steps until convergence:
a) Update the current labeling by optimizing the auxiliampdtion overx via a graph cut:

yD =argmin  E(x;y"Y)
x:x y®
b) If 1 go to step d)
c) If > I (This step is necessary only wheg > 1)
If the actual energy does not increase, iE(y) E(y®):
— Go to step d)
If the actual energy increases, i.E(y") > E (y®):
— Decrease , with 2 [0; 1]
— Return to step a)
dt t+1

increases, the bound yields a better approximation of tleeggnin other words, higher values of
favor lower values of the negative Bhattacharyya coef cigbbnsequently, when we have a strict upper
bound ( 2 [0; 3]), one expect that = 3 yields the best solution; We will con rm this experimentall
In summary, controls the quality of the approximation for low values bé tnegative Bhattacharyya
coef cient: the higher , the better the approximatiorRecall that one cannot increase arbitraryas
a value of > % does not guarantee anymore that the energy does not inongtle each iteration.
However, one can see from Fig. 2 that, up to some values>of%, most of the blue surface still lies
below the upper-bound plane, even though we do not haveca Istnund anymore. Therefore, it is natural
to introduce inAlgorithm 1 additional optional steps, which guarantee that the gnéogs not increase
even for an initial choice of bigger than% (Steps 2.c iNAlgorithm 1). These steps allow to choose the
best trade off between approximation quality and optimaiiarantee; we will con rm experimentally
the bene ts of such steps. Starting from am % we verify whether the bound optimization did not
increase the energy at the current iteration, By **V)  E(y®). If this is the case, we accept the
obtained solution and proceed to next iteratienl, while keeping the same> % Otherwise, we reject
the obtained solution and re-optimize the auxiliary fuoictat iterationt, but with a smaller value of .

B. Co-segmentation of image pairs

The co-segmentation problem amounts to nding the samegforend region in a pair of images. It has
attracted an impressive research effort recently [11]],[[, [10]. Let I andI? be two given images.
The purpose is to simultaneously segment these images sththdoreground regions have consistent
image distributions and smooth boundaries. We formulaetbblem as the optimization of the following
cost function with respect to two binary variablesandv, the rst encoding a segmentation bt and
the second a segmentation I6f

F(u;v)= F—(ﬁ&; + | fS(u){JZr S(v)? a7

Co-segmentation Regularization

We adopt an iterative two-step algorithm, with functioRadecreasing at each step: the rst step xes
u and minimizesF with respect tov, whereas the second step seeks an optimalith v xed. Both



steps amount to nding a region consistent with a xed modmitribution and, therefore, can be solved
usingAlgorithm 1 presented in the previous section. The principle stepheptoposed co-segmentation
procedure are summarized Algorithm 2.

Algorithm 2: Co-segmentation of image pairs
1) lter.1 = 0. Initialize u;v: uy = v; =1 8i.
2) Repeat the following steps until convergence.
a) Fixu and updater with Algorithm 1 as follows:

vt = argmin  F(u®:v)
A\

argmin  E(vjpyn)
\%

b) Fix v and updateu with Algorithm 1 as follows:

uD = argmin  F(u;v(™D)
u

argmin  E(ujp,a+» )
u

ol I+1

C. Image segmentation with a user-provided bounding box

In this section, we extendlgorithm 1 to interactive image segmentation. In this case, the model
distribution is not assumed known (or xed). Given a usemyded box bounding the foreground region
(cf. the examples in Fig. 11), the background model is upb#eratively along with the segmentation
process and is used to nd a two-region partition of the imdgenain. Letl denote a given image and
Rbounding the region (image sub-domain) within the bounding box. Ansegtation ofR younding Can be

region (foreground) ana; = O indicating background membershipl (is the number of pixels within
Rbounding). The algorithm consists of optimizing with respectxoa sequence of cost functions of the
following form:

G(xjN & V)= B(xjN & D)+ S (x); (18)

wherex = (X1;X2;:::;Xn), With x; =1 x;. Model distributionN & 1 is a variable, which has to be
updated along with the segmentation. Given an inN&? learned from image data outside the bounding
box (i.e., within a region in N Rpounding, Where denotes the image domain), the algorithm iterates
two steps. One step seeks Ryounging @ background region consistent with current molNel 1 and

is similar to Algorithm 1, whereas the other step re nes the model using the curegrentation. An
illustration of this two-step algorithm is depicted in FR&y. The principle steps of the proposed interactive
segmentation algorithm are summarizedailgorithm 3.

