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Abstract

We present efficient graph cut algorithms for three probleth} finding a region in an image, so that the
histogram (or distribution) of an image feature within thegion most closely matches a given model; (2) co-
segmentation of image pairs and (3) interactive image setatien with a user-provided bounding box. Each
algorithm seeks the optimum of a global cost function basethe Bhattacharyya measure, a convenient alternative
to other matching measures such as the Kullback—Leiblargiance. Our functionals are not directly amenable to
graph cut optimization as they contain non-linear fundiofifractional terms, which make the ensuing optimization
problems challenging. We first derive a family of paramébacinds of the Bhattacharyya measure by introducing an
auxiliary labeling. Then, we show that these boundsaandliary functionsof the Bhattacharyya measure, a result
which allows us to solve each problem efficiently via graptscWe show that the proposed optimization procedures
converge within very few graph cut iterations. Comprehensind various experiments, including guantitative and
comparative evaluations over two databases, demonstratadvantages of the proposed algorithms over related
works in regard to optimality, computational load, accyraad flexibility.
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. INTRODUCTION

Finding accurately a meaningful region in an image, foranse a person in a photograph or an
organ in a medical scan, is a subject of paramount importancemputer vision for its theoretical and
methodological challenges, and numerous useful apmigsitiCurrent major application areas include
content-based image retrieval [1], image editing [2], mabimage analysis [3], remote sensing [4],
surveillance [5] and many others. The problem we tackle is #8tudy consists of segmenting one
or several images into two regions (a foreground and a badkglh), so that an image feature (e.g.,
color, textures, edge orientations, motion) within the nsegtation regions follows some availabde
priori information. Such priors are necessary to obtain semaagmentations that are unattainable with
unsupervised algorithms [6], [7], [8]. The following vamis of the problem are of broad interest in
computer vision:

e Co-segmentation of image pairkitroduced initially in the work of Rother et al. [9], the pieln
amounts to finding the same object (foreground) in a pair efges. Facilitating segmentation of an image
using minimal prior information from another image of thergaobject, co-segmentation has bestirred
several recent investigations [10], [2], [11], [12], [13}jcahas been very useful in object recognition and
image retrieval [14], [1], [15], [9], as well as image edgif2] and summarization [16].

e Interactive image segmentatior©f great practical importance in image editing, interagtiv
segmentation uses minimal user interaction, for instamegle scribbles or bounding boxes, to learn
prior information from the current image. Embedding cluasuser intention facilitates segmentation, and
has been intensively researched in recent years [17], [18], [20], [21], [22].

e Segmentation with offline learnin@egmenting a class of images with similar patterns occurs in
important applications such as medical image analysishi;dase, offline learning of prior information
from segmented training images is very useful [23], [24].

e Tracking:In the context of tracking a target object throughout an iensgquence, one can segment
the current frame using image feature cues learned fromquely segmented frames [25], [26].

A sub-problem which arises in these variants is the problefinding a segmentation region consistent
with a model distribution of the image feature [27], [28]5]2[29]. This requires optimization of a global
measure of similarity (or discrepancy) between distrimsi (or histograms). In this connection, several
recent studies proved that optimizing global measuresesistpns standard algorithms basedmxelwise
information in the contexts of co-segmentation [9], [11[3], segmentation [30], [23], [31] and tracking
[32], [33], [25]. Moreover, region-based image similarityeasures can be very useful in image retrieval
[9]. The following discusses prior art in this direction atie contributions of this study.

A. Prior art

1) Active contours and level set3he use of a global similarity measure in image segmentatitan
leads to challenging optimization problems. The solutimese generally sought following gradient-based
optimization via active contour (or level set) partial diéntial equations [34], [27], [23], [31], [25],
[29]. An Euler-Lagrange equation of contour motion is ded\so as to increase the consistency between
the foreground region enclosed by the active contour andr@nginodel [25], [29] or to maximize the
discrepancy between the two segmentation regions [31gblyereaching a local optimum at convergence.
Several measures were studied within the active contounewark, for instance, the Kullback-Leibler
divergence [29], the Earth Mover’s distance [27] and the Bitltaryya coefficient [23], [25], [31]. The
Bhattacharyya coefficient has a fixed (normalized) rangechvhffords a conveniently practical appraisal
of the similarity, and several other desirable properti&s.[We will discuss some of these properties in
the next section.

Along with an incremental gradient-flow evolution, activentours may require a large number of
updates of computationally onerous integrals, namelydisiibutions of the regions defined by the curve
at each iteration and the corresponding measures. Thisecagrlg slow in practice: it may require up to
several minutes on typical CPUs for a color image of a modesiaee [28]. Furthermore, the robustness



of the ensuing algorithms inherently relies on a user iltidion of the contour close to the target region
and the choice of an approximating numerical scheme of corgwolution.

