
Software Quality Engineering – where to find it in
Software Engineering Body of Knowledge

(SWEBOK)

Witold Suryn1, Anabel Stambollian2, Jean-Charles Dormeux3, Luc Bégnoche 4

1Software and Information Technology Engineering Dept, École de technologie
supérieure. 1100 Notre Dame St. West, Montréal, Québec, H3C 1H3 Canada. E-mail:

witold.suryn@etsmtl.ca
2Master student. Software and Information Technology Engineering Dept, École de
technologie supérieure. 1100 Notre Dame St. West, Montréal, Québec, H3C 1H3

Canada. E-mail: anabel.stambollian.1@ens.etsmtl.ca
3Master student. Software and Information Technology Engineering Dept, École de
technologie supérieure. 1100 Notre Dame St. West, Montréal, Québec, H3C 1H3

Canada. E-mail: jcdormeux@hotmail.com
4Master student. Software and Information Technology Engineering Dept, École de
technologie supérieure. 1100 Notre Dame St. West, Montréal, Québec, H3C 1H3

Canada. E-mail: luc.begnoche.1@ens.etsmtl.ca

Abstract

Software quality engineering makes its way to wider professional recognition mostly
through the specialized research and related publications; however, due to the
dispersed nature of this process none of these efforts can create the visibility of the
subject comparable to this of the Software Engineering Body of Knowledge
(SWEBOK). As software quality makes the intrinsic part of SWEBOK, software quality
engineering should be represented in this document in at least similar manner,
allowing for easy recognition and equally easy application. The objective of the
research discussed in this article was to verify the presence of software quality
engineering in SWEBOK, evaluate the maturity and completeness of its representation
and propose eventual improvements or additions.

 1

1. Introduction
As part of this presented research, the latest version of SWEBOK [1] had been
analyzed from the perspective of the core processes constituting the practices of
software quality engineering. The main goal of such an analysis was to evaluate each
Knowledge Area (KA) constituting SWEBOK in order to verify the level of
representation of the subject of software quality engineering in this most prominent
document of software engineering domain. The core processes of software quality
engineering were identified through the analysis of Software Life Cycle processes
published in the ISO standard ISO/IEC 12207:1995 [2] supported by the results of the
research on Software Engineering Principles and Software Quality Implementation
Model.

2. Abbreviations, terms and definitions
Within the text of this article the following abbreviations and definitions are applied:

SWEBOK – Guide to Software Engineering Body of Knowledge,

SQIM – Software Quality Implementation Model,

SLC – Software Life Cycle,

KA – Knowledge Area (in SWEBOK),

Internal quality - The totality of attributes of a product that determine its ability to
satisfy stated and implied needs when used under specified conditions [3]

External quality - The extent to which a product satisfies stated and implied needs
when used under specified conditions [4]

Quality in Use - The extent to which a product can be used by specified users to meet
their needs to achieve specified goals with effectiveness, task efficiency safety and
satisfaction in a specified context of use [5]

Operational quality – the extent to which a massively deployed software product
satisfies stated and implied needs in terms of reliability and serviceability.
Measurement and evaluation of operational quality requires valid statistical data
representations [6].

 2

3. Research methodology
The dedicated analysis methodology has been developed in order to realize the research
objective presented previously. To keep both the research and its results as generic as
possible, the hypotheses, terms and definitions used in this research are referenced to
published and recognized literature sources, mainly standards issued by Subcommittee
7 (SC7) – System and Software Engineering of the International Organization for
Standards (ISO). As the basis for validating the basic processes of software quality
engineering domain, two ISO standards were taken into consideration: ISO/FCD 15288
- Information Technology - Life Cycle Management - System Life Cycle Processes [7]
and ISO/IEC 12207-1995 - Information Technology – Software Life Cycle Processes
[2], with the latter finally chosen as more generic.

The methodology consists of four phases, presented graphically in Fig.1:

Phase 1: Analyze, validate and if necessary, add the basic processes of software quality
engineering definitions to the Software Life Cycle (SLC) processes and activities
identified in ISO/IEC 12207,

Phase 2: Analyze, validate, adjust (if necessary) and map the set of basic processes of
software engineering definitions identified in ISO/IEC 12207 with the processes and
activities described in respective Knowledge Areas (KA) of SWEBOK,

Phase 3: Apply and asses the results of the mapping between the processes of software
quality engineering identified in phase 1 with the processes and activities described in
KAs of SWEBOK (phase 2),

Phase 4: Conclude the analysis and propose modifications to SWEBOK, if required.

