
Quality engineering process for the Program
Design Phase of a generic software life cycle

Witold Suryn1, Abdelilah Kahlaoui2, Elli Georgiadou3

1Software and Information Technology Engineering Dept, École de technologie
supérieure. 1100 Notre Dame St. West, Montréal, Québec, H3C 1H3 Canada. E-

mail: witold.suryn@etsmtl.ca

2Master student. Software and Information Technology Engineering Dept, École de
technologie supérieure. 1100 Notre Dame St. West, Montréal, Québec, H3C 1H3

Canada. E-mail: akahlaoui@hotmail.com

3Middlesex University
School of Computing Science

The Burroughs, Hendon, London NW4 4BT, UK
e.georgiadou@mdx.ac.uk

Abstract

This paper presents the design of a quality engineering process applicable in the
program design phase of a generic software life cycle. The presented process
model aims to guide the software quality engineer from the beginning of the phase
to its completion defining the collaboration that should take place between the
program designer and the software quality engineer. The paper also discusses the
integration of the software quality engineering process with the software
development process.

1. Introduction

Developers often see quality as something necessary and desired but quality is not
always on the top of their priority list. As they rush through the project, quality-
related activities are being set aside in order to develop and deliver the software.
Sometimes they may even feel it’s a time consuming process with rather limited
pay-offs. The reality is that quality is not considered a luxury anymore, and its
negligence is likely to become one of the most expensive mistakes. As times

change and customers become more and more demanding, an increasing group of
leading companies successfully use quality concepts to drive their key products and
win the market.

The pivotal concept presented in this paper employs the idea that to obtain high
quality of software the software development life cycle has to be supported by and
integrated with the appropriate software quality engineering process (SQEP) as a
natural part of it. Such a process should also be methodology-independent and
adjustable to the culture and practices of an organisation that chooses to apply it.

2. Objectives

The integrated Suryn-Abran model [1] maps the activities of a software
development generic life cycle to recognised standards for software quality
(Figure 1). As the model shows, most phases are supported by relevant software
quality international standards to the extent of specialised quality measures and
dedicated quality models and processes. However, the phase of Conceptual Design
which encapsulates two rather critical components namely System Design and
Program Design remain unaddressed.

This paper proposes the processes and models helping to fill this gap with the
particular support for the Program Design Phase (PDP). The methodology applied
during this research consists of three steps:

1. Analysis of ISO/IEC 9126 [2, 3] in order to identify quality characteristics and
subcharacteristic that could be applied to the PDP;

2. Elaboration of a program design process applying the IEEE 1016 standard [4];
3. Creation of a Quality Program Design Process (QPDP) than can be integrated

and performed in parallel with the ordinary PDP [5, 6, 7, 8, 9].

The above methodology was also successful in identifying quality measures that
could be effectively applied during the Program Design Phase.

Figure 1: Integrated model by Suryn and Abran

ISO/IEC 14598 – Product Evaluation: Part 3 – Process for Developers; Part 4 – Process for Acquirers, Part 5 – Process for Evaluators

Requirements
 Analysis

Discovery
(SW Prod. Def.)

Implementation

Integration

Verification

Transition

Validation

Operation and
Maintenance

Architectural
Design

ISO/IEC 9126 – 4
Quality in Use
Requirements

ISO/IEC 9126 – 2
External Quality

Requirements

ISO/IEC 9126 – 3
Internal Quality
Requirements

ISO/IEC 9126 – 4
Quality in Use
Measurements

ISO/IEC 14598 – Product Evaluation – Part 6: Documentation of Evaluation Modules

ISO/IEC 9126 – 2
External Quality
Measurements

ISO/IEC 9126 – 2 & 3
External & Internal

Quality
Measurements

TL9000 – Quality Management System Measurement Handbook: Sections: Common Measurements, Hardware & Software Measurements,
Software measurements, Services Measurements

OPERATIONAL QUALITY REQUIREMENTS OPERATIONAL QUALITY MEASUREMENTS

TL9000 – Quality Management
System Requirements Handbook

Section: Product realization

Requirements

Design &
Development

TL9000 – Quality Management
System Requirements Handbook

Section: Measurement, Analysis and
Improvement

Contribution
Flow

3. Measures and measurement

ISO/IEC 9126 is the ISO standard that addresses software quality characteristics
and subcharacteristic [2, 3]. It also gives a set of internal and external measures to
validate quality of software. These measures are product-oriented (i.e. pertinent to
a software product) and as such, not always well suited for phases where no code is
produced. Our first task was to extract the quality attributes and measures that can
be applied to the PDP. We recognise that significant work is needed in order to
adjust existing measures, and propose measurements that satisfy the most critical
phases in software development, especially architecture and program design
phases.