2) Graph cuts: Discrete graph cut optimization [36], [37], [38], which wie segmentation as a label
assignment, has been of intense interest recently becauae guarantee global optima and numerical
robustness, in nearly real-time. It has been effective rroua computer vision problems [39], for instance,
segmentation [19], [21], [40], [20], tracking [41], [42],otion estimation [43], visual correspondence [44]
and restoration [37]. Unfortunately, only a limited clagsunctions can be directly optimized via graph
cuts. Therefore, most of existing graph cut segmentatigorghms optimize a sum of pixel dependent
or pixel-neighborhood dependent data and variables. Gloleasures of similarity between distributions
have been generally avoided because they are not directiyainte to graph cut optimization. Notable
exceptions include the co-segmentation works in [9], [1B1], [10] as well as the interactive segmentation
algorithms in [45], [46]. For instance, in the context of ®egmentation of a pair of images, the problem
consists of finding a region in each image, so that the hiatogrof the regions are consistent. Rother et
al. [9] pioneered optimization of thé,; norm of the difference between histograms with a trust megio
graph cut (TRGC) method. They have shown that TRGC can imprové&a spectrum of research: it
outperformed standard graph cut techniques based on peeeiwformation in the contexts of object
tracking and image segmentation, and yielded promisingltees image retrieval. Unfortunately, TRGC
is very sensitive to initializations [10]. In [13], Mukheg et al. suggested to replace the by the
L, norm, arguing that the latter affords some interesting doatbrial properties that befit graph cut
optimization. After linearization of the function, the fmlem is solved by graph cuts [47], [48] via roof-
duality relaxation [49]. However, such relaxation yieldslyoa partial solution with some pixels left
unlabeled. How to label these pixels without loosing tiesh® initial problem is an important question
[10]. Moreover, the optimization in [13] builds a graph wkasze is twice the size of the image. In [10],
the authors combine dual decomposition [50] and TRGC to stiieel,, optimization problems in [9],
[13], yielding an improvement in optimality. Hochbaum anddh proposed to maximize the dot product
between histograms [11], which results in a sub-moduladatec function optimization solvable with a
single graph cut. Unfortunately, the growth of the graplesiz[11] behaves quadratically.

The cost functions in [9], [13], [11] are based on timenormalizedhistogram, which depends on the
size (or scale) of the region. Therefore, they do not afforstale-invariant description of the class of
target regions. The ensuing co-segmentation algorithf@@nthe number of foreground pixels to be the
same in both images. Therefore, they are seriously chatémghen the target foregrounds have different
sizes [10]. In such difficult co-segmentation cases, or ep@pplications where the size of the target
region is different from the size of the learning region, ifstance, tracking an object whose size varies
over an image sequence, the unnormalized histogram recadiditional optimization/priors with respect
to region size [9]. Furthermore, in information theory, rarispires that arL,, measure does not afford
the best appraisal of the similarity between distributi{3ts.

B. Contributions

This study investigates efficient graph cut algorithms lfweé problems: (1) finding a region in an image,
so that the distribution (kernel density estimate) of angengeature within the region most closely matches
a given model distribution; (2) co-segmentation of imagespand (3) interactive image segmentation
with a user-provided bounding box. Each algorithm seek®gtenum of a global functional based on the
Bhattacharyya measure, a practical alternative to othechimeg measures such as the Kullback-Leibler
divergence. Our functionals are not directly amenable tplgrcut optimization as they contain non-
linear functions offractional terms, which make the ensuing optimization problems chgiteg'. We first
derive a family of parametric bounds of the Bhattacharyyasuea Then, we show that these bounds are

INote that most of related methods usenormalizedhistograms, e.g., [9], [13], [11], which do not give rise to fractibterms. In our
case, the use of distributions is more flexible (e.g., it affords scaleiégmae), but comes at the price of a more challenging optimization
problem (due to fractional terms).



auxiliary functions(See Section II-A2) of the Bhattacharyya measure, a resulthvallows us to solve
each problem efficiently via graph cuts. We show that the @sed optimization procedures converge
within very few graph cut iterations. Comprehensive andotggiexperiments, including quantitative and
comparative evaluations over two data sets, demonstratadtiantages of the proposed algorithms over
related works in regard to optimality, computational loadg¢uracy and flexibility. These advantages are
summarized as follows.

e Computational load:The proposed bound optimization brings several computatiadvantages
over related methods. First, it builds graphs that have #messize as the image, unlike the graph cut
methods in [13], [11]. Second, the ensuing algorithms cagyesén very few iterations (typically less than
5 iterations). This will be demonstrated in the experimeftsrd, the algorithm is robust to initialization
and does not require sophisticated initialization proceslas with TRGC [9]. It is possible to use trivial
initializations.

e Accuracy and optimalityQuantitative comparisons with related recent methods aveeveral
public databases demonstrate that the proposed framewiagsbmprovements in regard to accuracy and
solution optimality.

e Flexibility: Unlike the unnormalized histogram models in [9], [13], [L&]e proposed framework
yields co-segmentation and segmentation algorithms, whaéndle accurately and implicitly variations in
the size of the target regions because the Bhattacharyyaumeaa&derences kernel densities and, therefore,
is scale-invariant.

We presented preliminary results of this work at the CVPR ewrfce [28]. This TPAMI version
expands significantly on [28]: It contains new theoreticgtifications and algorithms, reports new ex-
periments/comparisons and includes new discussions|datal illustrations. The following summarizes
the most important differences with the CVPR version:

« The bound in [28] is an approximate (not exact) auxiliarydiion. Although the approximation in
[28] yielded a competitive performance in practice, ther@d theoretical guarantee that the energy
decreases at each iteration. In this extended version, wweate the bound so as to obtain an exact
(not approximate) auxiliary function, and derived a corntgdienew proof based on rigorous analytical
arguments. The new arguments guarantee that the energgawilhcrease during iterations.

. The CVPR version addresses the problem of finding a singlgensegmentation consistent with
a known (fixed) model distribution. This journal submissiaddresses two other problems where
model distributions are unknown variables that have to lenated with the segmentations: (i) co-
segmentation of image pairs; and (ii) interactive imagersagation with a user-provided bounding
box.

« All the experiments in [28] are based on the exact knowledgbeground truth color distributicn
However, such assumption is not valid in most of practicanscios where the actual distribution
is not known exactly. In this journal extension, we providesal new sets of experiments. We
added a significant number of realistic segmentation/goasatation examples along with quantitative
evaluations and comparisons with recent methods.