 3

Phase 2:

Mapping ISO/IEC 12207
with SWEBOK

Phase 1:
Defining SWQE core

processes

All Knowledge Areas of
SWEBOK

Identify the activities
in

SWQE

KA 1

KA 2

KA 3

KA 10

All SLC processes
from

ISO/IEC 12207

Process 1

Process 2

Process 3

Process N

Activity 1

Activity 2

Activity 3

Activity N

Phase 3:
Applying and assessment of mapping

between SWQE constructs and SWEBOK

Phase 4:
Conclude the analysis and propose

modifications to SWEBOK

Fig. 1: The structure of the research methodology

 4

4. Research execution and obtained results
The realization of the research and obtained results will be discussed following the
order of the execution of phases of the methodology used for the project.

4.1. Phase 1: Analysis, validation and addition of the constructs of
software quality engineering applying ISO/IEC 12207

The diagrams below illustrate the identification, definition and addition of processes of
software quality engineering through the mapping to the Primary and Supporting Life
Cycle Processes of ISO/IEC 12207.

The mapping approach applies the following two premises as starting points:

• the results of the research on Software Engineering Principles [8] published by
Bourque et al. in 2002. The applied principle states (direct quote):

Principle 7: Manage quality throughout the life cycle as formally as possible

• the definition of software quality engineering [6] published by Suryn in 2002 that
states:

The application of a continuous, systematic, disciplined, quantifiable approach to
the development and maintenance of quality of software products and systems; that
is, the application of quality engineering to software.

The direct implication of applying the above two premises allowed for building the
corresponding software quality engineering-related life cycle model baptized in [6]
Software Quality Implementation Model (SQIM) used as the reference model in
mapping to ISO/IEC 12207 SLC processes (Fig.2 and 3).

Fig. 4 presents the proposed enhancements to the overall model of SLC processes from
ISO/IEC 12207:1995

 5

 Mapping between the ISO-12207:1995 Software Engineering Processes and
 definition of Software Quality Engineering Processes

ISO Developement
(5.3)

ISO Maintenance
(5.5)

ISO Operation
(5.4)

Software Quality Engineering Processes
(5.6 & 5.7)

5.3.4
Software Requir ments e

Analysis

5.3.5
Software Architectural Design

5.3.6
Software Detailed Design

5.3.7
Software Coding and Testing

5.3.8
Software Integration

5.3.9
Software Qualit cation fi

Testing

5.3.12
Software Installation

5.3.13
Software Acceptation Support

5.6.1
Software Quality

Requirements Analysis

5.6.2
Software Quality Design

5.6.3
Software Internal Quality

Implementation

5.6.4
Software External Quality

Implementation

5.6.5
Software

Operational Quality &
Quality in Use

Implementation

5.4
Operation

5.5
Maintenance

5.6.6
Software Quality Acceptation

Support

5.7
Software Quality Support and

Maintenance

ISO-12207 Primary Life Cycle Processes
(5.3, 5.4 & 5.5)

Fig. 2 : Mapping of Software Quality Engineering Constructs to

the Primary Life Cycle Processes of ISO/IEC 12207

 6

Added tasks

ISO Verification
(6.4)

6.4.2.10
Software Quality

erificationEvaluation V

6.4.2.9
Software Quality Data

Verification

6.4.2.8
ualitySoftware Q

Requirements
Verification

6.4.2.7

erific
Documentation

ation V

6.4.2.5
 Code

rifica Ve tion

6.4.2.6
Integration
Verification

6.4.2.4

fic
Design
eri ation V

6.4.2.1
VeriContract fication

6.4.2.2
Process Verification

6.4.2.3
Requirements

Verification

ISO-12207 Supporting Life Cycle
6.4)Processes (

Software Quality Supporting
6.4)Processes (

 Additions of Software Quality Supporting Processes to
 ISO-12207:1995 Software Supporting Processes