Let us examine the iterative behavior Afgorithm 3. At the rst iteration k = 1), modelN © is
learned from outside the bounding box. Because the optimizat (18) seeks a relevant region inside
the bounding box, the initial labeling is guaranteed to ¢fearAt iteration k > 2), we have two cases:

1) N & D matches perfectlyN & 2: This causes the algorithm to converge because the energies
optimized at the current and previous iterations are theesam

2) N & 1 does not exactly matcN K 2: In this case, the energy is updated and so is the labeling.
As illustrated by the example in Fig. 10, this happens in a itewations (typically less than 10). In fact,
the optimization in (18) ensures only a best possible mattivdenN & Y and N & 2 not an exact
match. Also, the smoothness constraint in uences the ismind, therefore, can cause® Y to deviate
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Algorithm 3: Segmentation with a user-provided bounding box
1) lter. k =0:
a) Initialize Rpounding With @ user-provided bounding box.
b) ComputeN @ with image data outsid® pounding ,» USing for instance the distribution bfin a
strip of widthw around the bounding box.
2) For each iterk;k =1;2;:::, repeat the following steps until convergence.
a) Updatex at iterationk with Algorithm 1 as follows

x® =argmin  G(xjN & 1)
X

b) Update the background model at iteratloraspfollows:
i Xi K i (C)

NT© = iXj

(19)

slightly from N (& 2, During a few iterations, the background model is updateereby approaching the
distribution of image data in the neighborhood of the targgion boundaries.

It is worth noting thatAlgorithm 3 has an important advantage over optimizing pixelwise grag
likelihood functions, as is common in the existing interaetsegmentation algorithms [20], [18], [17].
These algorithms require learning both foreground and dpacknd modelsAlgorithm 3 relaxes the need
for estimating the foreground model and, therefore, ispeese to errors in estimating model distributions.

Learning the initial background modeN @)
Segmentation boundary at itkrr\ nR bounding

R bounding

— Bounding box

Target region boundary

Learning the background model at iter(N ()

Fig. 3. lllustration of the two-step segmentation with a user-provided bingridox (Algorithm 3): background modeN ) is re ned
iteratively with the binary labeling.

[11. EXPERIMENTS

This section contains three parts, each describing anavatuof one of the three proposed algorithms.
For all the experiments, the photometric variable is cofmcsed in RGB coordinates.



11

A. Finding a region consistent with a xed model distributiohlgorithm 1)

1) Examples: Fig. 4 shows examples of segmentations where the trainimytesting images are
different but depict the same type of target regions. Eaghirothe gure corresponds to an example
of target regions. The target-region categories are vargrs, including animals, cars, monuments and
humans in sport scenes. These images were obtained fronCtseg database introduced in the work
of Batra et al. [2]. Given a model learned from a manual detineaof the target region in a single
training image, we show howlgorithm 1 can delineate different instances of the target regioreversl
other images. The training image and its manual segmentatie shown in the rst column of each
row. The rest of the columns shows the segmentation obtaivikhd Algorithm 1. In these examples,
the color distributions, shapes and sizes of the targetctshjgo not match exactly. The target object
undergoes signi cant variations in shape/size in comparit the learning image, which precludes the
use of shape priors to drive the segmentation procgkgrithm 1 handles implicitly these variations
because no assumptions were made as to the size, shapejtianpafsthe target object. Furthermore, in
some cases, the background regions are cluttered and areagly different from the training-image
background. For these scenarios, using a background medelstandard likelihood-based methods [21],
[20], [18], [17] would not be helpful. For this set of expeemts, we used the following parameters:

=05, =1 10 4 with standard spatial distance pairwise weights [19] antic@nnected grid. A
3-dimensional histogram based 66° bins was used as a distribution.