Finally, it is worth mentioning the recent studies in [4@1], which extended the bound-optimization
ideas of our CVPR paper [28] and showed competitive perfoomsaim the context of interactive segmen-
tation. Using the Bhattacharyya measure and bound optilmigahe authors of [46] stated segmentation
as a sequence of distribution-matching processes combutbdan additional Bhattacharyya term that
maximizes the discrepancy between the foreground and baokd distributions. Experimentally, the
methods in [46], [51] showed improvements over standardréatgns based on pixelwise log-likelihood
information [20], [19], [21].

The remainder of this paper is organized as follows. The segtion details the cost functions and the
bound optimization. First, we start with the problem of fimglia region consistent with a known (fixed)

2In [28], the model is learned from the ground-truth segmentation of #tinteimage. The purpose of such experiments was to compare
the performance of the proposed optimization technique to standardaptialgorithms (e.g., level sets) in regard to optimality and speed.



model distribution. Then, we extend the formulation to egfasentation and interactive segmentation,
where region models become variables that have to be estintatatively with the segmentations. Section
[l discusses comprehensive experiments, including thpdicgdion of the algorithms to various scenarios
as well as quantitative evaluations and comparisons witaranethods. Section IV contains a conclusion.

[I. GRAPH CUTS WITH GLOBAL BHATTACHARYYA TERMS
A. Finding a region consistent with a known (fixed) model distibn

1) The cost function:iLet C' = [0, 1]* be ann-dimensional color space, arld= ([}, l5,...,Iy) @
given image, wherd; € C' denotes the color of pixgland N is the number of pixels in the image. Each
segmentation of can be identified by a binary vectar= (xy, zs,...,zy), With z; = 1 indicating that

pixel i belongs to the target region (foreground) arnd= 0 indicating background membership. Each
segmentatiorx yields a distribution over colors € C' within the corresponding foreground region:

> ziKi(c)

|

px(c) = (1)
where|x| = ). z; is the size of the foreground region corresponding to bivagtorx. Possible choices
of K; are the Dirac function(l;—c) = 1 if I, = ¢ and0 otherwise, which yields the normalized histogram,

_—cll?

or the Gaussian kernéro?)zexp 22 , with o the width of the kernel. The purpose of the algorithm is
to seek a segmentationso that the corresponding foreground color distribuigrmost closely matches
a known target distribution. To achieve this, we use the negative Bhattacharyya coeificie

B(xlg) = — /C N/RGIE @

The range ofB(x|q) is [-1, 0], 0 corresponding to no overlap between the distributions-anhtb a perfect
match. Thus, our objective is to minimiz8(x|q) with respect tox. The Bhattacharyya coefficient has
the following geometric interpretation. It correspondgshe cosine of the angle between tineit vectors
(v/px(c),c € C)T and (1/q(c),c € C)T (These vectors are unit if we use tiig norm). Therefore, it
considers explicitlyp, andq as distributions by representing them on the unit hypergphdote that the
Bhattacharyya coefficient can also be regarded as the naedatiorrelation betweef\/py(c),c € C)T
and (\/q(c),c e C)T.

The Bhattacharyya coefficient has a fixed (normalized) rangpgch affords a conveniently practical
appraisal of the similarity. This is an important advantager other usual similarity measures such as
the Kullback—Leibler divergence or the, norms. It is worth noting that the distribution-matchingnte
is not invariant with respect to illumination changes. Thifl be demonstrated in the experiments.

To avoid complex segmentations and isolated fragmentsdrstiution, we add a regularization term
to our objective function:

Sx)= Y wi[l = 6w — ;)] 3)

{i,j}eN

where \V is the set of neighboring pixels in a t-connected grid=(4,8 or 16). Pairwise weightsw; ;
are typically determined either by the color contrast andfmtial distance between pixelsand j. Our
purpose is to minimize the following function with respectx:

E(x|q) = B(x|q) + AS(x), (4)

with \ a positive constant. As we will eventually use graph cutshim iinain step of our algorithm, we
assumew; ; > 0, which meansS(x) is a sub-modularfunction of binary segmentatiog; See [38].



2) Efficient bound optimizationA function iz(x, y) is called auxiliary function of aty if it satisfies
the following properties: 3
hx) < h(xy) ¥x (5)

h(y) = h(y.y) (6)

When cost functiorh cannot be minimized directly, one can minimize a sequenceugiiiary functions,
starting at some initiay’”). At each iteratiort, t = 1,2, ..., this amounts to solving:

D) — argmin  h(x,y) (7

Properties (5) and (6) guarantegy**1) < h(y®) and, ifh is bounded from below, the auxiliary-function
moves in (7) converge to a local minimum bf See [52].

y

boundary ofy

boundary ofx

ZEZ':O
¥i =0

Fig. 1. Derivation of the auxiliary function at: We assume the foreground region of some fixeithcludes the variable foreground region
defined byx. Fixedy corresponds to the solution obtained at a previous iteration.

~ To minimize E(x|q) in a bound optimization framework, we need to design an &yilfunction
B(x,y|q) for the negative Bhattacharyya coefficigditx|q). At each step, we assume the scenario depicted
in Fig. 1, where the foreground region of some fixedhcludes the foreground region defined fyi.e.,
x <y. Let us start by expressing. as a multiple ofp, by choosing some functionsf and g such that

flex,y)

Y m (e 8
g(c,x,y)pY( ) ®)
As it will become clear later, the choice of specific forms foind g will be important in deriving an
auxiliary function of B(x|q). Regardless, plugging (8) intB(x|q) yields:

B(xlg) = /\/py o zjj; (©)

The main computational difficulty of (9) comes from the narekr ratio function, / f((”‘y)) which is
not directly amenable to powerful optimizers such as grajib. ¢n the Lemma that follows, we circumvent
this difficulty by showing that this ratio function can be lbwoled by a linear combination of and g
when these functions are within interal 1].

px(c) =

Lemma 1: Va € [0, 3] and if f, g € [0, 1], we have:

—\/gsag—(1+@)f (10)

®For equality to hold, we need to choogeand g so that(g = 0) = (f =0V py = 0).