Fig. 3: Tasks added to ISO/IEC 12207 Verification Life Cycle Supporting Process

 7

6. SUPPORTING
LIFE CYCLE PROCESSES

7.4 Training 7.3 Improvement

7.2 Infrastructure7.1 Management

7. ORGANIZATIONAL LIFE CYCLE PROCESSES

6.8 Problem Resolution

6.7 Audit

6.6 Joint Review

6.5 Validation

6.4 Verification

6.3 Quality Assurance

6.2 Configuration Management

6.1 Documentation

5.7
Software Quality

Support and
Maintenance

5.6
Software
Quality

Development

5.5
Maintenance

5.4
Operation

5.3
Development

5.2 Supply

5.1 Acquisition

5. PRIMARY
LIFE CYCLE PROCESSES

Fig. 4: Proposed additions to the overall ISO/IEC 12207 structure (5.6 & 5.7)

 8

The following section presents the textual enhancements to ISO/IEC 12207
corresponding to the additions proposed in Fig.2, 3 and 4.
In this section, it has been decided to keep the original notation of ISO/IEC 12207
clauses in order to allow for easy identification of added parts against these existing
within the original document. This notation form also helps in differentiating between
new parts that are entirely added and those that were modified. The numbering used
below corresponds to clauses of ISO/IEC 12207, not to numbering applied to clauses of
this article.

5 Primary Life Cycle Processes
5.6 Software Quality Development Process
5.6.1 Software Quality Requirements Analysis
For each software item, this activity consists of the following tasks:
5.6.1.1 The quality engineer shall establish and document operational quality and
quality in use requirements. These requirements shall be extracted from stakeholder
needs and software requirements (functional and non-functional).
5.6.1.2 The quality engineer shall evaluate the operational quality and quality in use
requirements considering the criteria listed below. The results of the evaluation shall be
documented.

a) Traceability to stakeholder needs and software requirements;
b) External consistency with stakeholder needs and software requirements;
c) Internal consistency;
d) Testability and measurability;
e) Feasibility of building operational quality and quality in use in the software

item.
5.6.1.3 The quality engineer shall establish and document the quality model for
quality in use as described below.

a) Quality in use characteristics (and sub-characteristics if applicable);
b) Quality in use measurement primitives mapped to characteristics;
c) Derived measures and their measurement functions;
d) Base measures and their measurement methods or test scenarios;
e) Rating levels and target values for measurement primitives.

5.6.1.4 The quality engineer shall define and document tests that will be conducted to
validate operational quality requirements.
5.6.1.5 The quality engineer shall develop an evaluation plan to control operational
quality and quality in use requirements validation.

 9

5.6.1.6 The quality engineer shall conduct joint review(s) in accordance with 6.6.
Upon successful completion of the review(s), a baseline for the operational quality and
quality in use requirements and evaluation plan shall be established.
5.6.1.7 If external and internal quality requirements are directly extractable from the
stakeholder needs and the software requirements (functional and non-functional), the
quality engineer shall refer to 5.6.2.
5.6.2 Software Quality Design
For each software item, this activity consists of the following tasks:
5.6.2.1 The quality engineer shall establish and document external and internal quality
requirements. These requirements shall take into account quality in use requirements
and stakeholder needs.
5.6.2.2 The quality engineer shall evaluate the external and internal quality
requirements considering the criteria listed below. The results of the evaluation shall be
documented.

a) Traceability to quality in use (stakeholder needs and software requirements
if applicable);

b) External consistency with quality in use (stakeholder needs and software
requirements if applicable);

c) Internal consistency;
d) Testability and measurability;
e) Feasibility of building external and internal quality in the software item.

5.6.2.3 The quality engineer shall establish and document the quality model for
external and internal quality as described below.

a) External and internal quality characteristics;
b) External and internal quality sub-characteristics;
c) External and internal quality measurement primitives mapped to sub-

characteristics;
d) Derived measures and their measurement functions;
e) Base measures and their measurement methods or tests;
f) Rating levels and target values for measurement primitives.

5.6.2.4 The quality engineer shall develop an evaluation plan to control external and
internal quality requirements verification.
5.6.2.5 The quality engineer shall conduct joint review(s) in accordance with 6.6.
Upon successful completion of the review(s), a baseline for the external and internal
quality requirements and evaluation plan shall be established.