2) Effect of : Fig. 5 depicts typical results, which demonstrate the éftécthe initial value of
on the obtained solutions. We run several tests and ploiletig energy obtained at convergence as a
function of the initial value of (rst row, right side); and (ii) the evolution of the energg a function of
the iteration number for different values of ( rst row, left side). Notice that the energy at convergence
is a monotonically decreasing function of but becomes almost constant starting from some value of

( 1). As expected, for 2 [0;3] (i.e., when we have a strict upper bound)= % yielded the
best solution (lowest energy). These results are consigtiéim the interpretation we gave earlier to
controls how well the bound approximates the energy for higlues of the Bhattacharyya coef cient;
the higher , the better the approximation. We also observe that% can improve slightly the obtained
solutions but, starting from some value of the performance oflgorithm 1 remains approximately the
same. This con rms the bene ts of the additional optionaps that we added to our algorithm, and is
expected. As discussed earlier, one can see from Fig. 2upath some > % most of the blue plane
still lies below the surface, even though it is not a stristéo bound anymore. The second row of Fig.
5 depicts the images we used in this set of tests. The trainwage and its manual segmentation are
shown in the rst column of the gure. From the second to ftlolamn, we show the segmentations
obtained for different values ofy. For this set of experiments, we used the following pararsedtong
with standard contrast-sensitive pairwise weights [2a] an 8-connected grid: =1 10 4; Number
of bins:92%; =0:8.

3) Quantitative evaluations and comparisons in regard tdiroplity and computational load:We
carried out quantitative evaluations and comparisons eiiierosoft GrabCut database [9], which contains
50 images with ground truth segmentations. This subset péraxents compare the proposed bound
optimizer to fast trust region [53], which is an iterativagh cut optimization technique recently proposed
to tackle non-linear segmentation functionals. The puggesto evaluate each optimization technique in
regard to solution optimality and computation load. Theref similarly to the experiments in [53], [30],
[9], we used the ground truth distribution as a target. Fohed the algorithms, we computed the following
performance measures: (i) the energy obtained at conveggéin the number of graph cuts required to
reach convergence and (iii) the average error, i.e., p&genof misclassi ed pixels in comparison to
the ground truth. For both algorithms, we used the samalizitition (the initial foreground segment is
the whole image domain) and parameters along with standetiatdistance pairwise weights and an
8-connected grid: =1 10 °; Number of bins92. For Algorithm1, we used , =5 and =0:8. Table
| reports the statistics of all the performance measures tteeGrabCut data, indicating thatgorithm 1
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Fig. 4. Examples of segmentations for various target-region categar@sding animals, cars, monuments and humans in sport scenes.
Given a model learned from a training image in the rst column (A marsegimentation is depicted by the green curve), objects of the same
category are obtained withAlgorithm 1 in several other images (red curves). In these examples, the dsiobwtions, shapes and sizes of
the target objects do not match exactly. The target objects undergtastitlsvariations in shape/size in comparison to the learning images,
which precludes the use of shape priors to drive the segmentationsprdagthermore, in some cases, the background regions are duttere
and are signi cantly different from the training-image backgrounds. these scenarios, the standard log-likelihood criterion, which requires
a reliable background model, is not applicable.
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Fig. 5. lllustration of the effect of on the solutions obtained b&lgorithm 1. First row, right side: the energy obtained at convergence
as a function of the initial value of ; First row, left side: the evolution of the energy as a function of the itematiomber for different
values of (. Second row, rst column: The training image and its manual segmentaiecond row, columns from second to fth: The
segmentations obtained for different values ef