Fig. 2. The geometry of inequality (10) far = 0 (left) anda = % (right). The approximating plane (upper bound) is depicted by the
wireframe mesh whereas the solid blue surface corresponds to funeti g The red dots at (1, 1, -1) correspond to the tightness condition
in (12) whenx =y (specifically, f = g = 1). Notice that the neighborhood of the green do{iat), —1.5) corresponds to lower values of
—\/g and, therefore, lower values of the negative Bhattacharyya coefficie

Proof: See appendix. [ |

Fig. 2 illustrates the geometry of inequality (10), with tingper bound corresponding to= 0 on the
left side and the upper bound correspondingvte: % on the right side.

If we choosef and g to be within intervall0, 1], then Lemma 1 yields an upper bound Biix|q) for

some fixedy:
B(x|q) < /\/py <1+a cxy)—ag(cxy))dc (11)

To obtain an auxiliary function that satisfies (6), the clkoof / and ¢ should ensure that bound (10)
is tight whenx =y, i.e., we should have:

fle,x,x)
g(c,x,x)

We propose the following choices fgrandg:

=(1+a)f(c,x,x) — ag(e,x,x) (12)

oy imKi(o)
f(C, ) y) - Zz ysz(C)

oy
g(e,x,y) = vl (13)

It is easy to verify that these satisfy both the multiplicatform in (8) and also the tightness condition
in (12) whenx = y (specifically, f = ¢ = 1, which corresponds to the red dots at (1, 1, -1) in Fig.
2). Plugging this choice of andg into the upper bound in (11) yields the following auxiliamyntction



B(x,y]|q) for the negative Bhattacharyya coeﬁicieﬁ(x]q) atanyx <y :

st = = [0 -0 SR )

Ki(c ) B(qu)}
= + « Cl — Z;
{ / PO R vl

(1+ —aB

\—,—/ M py - M

Constant N ~
background summation foreground summation
(14)

For a fixedy, equation (14) is anodular (linear) function of binary variables;. We have arranged the
expression as the sum of a constant (independemt) @nd two summations afinary coefficients, one
over the background region and the other over the foregrobintice that these unary coefficients are
independent of binary variabte. They depend only on fixegt. Conditionx < y can be enforced by
adding a very large constant to the unary coefficient of easlithin the foreground’s summation if
verifiesy; = 0.

This development leads us to the following proposition:

Proposition 1. For anya € [0, 1], function B satisfies
B(x|q) <B(X ylg) vx<y (15a)
B(x|g) =B(x,x]q) (15b)

and, therefore3(x, y|q) is an auxiliary function ofB(x|q) aty for x <'y.

Proof: The bound condition in (15a) follows directly from the rdswk obtained in (11). Also, the
tightness condition (12), which can be easily verified for oboice of f and g, proves (15b). [ |
If B(x,y]q) is an auxiliary function ofB(x|q), it is straightforward to see thdt(x, y|q) = B(x,y|q)+
AS(x) is an auxiliary function ofF/(x|q). Following equation (7), the main step of our algorithm is:

y(t+1)

= argmin  E(x,y"|q) (16)
A pseudo-code of the algorithm is given Agorithm 1. Since S(x) is submodular and3(x, ylq) is
modular inx, then auxiliary functionE(x,y|q) is submodular inx. In combinatorial optimization, a
global optimum of such submodular functions can be compatidently in low-order polynomial time
with a single graph cut by solving an equivalent max-flow peoly In this work, we use the max-flow
algorithm of Boykov and Kolmogorov [36].

Role of parameter «: In this section, we give an interpretation to parameieusing Fig. 2, which
illustrates the geometry of inequality (10). Let us first sider the casex = 0 depicted by the left
side of Fig. 2. In this case, the minimum of the approximafane function (i.e., the upper bound
depicted by the wireframe mesh) occurs at the red dot at (41)1Specifically,f =g =1, i.e.,x =y.
This means that the new segmentation obtained at the cutezation is similar to the segmentation
recorded at the previous iteration. Far> 0, which we illustrate by the right side of the figure for
a = % the minimum of the upper bound occurs in the neighborhoothefgreen dot at1,0, —1.5).

Notice that such a neighborhood corresponds to lower vabfies % and, therefore, lower values of

the negative Bhattacharyya coefficient; See the lower seirfdidhe figure. In facty controls the slope
of the upper-bound plane; the higher the steeper the slope. More importantly, for low valueshaf t
negative Bhattacharyya coefficient (Specifically, when fiamcf andg are close to the coordinates of the
green dot), increasing tighten the gap between the bound and the original funcfldverefore, when



Algorithm 1: Finding a region consistent with a model
1) lter.t =0:
a) Initialize the fixed labeling tg(?)
b) Seta =ay>0
2) Repeat the following steps until convergence:
a) Update the current labeling by optimizing the auxiliampdtion overx via a graph cut:

1) — argmin ~ E(x,y)

x:x<y®)

Yy

b) If o <1, go to step d)
c) If a> g (This step is necessary only wheg > %)
. If the actual energy does not increase, ig(y*V) < E(y®):
— Go to step d)
. If the actual energy increases, i.&(yV) > E(y®):
— Decreasey : a <+ pa, with p € [0,1]
— Return to step a)

d t+t+1

« increases, the bound yields a better approximation of tleeggnin other words, higher values of
favor lower values of the negative Bhattacharyya coeffici@ansequently, when we have a strict upper
bound ¢ € [0, ]), one expect that = ; yields the best solution; We will confirm this experimengall
In summary,« controls the quality of the approximation for low values bé tnegative Bhattacharyya
coefficient: the highery, the better the approximatiorRecall that one cannot increase arbitraryas

a value ofa > % does not guarantee anymore that the energy does not inongidmsie each iteration.
However, one can see from Fig. 2 that, up to some values Df%, most of the blue surface still lies
below the upper-bound plane, even though we do not haveca Istruind anymore. Therefore, it is natural
to introduce inAlgorithm 1 additional optional steps, which guarantee that the gnéogs not increase
even for an initial choice ofv bigger than% (Steps 2.c iNAlgorithm 1). These steps allow to choose the
best trade off between approximation quality and optimajarantee; we will confirm experimentally
the benefits of such steps. Starting from @an- % we verify whether the bound optimization did not
increase the energy at the current iteration, iy ") < E(y®). If this is the case, we accept the
obtained solution and proceed to next iterattop1, while keeping the same > % Otherwise, we reject
the obtained solution and re-optimize the auxiliary fuoictat iterationz, but with a smaller value of.

