Parallel Block Neo-Hookean XPBD using Graph Clustering

Quoc-Minh Ton-That¹, Paul G. Kry², Sheldon Andrews¹

¹École de Technologie Supérieure ²McGill University

Accelerating Soft Body Simulation

- Why do we care?
 - Real-time applications
 - Virtual surgery
 - Computer games
 - Off-line applications
 - Visual effects
 - Robotics

Symgery Inc., 2021

Existing Methods: Projective Dynamics

Bouaziz et al., 2014

Bouaziz et al., 2014

Existing Methods: Model Reduction

Barbic et al. 2005

Barbic et al. 2005

Existing Methods: Multigrid Methods

Xian et al. 2019

Extended Position Based Dynamics (XPBD)

Macklin et al. 2021

XPBD in a nutshell

Example Constraints

$$C(\mathbf{x}_i, \mathbf{x}_j) = k \left(\|\mathbf{x}_i - \mathbf{x}_j\|_2 - d \right)$$

$$C(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k) = \frac{1}{2} |(\mathbf{x}_j - \mathbf{x}_i) \times (\mathbf{x}_k - \mathbf{x}_i)| - A$$

Neo-Hookean Elastic Constraints

Macklin et al. 2021

Local Nonlinear Constraint Solver

x := predict positions given f_{ext}

Predict positions

for
$$k := 1 \dots K$$

for C_i in constraints C

 $\Delta x := \text{project constraint } C_i$

$$x \coloneqq x + \Delta x$$

Solve constraints

$$x^{t+1} \coloneqq x$$

$$v^{t+1} \coloneqq \frac{x^{t+1} - x^t}{h}$$

Update solution

Parallelizing the Solver

Contribution #1: Graph Clustering Parallelism

Contribution #2: Elastic Constraint Coupling

Challenge #1: Enhance Parallelism

Graph Clustering Solution

Triangle Meshes vs. Quadrilateral Meshes

Our Greedy Graph Clustering

Our Greedy Graph Clustering

Challenge #2: Enhance Solver Convergence

30 iterations insufficient!

Neo-Hookean Constraint Formulation

Decoupled Constraint Formulation

$$\nabla C^{H}(\mathbf{x}) = -\mu \mathbf{I} : \frac{\partial \mathbf{F}}{\partial x} \neq 0$$
$$\nabla C^{D}(\mathbf{x}) = \mu \mathbf{I} : \frac{\partial \mathbf{F}}{\partial x} \neq 0$$

Our Coupling Approach

$$C^{\text{neo}}(\mathbf{x}) = \begin{bmatrix} C^H(\mathbf{x}) \\ C^D(\mathbf{x}) \end{bmatrix}$$

$$abla C^{
m neo}(\mathbf{x}) = egin{bmatrix}
abla C^H(\mathbf{x}) \\
abla C^D(\mathbf{x})
otag$$

$$\|\nabla C^{\text{neo}}(\mathbf{x})\|_{\mathbf{F}} = 0$$

$$\operatorname{dofs}(C^{\text{neo}}) = \operatorname{dofs}(C^H) \cup \operatorname{dofs}(C^D)$$

Updated Constraint Projection

$$\Delta \lambda_j = -A_{2\times 2}^{-1} b_{2\times 1}$$

$$\Delta \mathbf{x} = \mathbf{M}^{-1} \nabla C_{2\times \mathbf{n}}^{\text{neo}} (\mathbf{x})^T \Delta \lambda_{2\times 1}$$

Fig. 5: Convergence for the Beam example using different GPU solver variants shows the superior behavior of block solves of coupled neo-Hookean constraints, while clustering does not hinder convergence.

Table 2: Timing results using constraint blocking and clustering. The abbreviations used in column headings are C for clustered and B for blocked constraints. Timings are reported in milliseconds. Speedups are reported with respect to the baseline timings.

Model	Tetrahedra		Colors			H	Time (ms)				Speedup	
		Baseline	C	Reduction	Baseline		С	В	B+C	С	В	В+С
Beam	3727	40	17	0.43	285.03		170.49	41.29	20.46	1.67	6.90	13.93
Bunny	56371	52	21	0.40	432.28		315.33	90.86	52.81	1.37	4.76	8.19
Armadillo	45593	62	26	0.42	528.26		374.81	108.89	61.13	1.41	4.85	8.64
Spot	19835	104	25	0.24	885.07		324.18	173.78	54.25	2.73	5.09	16.31
Octopus	22213	78	22	0.28	663.96		299.78	132.76	49.10	2.21	5.00	13.52
Squirrel	64768	56	22	0.39	457.91		332.16	94.78	55.41	1.38	4.83	8.26
												-

162k tetrahedra 50 sub-steps Y = 400 Mpav = 0.499

19.8k tetrahedra 50 sub-steps Y = 30 Mpav = 0.45

56.4k tetrahedra 50 sub-steps Y = 20 Mpa v = 0.45

Conclusion

- Better parallelism
 - Isolates dense sub-graphs using graph clustering
- Faster convergence
 - Project constraint blocks by solving small linear systems
- Methods are *general* and *overhead-free*

Future Work

- Sophisticated graph clustering/partitioning strategies
- Judicious constraint coupling strategies
- Dynamic updates to clusters/partitions

Kong, F., Stogner, S. T. et al. 2018

Acknowledgements

Thank You!