4. Designing for quality

The following sections describe the QPDP. This process adds a set of quality
activities to the classical activities of a program design, in order to obtain a
program design that satisfies the software quality requirements. The reader will
notice that this process is performed in parallel with the usual software
development process. This in turn makes the Software Quality Engineer (SQE) a
member of the software development team and not just an inspector taking action
only when the development is completed. The SQE is there to give support and
guide the designers to achieve their objectives of quality. As the designer becomes
more comfortable with quality concepts, that guidance might be less needed, but
the SQE remains proactive nonetheless.

4.1. Classical Program design

This section presents a program design process inspired by the IEEE-1016 standard
[4] and approaches discussed in [10, 11, 12]. The process is analysed in a step-by-
step manner in order to show how proposed QPDP can be combined with it.

4.1.1. Program design elements

The below definitions are based on these used in IEEE 1016 [4].

Internal Entity: a definition of a set of attributes and operations that work together
to produce the entity behaviour. An entity has a purpose that justifies why it exists
and a function that sets what the entity does.

Design entity is an element (component) of a design that is structurally and
functionally distinct from other elements and that is separately named and
referenced. The design entity is associated to other entities through Relationships.
This way an entity can use services of other entities the same way it can be used by
other entities.

Data Entity: a set of information used by the entity to accomplish its function.

Operation Entity : defines an entity’s behaviour. Operation behaviours form the
entity’s function

Entity Relationships: a link between two entities. A relationship between two
entities means that a design entity uses, accesses or just knows about the related
design entity.

Design interface: defines the services offered by a design entity.

4.1.2. Program design process

In this section we will define the activities considered as required for a designer to
perform in order to produce a software program design. These activities are:

Internal Entity Design: The goal of this activity is to identify all possible entities
in the software program.

Entity Relationships Design: In this activity, the designer should define the
relationships that tie the entities together.

General Operations Definition: In this activity, the designer should define the
general behaviour of each entity operation. The designer should also specify the
data needed by the operations to do its work and the data it produces.

Activity 6

Activity 5

Activity 4

Activity 3

Activity 2

Activity 1

External
quality

Internal quality
from External

quality
Influenses

Depends on

Program Design

includes

Quality Program Design

Quality
Requirements

Analysis
System
Design

Quality Test Design

Quality Entity Design

Quality Operations Design

Quality interface Design

Quality behavior Design

Quality Diagrams Design

Quality System
Design

includes

Internal entity design

Detailed Operations definition

Entity Relationships design

Test Procedures Definition

 Entity Data
Definition

Program Dynamic
Diagrams Design

General Operations
Definition

collaborates

collaborates

collaborates

collaborates

collaborates

collaborates
Program Static

Diagrams Design

Quality Program Design Process

Figure 2: Program design quality engineering process

Entity Data Definition: In this activity, the designer should define the data used
by the entity to accomplish its function. These data specify the state of an entity
and are available for all operations defined in the entity.

Detailed Operations Definition: This activity allows the designer to add any
pertinent information (e.g.: constraints, data validation rules, pseudocode etc.)
related to the entity operations behaviour in order to help the programmer
implement it.

Program Static Diagrams Design: In this activity, the designer should set up all
diagrams that describe the structure of the software program.

Program Dynamic Diagrams Design: In this activity, the designer should set up
all diagrams that describe the behaviour of the software program during its
execution.

Test Procedures Definition: The goal of this activity is to define procedures to
test the software program.

4.2. Quality Program Design Process

This section explains the activities that should be performed by a SQE in order to
make sure that the quality requirements are met during the program design process.
The quality program design process is executed in parallel with the program
design. Each activity of the classical program design is mapped to a corresponding
quality activity responsible for providing the required quality engineering-related
information. These activities are:

Quality Entity Design: in this activity, the quality engineer should specify the
quality characteristics to respect during the entity design activity. He identifies also
the applicable and measurable quality attributes for entity design.

Quality Interface Design: in this activity, the quality engineer should specify the
characteristics to respect during the interface design activity. He identifies also the
applicable and measurable quality attributes for interface design.

Quality Behaviour Design: in this activity, the quality engineer should specify the
characteristics to respect during the behaviour design activity. The SQE also
identifies the applicable and measurable quality attributes for behaviour design.

Quality Operation Design: in this activity, the quality engineer should specify the
characteristics to respect during the operation design activity. He identifies also the
applicable and measurable quality attributes for operation design.

Quality Diagrams Design: in this activity, the quality engineer should specify the
characteristics to respect during the diagrams design activity. The SQE also
identifies the applicable and measurable quality attributes for diagrams design.

Quality Test Design: in this activity, the quality engineer should specify the
characteristics to respect during the test design activity. The SQE also identifies the
applicable and measurable quality attributes for test design.

4.3. Quality Program Design Artefacts

The following list is given as an example of the artefacts that can be generated in
the PDP. It can be used as it is or adjusted according to different organisation
needs.

Entity Design document: this document is produced by the software designer. It
should include the definition of all entities, data, operations as well as the
representation of the relationships between entities.

Realisation document: this document is produced by the software designer. It
should include the static and dynamic diagrams developed in activity #5. It should
also include any pertinent information that can be helpful for the programmer in
the implementation phase.