 10

5.6.2.6 The quality engineer shall ensure that the software architectural design
(according to 5.3.5) of the software item complies with external quality requirements.
Particularly, the quality engineer shall assist the preliminary test requirements
definition as described in 5.3.5.5 and shall participate to joint review(s) as described in
5.3.5.7.
5.6.2.7 The quality engineer shall ensure that the software detailed design (according
to 5.3.6) of the software item complies with internal quality requirements. Particularly,
the quality engineer shall assist the test requirements definition as described in 5.3.6.5
and shall participate to joint review(s) as described in 5.3.6.8.
5.6.3 Software Internal Quality Implementation
For each software item, this activity consists of the following tasks:
5.6.3.1 The quality engineer shall gather internal quality data by performing the tasks
described below. The internal quality data shall be archived.

a) Gathering results from tests performed in 5.3.7.2;
b) Applying measurement methods and functions defined in the quality model

of 5.6.2.3;
5.6.3.2 The quality engineer shall evaluate the internal quality data gathered
considering the criteria listed below. The results of the evaluation shall be documented.

a) Traceability to internal quality requirements;
b) Internal consistency;
c) Repeatability, reproducibility, impartiality and objectivity.

5.6.3.3 The quality engineer shall establish a preliminary external and internal quality
evaluation report based on the quality model defined in 5.6.2.3. This evaluation report
is preliminary because it only contains interpretations of internal quality data.
5.6.3.4 The quality engineer shall establish improvement recommendations based on
the preliminary evaluation report. The quality engineer shall ensure that these
recommendations are implemented.
5.6.3.5 The quality engineer shall participate to joint review(s) of software code to
ensure that it complies with internal quality requirements.
5.6.4 Software External Quality Implementation
For each software item, this activity consists of the following tasks:
5.6.4.1 The quality engineer shall gather external quality data by performing the tasks
described below. The external quality data shall be archived.

a) Gathering results from tests performed in 5.3.8.2 and 5.3.9.1;
b) Applying measurement methods and functions defined in the quality model

of 5.6.2.3;

 11

5.6.4.2 The quality engineer shall evaluate the external quality data gathered
considering the criteria listed below. The results of the evaluation shall be documented.

a) Traceability to external quality requirements;
b) External consistency with internal quality data;
c) Internal consistency;
d) Repeatability, reproducibility, impartiality and objectivity.

5.6.4.3 The quality engineer shall update the external and internal quality evaluation
report defined in 5.6.3.3. This evaluation report is final because it contains
interpretations of both external and internal quality.
5.6.4.4 The quality engineer shall conduct joint review(s) in accordance with 6.6.
Upon successful completion of the review(s), a baseline for the external and internal
quality evaluation report of the software item shall be established.
5.6.4.5 The quality engineer shall establish improvement recommendations based on
the final evaluation report. The quality engineer shall ensure that these
recommendations are implemented: If changes are recommended, the quality engineer
shall re-enter the 5.6.3 and 5.6.4 phases, to ensure that these recommendations are
implemented and to assist the software engineering team in their 5.3.7 and 5.3.8 phases
5.6.4.6 The quality engineer shall ensure that the integrated software (according to
5.3.8) complies with external quality requirements. Particularly, the quality engineer
shall participate to joint review(s) as described in 5.3.8.6 and shall participate to
audit(s) as described in 5.3.9.4.
5.6.5 Software Operational Quality & Quality in Use Implementation
For each software item, this activity consists of the following tasks:
5.6.5.1 The quality engineer shall gather quality in use data by performing the tasks
described below. The quality in use data shall be archived.

a) Gathering results from tests performed in 5.3.9.1;
b) Applying measurement methods and functions defined in the quality model

of 5.6.1.3;
5.6.5.2 The quality engineer shall evaluate the quality in use data gathered
considering the criteria listed below. The results of the evaluation shall be documented.

a) Traceability to quality in use requirements;
b) External consistency with external quality data;
c) Internal consistency;
d) Repeatability, reproducibility, impartiality and objectivity.