TABLE |
Comparisons over the GrabCut data set of the proposed bound optifAilgorithm 1) with the fast trust region optimization in [53].

| Method | Bound optimization Algorithm 1) | Fast Trust Region [53]]
Average energy 0:9518 0:9247
Number of lower energies 35 15
Number of graph cuts (Median, Min, Max) (4;3;8) (77;5;911)
Average error 1:32% 3:43%

yields a competitive performance in regard to optimalityl @apeed. In particular, the proposed algorithm
obtained lower energy values f86 out of the50 images while requiring a much lower number of graph
cuts. Fig. 6 plots for both algorithms the energy and errazaaivergence versus the image number.

4) Failure cases:Fig. 7 depicts examples of failure édgorithm1. The rst, second and third columns
show three instances whefdgorithm 1 did not succeed to fully detect the target region, givenntioglel
learned from the image in the rst column. These failuresdare to the fact that the Bhattacharyya measure
is sensitive to signi cant variations in color distributis between the learning and testing images. Such
variations occur with illumination changes, for instance.

B. Co-segmentation of image pairs (Algorithm 2)

Fig. 8 illustrates the iterative behavior of the co-segragon algorithm on a pair of bear images, where
the target regions have completely different shapes aed.sihe rst three columns depict the images and
segmentation boundaries at each iteration, whereas thénascolumns display the foreground regions
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Fig. 6. Comparisons ohlgorithm 1 with the fast trust region optimization in [53]. Left: Energy at conveageversus the image number;
Right: Error at convergence versus the image number.

=

Fig. 7. Examples of failure ofAlgorithm 1. The rst column shows the learning image; the rest of the images sh@e instances where
Algorithm 1 did not succeed to fully detect the target region. The parameters a&r®:5and =1 10 *. We used standard spatial
distance pairwise weights [19] and a 4-connected grid. A 3-dimenshisigram based 086° bins was used as a distribution.

obtained at convergence. At the rst iteration, the obtdirfieregrounds included signi cant parts from
the backgrounds because the initial model distribution e@aputed over the whole domain of one of
the images. Thenmlgorithm 2 re ned the solution at convergence because the modelluistns were
updated iteratively along with the segmentations.

Fig. 9 depicts several other co-segmentation exampleghwthistrate the effectiveness éigorithm 2.
For each example, we show the segmentation boundaries segtdand regions obtained at convergence.
It is worth noting that, in some of these examples, the faregd regions have signi cantly different
sizes. The proposed co-segmentation algorithm can hangigcitly such variations in the size of the
target regions, without the need additional optimizapoiots with respect to region size. This is due to
the fact that the Bhattacharyya measure does not consteiaripet regions to be of equal sizes, which is
an important advantage over the co-segmentation models3in[P]. Based orunnormalizechistograms,

O o) O

Iter 1 Iter 2 Iter 3 Iter 5 (convergence) obtained foregraind

Fig. 8. The iterative behavior of the proposed co-segmentation algo(@gorithm 2). A 3-dimensional histogram based 82° bins was
used as a distribution. The parameters are3 10 *, =0:8and o, =5:8, used in conjunction with standard spatial distance pairwise
weights [19] and a 4-connected grid.
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Fig. 9. Examples of co-segmentations whlgorithm 2. For each example, we show the segmentation boundaries andofandgregions
obtained at convergence. A 3-dimensional histogram base82brbins was used as a distribution. The parameters are3 10 *,
=0:8and o=5:8.

the models in [13], [9] assume the foreground regions haeestime size. In these examples, we used
standard spatial distance pairwise weights [19] and a feced grid.