B. Co-segmentation of image pairs

The co-segmentation problem amounts to finding the samgrfauad region in a pair of images. It has
attracted an impressive research effort recently [11]],[[9§, [10]. Let I' andI? be two given images.
The purpose is to simultaneously segment these images sththdoreground regions have consistent
image distributions and smooth boundaries. We formulaetbblem as the optimization of the following
cost function with respect to two binary variablasand v, the first encoding a segmentation Bf and
the second a segmentation I5f

F(u,v) = B(u|py) +AMS(u)+ S(v)} (17)
——

/

Co-segmentation Regulgrization

We adopt an iterative two-step algorithm, with functiodddecreasing at each step: the first step fixes
u and minimizesF' with respect tov, whereas the second step seeks an optimnalith v fixed. Both



steps amount to finding a region consistent with a fixed modifiloution and, therefore, can be solved
using Algorithm 1 presented in the previous section. The principle stepheoptoposed co-segmentation
procedure are summarized Algorithm 2.

Algorithm 2: Co-segmentation of image pairs
1) lter.l = 0. Initialize u,v: u; =v; =1 Vi.
2) Repeat the following steps until convergence.
a) Fixu and updatev with Algorithm 1 as follows:

v — argmin F(u®,v)

= argmin E(v|p,u)

b) Fix v and updatex with Algorithm 1 as follows:

u™Y = argmin  F(u,vi*Y)
u

= argmin E(u|pya+1))

C) I+ 1+1

C. Image segmentation with a user-provided bounding box

In this section, we extendlgorithm 1 to interactive image segmentation. In this case, the model
distribution is not assumed known (or fixed). Given a usergled box bounding the foreground region
(cf. the examples in Fig. 11), the background model is upb#eratively along with the segmentation
process and is used to find a two-region partition of the indm@®ain. Letl denote a given image and
Riounding the region (image sub-domain) within the bounding box. Ansegtation ofR;..nq4ing CaN be
identified by binary labelingk = (x1, 2o, ..., xy), with z; = 1 indicating that pixel belongs to the target
region (foreground) and; = 0 indicating background membership/ (is the number of pixels within
Ryounaing)- The algorithm consists of optimizing with respectstoa sequence of cost functions of the
following form:

G(xN*D) = BxINED) 4 AS(x), (18)

wherex = (71,2, ..., 2x), With #; = 1 — ;. Model distribution\V'*~1) is a variable, which has to be
updated along with the segmentation. Given an injia! learned from image data outside the bounding
box (i.e., within a region in2 \ Ryounding, Where2 denotes the image domain), the algorithm iterates
two steps. One step seeks Ry.unaing @ background region consistent with current madéF-Y and

is similar to Algorithm 1, whereas the other step refines the model using the curegntentation. An
illustration of this two-step algorithm is depicted in FR&). The principle steps of the proposed interactive
segmentation algorithm are summarizedailgorithm 3.

Let us examine the iterative behavior Afgorithm 3. At the first iteration £ = 1), model N/ is
learned from outside the bounding box. Because the optimizat (18) seeks a relevant region inside
the bounding box, the initial labeling is guaranteed to ¢fearit iteration § > 2), we have two cases:

1) N1 matches perfectly\V'*~2): This causes the algorithm to converge because the energies
optimized at the current and previous iterations are theesam

2) N1 does not exactly match/*=2): In this case, the energy is updated and so is the labeling.
As illustrated by the example in Fig. 10, this happens in a itevations (typically less than 10). In fact,
the optimization in (18) ensures only a best possible mattivdenA#~1 and N*~2) not an exact
match. Also, the smoothness constraint influences theisoland, therefore, can cauaé*-" to deviate
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Algorithm 3: Segmentation with a user-provided bounding box
1) Iter. k= 0:
a) Initialize Ryounding With @ user-provided bounding box.
b) ComputeN' @ with image data outsid®s.unaing, USiNg for instance the distribution &fin a
strip of widthw around the bounding box.

2) For each iterk,k =1,2,..., repeat the following steps until convergence.
a) Updatex at iterationk with Algorithm 1 as follows

x® = argmin  G(x|N*Y)

b) Update the background model at iteratioras follows:

N &) (c) = M (19)

|

slightly from A’*=2), During a few iterations, the background model is updateeieby approaching the
distribution of image data in the neighborhood of the targgion boundaries.

It is worth noting thatAlgorithm 3 has an important advantage over optimizing pixelwise eBrag
likelihood functions, as is common in the existing interaetsegmentation algorithms [20], [18], [17].
These algorithms require learning both foreground and dprackd modelsAlgorithm 3 relaxes the need
for estimating the foreground model and, therefore, isesse to errors in estimating model distributions.

Learning the initial background modeN()
Segmentation boundary at itérr\ Q \ Rboundmg

Ryoundin g

— Bounding box

( Target region boundary

Learning the background model at iter(A/(*))

Fig. 3. lllustration of the two-step segmentation with a user-provided bingrigox (Algorithm 3): background modeN ) is refined
iteratively with the binary labeling.