5.6.5.3 The quality engineer shall establish the quality in use evaluation report based
on the quality model defined in 5.6.1.3.

 12

5.6.5.4 If the product environment permits it, the quality engineer shall ensure that the
tests defined in 5.6.1.4 are conducted to evaluate operational quality. If not, the quality
engineer shall ensure that the tests defined in 5.6.1.4 are conducted to evaluate
operational quality in phase 5.6.6. The quality engineer shall establish the operational
quality evaluation report based on the results of those tests.
5.6.5.5 The quality engineer shall conduct joint review(s) in accordance with 6.6.
Upon successful completion of the review(s), a baseline for the quality in use
evaluation report and operational quality evaluation report of the software item shall be
established.
5.6.5.5 The quality engineer shall establish improvement recommendations based on
both evaluation reports. The quality engineer shall ensure that these recommendations
are implemented.
5.6.5.6 The quality engineer shall ensure that the software to qualify (according to
5.3.9) complies with operational quality (if the product environment permits it only,
else it shall be ensured in phase 5.6.6) and quality in use requirements. Particularly, the
quality engineer shall participate to audit(s) as described in 5.3.9.4.
5.6.5.7 The quality engineer shall ensure that the software installation, the software
installation techniques and tool conform to the external quality, quality in use and
operational quality (and internal quality if applicable) requirements.
5.6.6 Software Quality Acceptation Support
For each software item, this activity consists of the following tasks: conform
5.6.6.1 The quality engineer shall support the acquirer’s acceptance review and
testing of the software product considering external quality, quality in use and
operational quality (and internal quality if applicable) . The results of the acceptance
review and testing shall be documented.
5.7 Software Quality Support and Maintenance process
5.7.1 Operational testing
This activity consists of the following tasks:
5.7.1.1 The quality engineer shall assist in the development of the operational test
plan as described in 5.4.1.1. to ensure that the operational quality requirement are
respected.
5.7.2 Problem and modification analysis
This activity consists of the following tasks:
5.7.2.1 The quality engineer shall analyze the problem report or modification request
for its impact on software quality requirements. If any impact is identified, the quality
engineer shall assist the maintainer in his tasks described in 5.5.2.2 to 5.5.2.5.

 13

5.7.3 Modification implementation
This activity consists of the following tasks:
5.7.3.1 The quality engineer shall enter the Software Quality Development Process
(5.6) to assist the modification implementation described in 5.5.3.
5.7.4 Migration
This activity consists of the following tasks:
5.7.4.1 The quality engineer shall enter the Software Quality Acceptation Support
Phase (5.6.6) to assist the migration described in 5.5.5.

6 Supporting Life Cycle Processes
6.4 Verification Process
6.4.2 Verification
6.4.2.8 Software Quality Requirements Verification. The software quality
requirements shall be verified considering the criteria listed below:

a) The software quality requirements are consistent, feasible, testable,
measurable and traceable to software requirements (or stakeholder needs if
applicable);

b) The operational quality requirements are clearly distinguishable and
separated from other quality requirements.

c) The quality in use requirements are clearly distinguishable and separated
from other quality requirements.

d) The external and internal quality requirements are clearly distinguishable
and separated from other quality requirements.

e) The quality models implements correctly characteristics, sub-characteristics
(if applicable), measurement primitives, derived measures (if applicable),
base measures, measurement functions (if applicable) rating levels and target
values.

 14

b) The quality improvement recommendations are traceable to the
corresponding software quality evaluations.

6.4.2.10 Software Quality Evaluation Verification. The software quality evaluation
shall be verified considering the criteria listed below:

6.4.2.9 Software Quality Data Verification. The software quality data shall be
verified considering the criteria listed below:

a) The software quality evaluation are consistent with the rating levels, target
values and measured values (or test results if applicable);

e) The internal quality data is clearly distinguishable and separated from other
quality data.

f) The software quality data contains test results and measured values (if
applicable).

g) The software quality data gathering tasks have been performed in
accordance with an evaluation plan.

a) The software quality data is consistent, repeatable, reproducible, impartial,
objective and traceable to software quality requirements;

c) The quality in use data is clearly distinguishable and separated from other
quality data.

d) The external quality data is clearly distinguishable and separated from other
quality data.

b) The operational quality data is clearly distinguishable and separated from
other quality data.