1) Quantitative evaluations and comparisondfe carried out a quantitative accuracy evaluation of
Algorithm 2 on the co-segmentation database introduced in [10], wihidiades 20 pairs of images. The
experiments in [10] used this database to evaluate seveis#gmentation models, including the model
in [9], the L, model in [13] and the dot product model in [11], as well as sa&veptimization techniques,
including trust region graph cut [9] and dual decomposifib@], among others. Due to the dif culty of
obtaining a ground truth for co-segmentation, the data setd@n composites of 40 different backgrounds
with 20 foregrounds. We followed the same experimentalraggts [10]: we rurAlgorithm 2 not only on
the original images but also on foreground regions of d#ffiersizes by rescaling one of the image§ @

80, 90 and 200 percent of the original size. In particular, [10] showedtttiee performances of [13], [9]
degrade when the foreground regions have different sizddeTI lists the average errors féigorithm 2
and the errors reported in the comparisons in [10]. Excel @ll the methods yielded approximately the
same performance for the original images. However, wherfidfeground regions have different sizes, the
accuracies of [13], [9] degraded signi cantly. On the canyt the performance ohlgorithm 2 is stable.
For more dif cult co-segmentation examples where the foregds have different sizes, the models in
[13], [9] remove incorrectly some parts of the foregrounti8][ Based on unnormalized histograms, these
models assume the foreground regions have the sameAsigeithm 2handles accurately variations in the
size of the target regions, and does so implicitly, i.e.haitt additional optimization/priors with respect
to region size. This is an important advantage over the nsoie]13], [9]. For this set of experiments,
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16

Accuracy evaluations on the co-segmentation database introduced ingi€rage error for Algorithm 2 and the co-segmentation
algorithms in [9], [13], [11]. The performances of [9], [13], [11}vere reported in the experimental-comparison study in [10].

| Method | Algorithm 2 [ Method in [9] [ Method in [13] | Method in [11] |
average error (original) 2:8% 3:2% 2:9% 8:8%
average error (Re-sized 89%) 2:9% 4:2% 4% 8:1%
average error (Re-sized 80%) 2:6% 5:2% 6:2% 7%
average error (Re-sized #)%) 2:8% - - -
average error (Re-sized 200%) 3:3% - - -

TABLE 11l
Accuracy evaluations on the GrabCut database: average erroAfgorithm 3 and two other algorithms optimizing the image
log-likelihood cost, one based on Dual Decomposition (DD) [18] and ttheoon Expectation-Maximization (EM) [20].=1:5 10 *;
Number of bins96%; o, =5; =0:8. The initial background model is estimated from the image within a strip of véifithixels around
the bounding box.

| Method

average error 7:49%
Run time (seconds 14:03

| Algorithm 3| DD + image likelihood [18]] EM + image likelihood [20]]
10:5% (reported in [18]) 8:1% (reported in [18])
576 (reported in [18]) -

we used the following parameters along with standard centtependent pairwise weights [20] and a
16-connected grid: =1 10 %, Number of bins:32;, ,=5; =0:8.

C. Interactive segmentation with a user-provided bounding #dgorithm 3)

1) Quantitative evaluationsWe carried out quantitative and comparative evaluationg\lgbrithm
3 on the Microsoft GrabCut database [9], which contains 50gesawith ground truth segmentations.
Each image comes with a bounding box that has been autofhatcenputed from the ground truth
[18]. Similar experiments on the same datmere reported in [18] to evaluate two other algorithms
optimizing the log-likelihood cost, one based on Dual Deposition (DD) optimization [18] and the
other on an Expectation-Maximization (EM) procedure [Zldje third and fourth rows of Fig. 11 depicts
two examples from the GrabCut data. The error is computed estbrage percentage of misclassi ed
pixels inside the bounding box. The errors reported in Tébldemonstrate thaflgorithm 3 can yield a
competitive performance in the context of interactive imaggmentation. For this quantitative evaluation,
the parameters oflgorithm 3 were xed for all the images in the data set as follows= 1:5 10 4;
Number of bins96%;, ,=5; =0:8. The initial background model is estimated from the imagthini
a strip of width20 pixels around the bounding box. We used standard spatitdntdis pairwise weights
[19] and a 4-connected grid.