[1l. EXPERIMENTS

This section contains three parts, each describing anaatuof one of the three proposed algorithms.
For all the experiments, the photometric variable is cofmciied in RGB coordinates.
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A. Finding a region consistent with a fixed model distribut{@igorithm 1)

1) Examples: Fig. 4 shows examples of segmentations where the trainimytesting images are
different but depict the same type of target regions. Eaghirothe figure corresponds to an example
of target regions. The target-region categories are vergrsi, including animals, cars, monuments and
humans in sport scenes. These images were obtained fronCtiseg database introduced in the work
of Batra et al. [2]. Given a model learned from a manual detineaof the target region in a single
training image, we show howlgorithm 1 can delineate different instances of the target regioreversl
other images. The training image and its manual segmentatie shown in the first column of each
row. The rest of the columns shows the segmentation obtaivihd Algorithm 1. In these examples,
the color distributions, shapes and sizes of the targetctshjgo not match exactly. The target object
undergoes significant variations in shape/size in comparie the learning image, which precludes the
use of shape priors to drive the segmentation procgkgrithm 1 handles implicitly these variations
because no assumptions were made as to the size, shapeitioanpafsthe target object. Furthermore, in
some cases, the background regions are cluttered and aiBcsigtly different from the training-image
background. For these scenarios, using a background medelstéandard likelihood-based methods [21],
[20], [18], [17] would not be helpful. For this set of expeents, we used the following parameters:
a =0.5; A =1 x 1074, with standard spatial distance pairwise weights [19] arde@nnected grid. A
3-dimensional histogram based 66° bins was used as a distribution.

2) Effect ofa: Fig. 5 depicts typical results, which demonstrate the éftécthe initial value of«
on the obtained solutions. We run several tests and ploileti energy obtained at convergence as a
function of the initial value ot (first row, right side); and (ii) the evolution of the energy afunction of
the iteration number for different values af (first row, left side). Notice that the energy at convergence
is a monotonically decreasing function af but becomes almost constant starting from some value of
o (a =~ 1). As expected, forv € [0, 1] (i.e., when we have a strict upper bound)= 1 yielded the
best solution (lowest energy). These results are consigiiéim the interpretation we gave earlier 4o o
controls how well the bound approximates the energy for higlues of the Bhattacharyya coefficient;
the highera, the better the approximation. We also observe ith&t% can improve slightly the obtained
solutions but, starting from some value ®f the performance oflgorithm 1 remains approximately the
same. This confirms the benefits of the additional optioreppssthat we added to our algorithm, and is
expected. As discussed earlier, one can see from Fig. 2upat somen > % most of the blue plane
still lies below the surface, even though it is not a striatéo bound anymore. The second row of Fig.
5 depicts the images we used in this set of tests. The trainwage and its manual segmentation are
shown in the first column of the figure. From the second to fittlumn, we show the segmentations
obtained for different values af,. For this set of experiments, we used the following pararaettong
with standard contrast-sensitive pairwise weights [2a] an 8-connected gridy = 1 x 10~%; Number
of bins: 923; p = 0.8.

3) Quantitative evaluations and comparisons in regard tdiroplity and computational load:We
carried out quantitative evaluations and comparisons @iviicrosoft GrabCut database [9], which contains
50 images with ground truth segmentations. This subset péraxents compare the proposed bound
optimizer to fast trust region [53], which is an iterativagh cut optimization technique recently proposed
to tackle non-linear segmentation functionals. The puggeso evaluate each optimization technique in
regard to solution optimality and computation load. Theref similarly to the experiments in [53], [30],
[9], we used the ground truth distribution as a target. Fohed the algorithms, we computed the following
performance measures: (i) the energy obtained at conveggéin the number of graph cuts required to
reach convergence and (iii) the average error, i.e., paagenof misclassified pixels in comparison to
the ground truth. For both algorithms, we used the samalizitition (the initial foreground segment is
the whole image domain) and parameters along with standetiatdistance pairwise weights and an
8-connected gridA = 1 x 10~°; Number of bins923. For Algorithm 1, we usedy, = 5 andp = 0.8. Table
| reports the statistics of all the performance measures tteeGrabCut data, indicating thatgorithm 1
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N
|
3
i

Fig. 4. Examples of segmentations for various target-region categor@sding animals, cars, monuments and humans in sport scenes.
Given a model learned from a training image in the first column (A masegentation is depicted by the green curve), objects of the same
category are obtained withAlgorithm 1 in several other images (red curves). In these examples, the désiobwtions, shapes and sizes of

the target objects do not match exactly. The target objects undergtastitlsvariations in shape/size in comparison to the learning images,
which precludes the use of shape priors to drive the segmentationsprdagthermore, in some cases, the background regions are duttere
and are significantly different from the training-image backgroundstlfese scenarios, the standard log-likelihood criterion, which requires

a reliable background model, is not applicable.
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-0.35

-0.451

Energy at convergence
s |
o o
a1l o1

~—

08 1 12 14 1.6 18 2
Initial value of «

L L L L L L
7 8 9 10 0 0.2 0.4 0.6

Learning ag=0.1 ag = 0.3 ag = 0.5 ag =1

Fig. 5. lllustration of the effect ofx on the solutions obtained b&lgorithm 1. First row, right side: the energy obtained at convergence
as a function of the initial value of; First row, left side: the evolution of the energy as a function of the itematiomber for different
values ofag. Second row, first column: The training image and its manual segment&econd row, columns from second to fifth: The
segmentations obtained for different valuesngf

TABLE |
Comparisons over the GrabCut data set of the proposed bound optitAilgorithm 1) with the fast trust region optimization in [53].