15

4.2. Phases 2 and 3: Mapping of ISO/IEC 12207 SLC and software
quality engineering processes to SWEBOK

The results of phases 2 and 3 of the research are presented in an aggregated form,
where the recommended additions to ISO/IEC 12207 addressing the software quality
engineering have already been inserted into the main document. In Table 1, the
numbers in cells indicate the mapping of ISO/IEC 12207 to SWEBOK KAs with these
new, related to software quality engineering requiring full or partial addition in Bold
Italic. The “X” in the cell indicates that the process identified in ISO/IEC 12207 is
fully represented in SWEBOK.

18

SWEBOK

ISO/IEC 12207

Software
Requirements

Software
Design

Software
Construction

Software
testing

Software
Maintenance

Software
Configuration
Management

Software
Engineering
Management

Software
Engineering

Process

Software
Engineering
Tools and
Methods

Software
Quality

5.1 Acquisition process X
5.2 Supply process X
5.3 Development process

5.3.4
5.3.5,
5.3.6

5.3.7,
5.3.8

5.3.7,
5.3.8,
5.3.9

5.4 Operation process
5.5 Maintenance process X
5.6 Software Quality
Development Process 5.6.1,

5.6.2 5.6.2 5.6.3,
5.6.4

5.6.3,
5.6.4,
5.6.5,
5.6.6

 X

5.7 Software Quality Support
and Maintenance process X X

Documentation process X X X X X X X X X X
Configuration management
process X

Quality assurance process X
Verification process

6.4.2.3,
6.4.2.8 6.4.2.4

6.4.2.5,
6.4.2.6,
6.4.2.9,
6.4.2.10

6.4.2.2,
6.4.2.9,
6.4.2.10

 X

Validation Process X
Joint review process X
Audit process X
Problem resolution process X
Management process X
Infrastructure process X
Improvement process X
Training process X X X X X X X X X X

Tab. 1: Mapping of enhanced set of ISO/IEC 12207 SLC Processes to SWEBOK KAs

4.3. Phase 4: Propositions of modifications to SWEBOK
Similarly to clause 4.1, the following section presents the enhancements to SWEBOK
in textual form, corresponding to the additions proposed in Table 1.

The text in Bold Italic indicates the domains or sub-domains that are suggested to be
added in order to fill up the identified omissions. The domains that are not discussed in
the following text are considered as well addressing the subject of software quality
engineering. In case of omissions identified on the level of principal taxonomy, the
textual additions are enriched by graphical representation, with proposed
enhancements, also in Bold Italic.

Chap 2 : Software Requirements
1. Software
Requirements
Fundamentals

Noted deficiencies

1.3 Functional and
Nonfunctional
Requirements

- The title should include Quality requirement like this:
“Functional, Nonfunctional & Quality Requirements”

- Shall differentiate quality requirements from non-functional
requirements.

- Shall define quality requirements categories like this:
 operational quality requirements,
 quality in use requirements,
 external quality requirements,
 internal quality requirements.

2. Requirements
Process Noted deficiencies

2.2 Process Actors - May add software quality engineers in the typical examples
of software stakeholders.

- Shall add that the software quality engineer’s job is to
negotiate trade-offs concerning software quality
requirements.

2.4 Process Quality and
Improvement

- Shall clarify what this topic covers: process quality or
software quality. The reader may misinterpret quality as
software quality requirements.

3. Requirements
Elicitation Noted deficiencies

3.1 Requirements
Sources
3.2 Elicitation
Techniques

- Shall include the role of the software quality engineer in all
software requirements collection (in 3.1 and 3.2).

 19

4. Requirements
Analysis Noted deficiencies

4.1 Requirements
Classification

- Shall include software quality
requirements subtypes in
classification.

4.2 Conceptual
Modeling

- Shall add software quality
models in the types of models.

4.3 Architectural Design
and requirements

- Shall add that software quality
engineers must ensure that the
architectural design complies
with the software quality
requirements.

4.4 Quality
Modeling

- Shall elaborate on how the
quality models are refined
and serve as tools to analyze
quality requirements.

- Shall add this concept
in all sub sections: that
software quality
requirements may be
derived or influenced
by stakeholder needs,
system requirements
and software
requirements.