2) Examples:In this section, we show several examples that illustraig Atgorithm 3 can delineate
target foreground regions using only a bounding box. Thécgipexample in Fig. 10 illustrates the fast
convergence ofAlgorithm 3. The rst column depicts the image and the bounding box, reae the
remaining columns show the segmentation boundary obta@teterationsl, 3, 5, 7, 9 and 11 Fig.

11 depicts several other examples. For each example, we steWwounding box and the segmentation
boundary/foreground region obtained at convergence nimgiteratively the background model from the
current image was suf cient to accurately delineate thgdtiregions in most of these examples. This is an
important advantage over optimizing the image likelihoodtcas is common in the existing interactive
segmentation algorithms [20], [18], [17]. The image likelod requires learning both foreground and
background modelsAlgorithm 3 relaxes the need for estimating the foreground model dmedefore, is
less prone to errors in estimating model distributions. Td# row of Fig. 11 shows a failure example
whereAlgorithm 3 included a part from the background in the obtained targgion. This is due to the

4Similar to [18], we used 49 images; the “cross” image was excludedubedhe bounding box corresponds to the whole image domain.
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Initialization Iter 1 Iter 3 Iter 5 Iter 7 Iter 9 Iter 11 (conkgence)

Fig. 10. An example showing the fast convergenceéAfgforithm 3. The initial background model is estimated from the image within a
strip of width 10 pixels around the bounding box.= 1:5 10 *; number of bins96>; ,=5:8; =0:8.

similarity in color pro les between the background and tlaeget region. In these examples, we used
standard spatial distance pairwise weights [19] and a feced grid.

IV. CONCLUSION

We proposed ef cient graph cut algorithms for three prolderfl) nding a region in an image, so
that the distribution of image data within the region mosisely matches a given model distribution; (2)
co-segmentation of image pairs and (3) interactive imaggnsatation with a user-provided bounding
box. Following the computation of an original bound of the Baeharyya measure, we reformulated
each problem as an auxiliary function optimization via d¢raguts. Various realistic examples along
with quantitative and comparative evaluations demoratrahe performances, speed and exibility of
the proposed algorithms.

Acknowledgment: The authors would like to thank Lena Gorelick, Frank R. Schrardl Yuri Boykov
for providing the code of the fast trust region techniquepps®ed recently in [53].

APPENDIX A

In this appendix, we give a proof of Lemma 1.
Proof: Consider the following parametric functidt : [0;1]! R™:

1
H(9)=p—g+ g @1+ ) (A-1)
with 2 R*. The rst derivative ofH is:
dH 1
- = + A-2
dg 2g3 (A-2)
The second derivative dfl is strictly positive:
d’H 3
= —>0 8g2][0;1 A-3
iF 2 92 [0:1] (-3)
Therefore,‘]‘dig is strictly increasing irf[0; 1], which yields the following inequality:
dH dH 1
dg < dg 1) = > (A-4)
From (A-4) one can see tha8, 3, ddlg 0, i.e.,H s strictly decreasing ifi0; 1]. This yields:

8 20 %] and8g2 [0;1] H (g0 H (1) =0, i.e.,|e,1—g 1+ g (A-5)
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Fig. 11. Examples of segmentations with a user-provided boundingAdgerithm 3). For each example, we show the bounding box and
the segmentation boundary/foreground region obtained at coneerg€&he initial background model is estimated from the image within a
strip of width 10 pixels around the bounding box.=1:5 10 4. Number of bins:96°; ,=5:8, =0:8.

Now notice the following inequality:
p

f f 8f 2[01] (A-6)
Combining (A-5) and (A-6) gives:
s _
f— f(+ g)
g
= 1+ )f fg
a1+ ) g (A-7)
The last inequality in (A-7) is due to the fact thatfg g (becausd 2 [0;1]). Multiplying each

side in (A-7) by 1 and inverting the inequality proves the Lemma. [ ]
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