\ Method | Bound optimization Algorithm 1) | Fast Trust Region [53]]
Average energy —0.9518 —0.9247
Number of lower energies 35 15
Number of graph cuts (Median, Min, Max) (4,3,8) (77,5,911)
Average error 1.32% 3.43%

yields a competitive performance in regard to optimalityl @peed. In particular, the proposed algorithm
obtained lower energy values f8b out of the50 images while requiring a much lower number of graph
cuts. Fig. 6 plots for both algorithms the energy and erraraaivergence versus the image number.

4) Failure cases:Fig. 7 depicts examples of failure ddgorithm 1. The first, second and third columns
show three instances whefdgorithm 1 did not succeed to fully detect the target region, givennioelel
learned from the image in the first column. These failureslassto the fact that the Bhattacharyya measure
is sensitive to significant variations in color distributsobetween the learning and testing images. Such
variations occur with illumination changes, for instance.

B. Co-segmentation of image pairs (Algorithm 2)

Fig. 8 illustrates the iterative behavior of the co-segragon algorithm on a pair of bear images, where
the target regions have completely different shapes aed.sihe first three columns depict the images and
segmentation boundaries at each iteration, whereas théwascolumns display the foreground regions
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Fig. 6. Comparisons ohlgorithm 1 with the fast trust region optimization in [53]. Left: Energy at conveaggeversus the image number;
Right: Error at convergence versus the image number.
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Fig. 7. Examples of failure oflgorithm 1. The first column shows the learning image; the rest of the images thiew instances where
Algorithm 1 did not succeed to fully detect the target region. The parameters are).5 and A = 1 x 10~%. We used standard spatial
distance pairwise weights [19] and a 4-connected grid. A 3-dimenshastaigram based 086> bins was used as a distribution.

obtained at convergence. At the first iteration, the obthiftegrounds included significant parts from
the backgrounds because the initial model distribution e@aputed over the whole domain of one of
the images. Thermlgorithm 2 refined the solution at convergence because the modebditins were
updated iteratively along with the segmentations.

Fig. 9 depicts several other co-segmentation exampleghwthistrate the effectiveness éigorithm 2.
For each example, we show the segmentation boundaries ssgtdand regions obtained at convergence.
It is worth noting that, in some of these examples, the faregd regions have significantly different
sizes. The proposed co-segmentation algorithm can hangiécitly such variations in the size of the
target regions, without the need additional optimizapoiots with respect to region size. This is due to
the fact that the Bhattacharyya measure does not consteiarpet regions to be of equal sizes, which is
an important advantage over the co-segmentation models3in[P]. Based orunnormalizechistograms,

Iter 1 Iter 2 Iter 3 Iter 5 (convergence) obtained foregraund

Fig. 8. The iterative behavior of the proposed co-segmentation algo(fgorithm 2). A 3-dimensional histogram based 82° bins was
used as a distribution. The parameters.are 3 x 107*, p = 0.8 and g = 5.8, used in conjunction with standard spatial distance pairwise
weights [19] and a 4-connected grid.
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Fig. 9. Examples of co-segmentations whlgorithm 2. For each example, we show the segmentation boundaries andofondgregions
obtained at convergence. A 3-dimensional histogram baseBdrbins was used as a distribution. The parametersiare 3 x 107*,
p=08anday =5.38.

the models in [13], [9] assume the foreground regions haeestime size. In these examples, we used
standard spatial distance pairwise weights [19] and a fected grid.

1) Quantitative evaluations and comparisoné/e carried out a quantitative accuracy evaluation of
Algorithm 2 on the co-segmentation database introduced in [10], wihidihdes 20 pairs of images. The
experiments in [10] used this database to evaluate seveisggmentation models, including the model
in [9], the L, model in [13] and the dot product model in [11], as well as saveptimization techniques,
including trust region graph cut [9] and dual decomposi{ib@], among others. Due to the difficulty of
obtaining a ground truth for co-segmentation, the data setd@n composites of 40 different backgrounds
with 20 foregrounds. We followed the same experimentalrggts [10]: we rurAlgorithm 2 not only on
the original images but also on foreground regions of d#ffitisizes by rescaling one of the imageg$ o
80, 90 and 200 percent of the original size. In particular, [10] showedtttiee performances of [13], [9]
degrade when the foreground regions have different sizddeTI lists the average errors féigorithm 2
and the errors reported in the comparisons in [10]. Excelt d>ll the methods yielded approximately the
same performance for the original images. However, wherfidfeground regions have different sizes, the
accuracies of [13], [9] degraded significantly. On the canytrthe performance ohlgorithm 2 is stable.
For more difficult co-segmentation examples where the fonagds have different sizes, the models in
[13], [9] remove incorrectly some parts of the foregrounti3][ Based on unnormalized histograms, these
models assume the foreground regions have the sameAggreithm 2handles accurately variations in the
size of the target regions, and does so implicitly, i.e.hautt additional optimization/priors with respect
to region size. This is an important advantage over the nsoide]13], [9]. For this set of experiments,
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TABLE I
Accuracy evaluations on the co-segmentation database introduced ingii€rage error for Algorithm 2 and the co-segmentation
algorithms in [9], [13], [11]. The performances of [9], [13], [11}vere reported in the experimental-comparison study in [10].

| Method | Algorithm 2 [ Method in [9] [ Method in [13] | Method in [11] |
average error (original) 2.8% 3.2% 2.9% 8.8%
average error (Re-sized %) 2.9% 4.2% 4% 8.1%
average error (Re-sized &%) 2.6% 5.2% 6.2% 7%
average error (Re-sized %) 2.8% - - -
average error (Re-sized g90%) 3.3% - - -
TABLE 11l

Accuracy evaluations on the GrabCut database: average erroAfgorithm 3 and two other algorithms optimizing the image
log-likelihood cost, one based on Dual Decomposition (DD) [18] and ttheoon Expectation-Maximization (EM) [20N = 1.5 x 10™%;
Number of bins96®; ao = 5; p = 0.8. The initial background model is estimated from the image within a strip of védthixels around

the bounding box.

| Method | Algorithm 3| DD + image likelihood [18]] EM + image likelihood [20]]
average error 7.49% 10.5% (reported in [18]) 8.1% (reported in [18])
Run time (seconds 14.03 576 (reported in [18]) -

we used the following parameters along with standard centtependent pairwise weights [20] and a
16-connected gridA = 1 x 10~%; Number of bins:323; ay = 5; p = 0.8.