5. Requirements
Specification Noted deficiencies

5.1 The system
definition document

- Shall add the notion of quality in use.

5.3 Software
requirements
specification

- All of the quality requirements should be take into account.

6. Requirements
validation Noted deficiencies

6.4 Acceptance tests - Shall add that the software quality engineer must develop
an evaluation plan to control operational quality and quality
in use requirements validation.

 20

Funct.,
Nonfunct. &
Quality
Requir.

Quality
Modeling

Fig. 5: Breakdown of topics for Software Requirements KA

 21

Chap 3 : Software Design
4. Software Quality
Design Analysis and
Evaluation

Noted deficiencies

4.1 Quality attributes - “Various attributes are generally considered important
for obtaining a software design of good quality…”: The
quality attributes should be presented as a contribution
to the software quality and not only as the software
design quality.

4.2 Quality analysis and
evaluation techniques

- Shall specify that tracing to quality requirements is also
essential.

Chap 4 : Software Construction
1. Software Construction
Fundamentals Noted deficiencies

1.2 Anticipating change /
1.3 Constructing for
verification

- Shall include the notion of traceability to quality
requirements. It will support the quality requirement
verification.

2 Managing Construction Noted deficiencies
2.1 Construction models /
2.2 Construction planning /
2.3 Construction
measurement

- Shall include a
reference to quality
measurements specific
to artifacts produced
during the software
construction.

- Shall include the setting of
quality objectives for each
deliverable included in all
of the managing
construction activities.

3. Practical
Considerations Noted deficiencies

3.6 Construction quality - Shall include that internal quality plays an important
role in software development and the construction of
quality: “Construction quality activities are
differentiated from other quality activities by their
focus. Construction quality activities focus on code
and on artifacts that are closely related to code: small-
scale designs-as opposed to other artifacts that are less
directly connected to the code, such as requirements,
high level designs, and plans.”

 22

Chap 5 : Software Testing
3. Test Techniques Noted deficiencies
3.1 Based on tester’s intuition and
experience
3.2 Specification based
3.3 Code based
3.4 Fault based
3.5 Usage based
3.6 Based on nature of application
3.7 Selecting and combining
techniques

- Shall include the quality requirements testing in
all sub-clauses

Chap 6 : Maintenance
- The definition of that knowledge area is consistent and general enough so that no

noted deficiencies need to be presented

Chap 7 : Software Configuration Management
- The definition of that knowledge area is consistent and general enough so that no

noted deficiencies need to be presented

 23

Chap 8 : Software Engineering Management
2 Software Project Planning Noted deficiencies
2.6 Quality Management - Must explain that the software quality

engineer is responsible for establishing and
documenting preliminary software quality
models. These preliminary models should
contain only top-level quality
characteristics from a management and
user-oriented perspective. Moreover, these
models should contain some direct metrics
(see IEEE 1061-1998) and threshold that
will be used to validate these top-level
quality characteristics.

- It must be clear that during planning the
software quality engineer should not be
concerned by technical and design-oriented
perspectives and consequently, should not
have to establish complete software quality
models prior to planning.

6. Software Engineering
Measurement Noted deficiencies

6.1 Establish and sustain measurement
commitment
6.2 Plan the measurement process
6.3 Perform the measurement process
6.4 Evaluate measurement

- Could include the software quality
engineering activities as a good example of a
measurement process; should explain that the
whole topic is applicable to software quality
engineering but is not restricted to.

Chap 9 : Software Engineering Process
4 Process and Product Measurement Noted deficiencies
4.1 Software Products Measurement :
 4.1.3 Quality Measurement

- Because this section is generic and because
it refers to more detailed sections, nothing
has to be modified.

 24

Chap 10 : Software Engineering Tools & Methods
1 Software Engineering
Tools Noted deficiencies

1.9 Software Quality Tools

- A new category of tools could be created: Software
Quality Assessment Tools. Such a category would
overlap with software requirements tools (1.1), test
evaluation tools (1.4), performance analysis tools
(1.4), and measurement tools (1.7). However, it seems
that such a category will emerge sooner or later
according to discussions about GDQA (Graphical
Dynamic Quality Assessment) and IGQ (Integrated
Graphical Assessment of Quality)1.