Test case document: this document is produced by the software tester or designer.
It should include a definition of the test procedures, the entities to be tested and the
cases that should be covered by the test.

Quality Program Design document (QPDD): this is a document produced by the
software quality engineer. It could be split into several subdocuments. It should
include all the quality attributes to take into consideration and the recommended
practice to satisfy the quality requirements. The following section shows how to
elaborate a QPDD.

5. Quality Program Design Document

This section describes the process that should be followed by the SQE in order to
produce the Quality Program Design Document (QPDD). There are 7 steps
(Fig.3) in this process:

Quality program design attributes definition

In this step, the SQE should define all applicable quality program design attributes.
The inputs for this step are:

 Internal quality characteristics and subcharacteristics from ISO/IEC 9126
standard

 Quality system design
 Present document

Prioritising quality attributes

In this step, the SQE should prioritise quality program design attributes defined in
step 1. The criteria used to prioritise these attributes may vary from one
organisation to another however both the size and the type of the project could be
considered as a starting point.

Measures identification

In this step, the SQE should set up all applicable measures. Based on the present
document, the SQE should be able to identify all measures related to the quality
attributes defined in step 1.

Target measurement values specification

In this step, the SQE should specify the acceptable values for the measures
identified in step 3. These values may vary depending on the project type and size.

Recommended practice elaboration

In this step, the SQE may adapt (combine activities together or add its own
activities) the activities proposed in the quality program design process in order to
respect the organisation internal standards.

Engineering process adaptation

In this step, the SQE should provide the necessary guidelines to help the designer
satisfy the quality attributes defined in step1.

Design artefacts specification

Based on the project type and size and the organisation’s internal standards, the
SQE should define the pertinent artefacts to produce by the designer.

Figure 3: Quality program design document construction process

6. Collaboration Process

This section describes the process of collaboration between the SQE and the
designer during an activity of program design (Fig.4). The same process is repeated
for each activity; only the scope changes.

Stabilizing Quality Attributes
The SQE and the designer should work together in order to standardise and reach
an agreement on quality attributes specified by the SQE in the QPDD.

Standardised Measures
The SQE and the designer should work together in order to standardise and reach
an agreement on the measures identified by the SQE in his QPDD.

Design
The designer should build the program design following the guidelines given by
the SQE in the QPDD.

Design Documentation
The designer should document the program design.

Design Documentation Inspection
The SQE should inspect the program design document produced in phase 4.

Design Review
The SQE should participate in the review the program design produced in phase 3.

Measuring design
The SQE should perform the measurements agreed in phase 2.

Acceptation
The SQE should inspect and validate the quality attributes agreed in phase 1.

Figure 4: Collaboration process between designers and software engineers

7. Conclusion

In this paper we identified a gap in previous product quality models with respect to
Software Under Development. An extension of the Suryn-Abran model to include
components and measures for the phase of Conceptual Design which encapsulates
two rather critical components namely System Design and Program Design. The
model emphasised the need to integrate the development process with the Software
Quality Engineering process as a preventative measure rather than relegating
quality assurance activities to the end of the process,

Further work needs to be carried out in order to adjust and refine existing measures
as well as propose measurement programmes and further measures that satisfy the
most critical phases in software development, especially architecture and program
design phases.

Acknowledgments
The authors express sincere appreciation to Mr. Jean-Francois Levesque, master
student at Software and Information Technology Engineering Dept, École de
technologie supérieure for his valuable contribution in the research program
presented in this paper.

8. Bibliography
1. Suryn W., Abran A., Laporte C.Y., “An integrated life cycle quality

model for general public market software products”. Proceedings of 12th
International Software Quality Management & INSPIRE Conference
(BSI) 2004, Canterbury, Kent, UK 5-7 April 2004

2. ISO/IEC 9126 – Software Engineering – Product quality – Part 1: Quality
model, 1999

3. ISO/IEC 9126 – Software Engineering – Product Quality – Part 3 –
Internal Metrics, 2001

4. IEEE 1016 – Recommended Practice for Software Design Descriptions,
1998

5. ISO/IEC 14598 – Software Product Evaluation – Part 2: Planning and
Management, 1995

6. ISO/IEC 14598 – Information technology – Software product evaluation
Part 3: Process for developers, 1996

7. ISO/IEC 14598 – Software Engineering – Product evaluation – Part 6:
Documentation of evaluation modules, 1999

8. IEEE 1058 – IEEE Standard for Software Project Management Plans,
1998

9. Roger S. Pressman, “Software Engineering: A practitioner’s approach,
fourth edition”, McGraw-Hill Series, 1997

10. David Budgen, “Software Design, second edition”, Pearson, 2003

11. Dick Hamlet, Joe Maybee, “The Engineering of Software”, Addison
Wesley Longman Inc, 2001.

12. Georgiadou Elli " Software Process and Product Improvement A
Historical Perspective", International Journal of Cybernetics, Volume 1,
No1, Jan 2003 pp172-197