C. Interactive segmentation with a user-provided bounding @#dgorithm 3)

1) Quantitative evaluationsWe carried out quantitative and comparative evaluationg\lgbrithm
3 on the Microsoft GrabCut database [9], which contains 50gasawith ground truth segmentations.
Each image comes with a bounding box that has been autothattcenputed from the ground truth
[18]. Similar experiments on the same dat@ere reported in [18] to evaluate two other algorithms
optimizing the log-likelihood cost, one based on Dual Deposition (DD) optimization [18] and the
other on an Expectation-Maximization (EM) procedure [Zdje third and fourth rows of Fig. 11 depicts
two examples from the GrabCut data. The error is computedesbrage percentage of misclassified
pixels inside the bounding box. The errors reported in Tébldemonstrate thaflgorithm 3 can yield a
competitive performance in the context of interactive imaggmentation. For this quantitative evaluation,
the parameters oflgorithm 3 were fixed for all the images in the data set as follows: 1.5 x 107%;
Number of bins:963; oy = 5; p = 0.8. The initial background model is estimated from the imagthini
a strip of width20 pixels around the bounding box. We used standard spati&ntis pairwise weights
[19] and a 4-connected grid.

2) Examples:In this section, we show several examples that illustraig Atgorithm 3 can delineate
target foreground regions using only a bounding box. Thécgipexample in Fig. 10 illustrates the fast
convergence ofAlgorithm 3. The first column depicts the image and the bounding boxredsethe
remaining columns show the segmentation boundary obta@etkerationsi, 3, 5, 7, 9 and 11. Fig.

11 depicts several other examples. For each example, we steWwounding box and the segmentation
boundary/foreground region obtained at convergence nimgiteratively the background model from the
current image was sufficient to accurately delineate trgetaegions in most of these examples. This is an
important advantage over optimizing the image likelihoadtcas is common in the existing interactive
segmentation algorithms [20], [18], [17]. The image likelod requires learning both foreground and
background modelsAlgorithm 3 relaxes the need for estimating the foreground model dadefore, is
less prone to errors in estimating model distributions. T# row of Fig. 11 shows a failure example
whereAlgorithm 3 included a part from the background in the obtained targgion. This is due to the

4Similar to [18], we used 49 images; the “cross” image was excludedubedhe bounding box corresponds to the whole image domain.
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Initialization Iter 1 Iter 3 Iter 5 Iter 7 Iter 9 Iter 11 (conkgence)

Fig. 10. An example showing the fast convergenceéAlforithm 3. The initial background model is estimated from the image within a
strip of width 10 pixels around the bounding boXx.= 1.5 x 10~*; number of bins96%; ap = 5.8; p = 0.8.

similarity in color profiles between the background and theyet region. In these examples, we used
standard spatial distance pairwise weights [19] and a f#ected grid.

IV. CONCLUSION

We proposed efficient graph cut algorithms for three proBte(t) finding a region in an image, so
that the distribution of image data within the region mosisely matches a given model distribution; (2)
co-segmentation of image pairs and (3) interactive imaggnsatation with a user-provided bounding
box. Following the computation of an original bound of the Baeharyya measure, we reformulated
each problem as an auxiliary function optimization via draguts. Various realistic examples along
with quantitative and comparative evaluations demoretrdahe performances, speed and flexibility of
the proposed algorithms.

Acknowledgment: The authors would like to thank Lena Gorelick, Frank R. Schrardl Yuri Boykov
for providing the code of the fast trust region techniquepps®ed recently in [53].

APPENDIX A

In this appendix, we give a proof of Lemma 1.
Proof: Consider the following parametric functiaf,, : [0,1] — R™:

1
H,(g)=—+ag— (1+« (A-1)
(9) 7 (1+a)
with o € R*. The first derivative off,, is:
dH, 1
= +ta A-2
dg 292 (A-2)
The second derivative aofl,, is strictly positive:
d*H 3
= = >0 Vgel0,1 A-3
Therefore,dia is strictly increasing in0, 1], which yields the following inequality:
dH, dH, 1
D=a—= A-4
< =3 (A-4)

From (A-4) one can see thatp < 3, 4= <0, i.e,, f1, is strictly decreasing if0, 1]. This yields:

1 .
Va € [0, 5] andVg € [0,1] H,(g9) > Ho(1) =0, i.e,, >14+a—ayg (A-5)

Sl-
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Fig. 11. Examples of segmentations with a user-provided boundingAdgerithm 3). For each example, we show the bounding box and
the segmentation boundary/foreground region obtained at coneerg€he initial background model is estimated from the image within a
strip of width 10 pixels around the bounding boXx.= 1.5 x 10~*; Number of bins:96%; ap = 5.8; p = 0.8.

Now notice the following inequality:

VIi>f vfelo] (A-6)
Combining (A-5) and (A-6) gives:
5 > f(l+a—ag)
= (I+a)f—afg
> (14+a)f —ag (A-7)

The last inequality in (A-7) is due to the fact thatvfg > —ag (becausef € [0, 1]). Multiplying each
side in (A-7) by—1 and inverting the inequality proves the Lemma. [ |
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