Chap 11 : Software Quality
2 Software Quality
Management Processes Noted deficiencies

2.4 Software Quality
Measurement

- This subtopic is originally under Practical
Considerations.

- This subtopic should be moved under Software
Quality Management Processes for clarity .The reason
is that it is directly derived from topic 6 (Software
Engineering Measurement) described in Software
Engineering Management KA. It should also refer
directly to this last topic.

1 Buglione, L.; Kececi, N.; Abran, A., AN INTEGRATED GRAPHICAL ASSESSMENT FOR
MANAGING SOFTWARE PRODUCT QUALITY, in 12 International Conference on Software
Quality, Ottawa, Ontario, 2002, pp. 14.

 25

3 Software Quality
Engineering Noted deficiencies

3.1 Quality Definition
and Design

- This new topic should
cover how the quality
models must be used
and refined to prepare
quality evaluation. It
should cover the tasks
5.6.1, 5.6.2 and 6.4.2.8
in the proposed
ISO12207.

- It should refer to KAs
Software
Requirements and
Software Design. It
should also refer to
Models and Quality
Characteristics from
this KA.

3.2 Quality
Construction and
Evaluation

- This new topic should
cover how software
construction is an
iterative process that
involves quality
construction and
quality evaluation. It
should cover the tasks
5.6.3, 5.6.4, 5.6.5, 5.6.6,
6.4.2.9 and 6.4.2.10 in
the proposed
ISO12207.

- It should refer to KAs
Software Construction
and Software Testing.
It should also refer to
Verification &
Validation and
Software Quality
Measurement from
this KA.

- This new topic is intended
to cover the software
quality engineer role and
activities. We propose only
2 subtopics because almost
everything as be described
in other KAs. This is
intended to be a résumé
that will clearly distinguish
Software Quality
Engineering from the
overall Software
Engineering.

 26

Software Quality
Measurement

Software Quality
Measurement

Quality
Construction &
Evaluation

Quality
Definition
& Design

Software Quality

Engineering

Fig. 6: Proposed Breakdown of topics for the Software Quality KA

Chap 12 : Related Disciplines of Software Engineering
- The definition of that knowledge area is consistent and general enough so that no

noted deficiencies need to be presented

 27

5. Conclusion and Future Work
The research program presented in this article had as the principal objective to verify
the level of representation of software quality engineering practices and processes in
the most prominent document of the software engineering domain: Guide to Software
Engineering Body of Knowledge (SWEBOK). According to the results,, several
missing elements were identified, and consequently, modifications and additions were
proposed. The continuation of this research is foreseen in the form of direct co-
operation with SWEBOK editorial committee, both on IEEE-CS and ISO levels. This
unique opportunity could have become possible due to the recent decision of re-
opening the SWEBOK project with the project management center located again at
École de technologie supérieure (ETS) in Montreal, Canada.

References
1 Guide to the Software Engineering Body of Knowledge, Version 2004,

SWEBOK®. A project of the IEEE Computer Society Professional Practices
Committee, http://www.swebok.org

2 ISO/IEC 12207-1995, Information Technology – Software Life Cycle Processes
3 ISO/IEC 9126, Software engineering –Product quality – Part 3: Internal metrics
4 ISO/IEC 9126, Software engineering –Product quality – Part 2: Externa metrics
5 ISO/IEC 9126, Software engineering –Product quality – Part 4: Quality in use

metrics
6 Suryn, W., Notes de cours de « SYS867-Ingénierie de la qualité », Session AUT-

2005, École de Technologie Supérieure
7 ISO/FCD 15288 - Information Technology - Life Cycle Management -System Life

Cycle Processes
8 Bourque P., Dupuis R., Abran A., Moore J.W., Tripp L., Wolff S., Fundamental

Principles of Software Engineering – A Journey. Journal of Systems and Software
2002

9 Stambollian, A., Dormeux, J-C., Begnoche, L. Analyse de SWEBOK du point de
vue de l'ingénierie de la qualité du logiciel, V1.2, Paper written in the context of a
master degree course at the École de Technologie Supérieure, given by Witold
Suryn, 2005

 28

