
Computers & Graphics (2022)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Parallel Block Neo-Hookean XPBD using Graph Clustering

Quoc-Minh Ton-Thata,∗, Paul G. Kryb, Sheldon Andrewsc

aÉcole de Technologie Supérieure, Montreal, Canada
bMcGill University, Montreal, Canada
cÉcole de Technologie Supérieure, Montreal, Canada

A R T I C L E I N F O

Article history:
Received 23 September 2022

finite element method, physics-based
animation, soft body simulation,
elasticity, real-time physics

A B S T R A C T

The eXtended Position Based Dynamics algorithm (XPBD) enables unified simulation
of various materials from fluids to both elastic solids and stiff solids. In particular,
finite element based neo-Hookean models can simulate near incompressible materials
by means of a decoupled compliant constraint formulation. Due to XPBD’s reliance on
local constraint projections in the solver loop, its computational nature lends itself to
parallelization by means of graph coloring algorithms used to determine partitions of
independent constraints which can be solved simultaneously. However, minimal graph
coloring is bounded from below by the maximum valence of the finite element mesh,
thus hindering parallelization opportunities. In this paper, we propose a novel graph
clustering approach on the constraint graph which groups highly dependent constraints
into supernodes. By applying graph coloring on the supernodal constraint graph, we
are able to significantly reduce the number of partitions, thus enhancing parallelization
of the solver. Furthermore, we accelerate convergence of the neo-Hookean XPBD
solver by a coupled constraint formulation, resulting in enhanced stability and efficiency
compared to previous approaches.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Physics-based animation is increasingly used by computer

graphics, robotics, and VR training applications as a way to

generate realistic and complex animations of soft or deformable

objects. In the case of interactive applications, where real-

time frame rates are often required, extended position based

dynamics (XPBD) [16] has proven to be a useful framework

for efficiently simulating many different physical phenomena.

However, even though parallel implementations of XPBD are

∗Corresponding author:
e-mail: tonthat.quocminh@gmail.com (Quoc-Minh Ton-That)

straightforward to realize, simulations involving large and

complex models may still struggle to achieve performance

requirements or remain stable. Improving simulation efficiency

is therefore a continuing research goal.

State-of-the-art methods for simulating elastic objects using

XPBD employ continuum-based constraints [3] applied to a

finite element discretization. Recently, a decoupled constraint-

pair formulation for stable neo-Hookean materials [17] was

shown to be particularly well-suited for simulating nearly

incompressible materials. Real-time performance is obtained

by a massively parallel implementation of the XPBD algorithm,

which is made possible by a local Gauss-Seidel type solver.

Preprint submitted to Computers & Graphics October 28, 2022

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022)

Fig. 1: We simulate a deformable tetrahedral mesh composed of 165k elements at 15 frames per second. Our coupled constraint formulation significantly improves
convergence of state of the art XPBD, while our greedy graph clustering algorithm further reduces computational cost compared to traditional graph coloring
approaches, reducing solve times by an order of magnitude.

However, performance may still be impacted if the solver

does not converge to a sufficiently accurate solution within an

allotted time budget.

Gauss-Seidel type solver algorithms are known to

demonstrate faster convergence, yet are difficult to parallelize

since sub-sets of independent constraints, or partitions, must

first be identified. Graph coloring approaches [8, 9, 10] may

be used to obtain independent constraint sets. However,

the continuum-based elastic constraints used for simulating

tetrahedral models often yield large numbers of partitions, thus

limiting acceleration potential that comes with a parallel solver

since partitions must be processed sequentially.

In this paper, we accelerate the convergence of elastic body

simulation using stable neo-Hookean constraints by solving

the hydrostatic and deviatoric constraints in a coupled fashion,

which exhibits faster convergence rates surpassing current

methods. Figure 1 shows a preview of our results. Our proposed

algorithm requires only trivial modifications to existing XPBD

implementations by using 2 × 2 block solves to compute the

Lagrange multiplier corrections rather than computing them

individually. Solver efficiency is further improved by means of

a graph clustering method that significantly reduces the number

of constraint partitions and that facilitates a massively parallel

solver implementation. The clustering method has the added

benefit that it generalizes to arbitrary constraint models and

geometrical discretizations.

2. Related Work

Our work builds on previous acceleration methods for soft-

body simulation. Acceleration methods in this context either

improve computational efficiency, improve convergence of the

underlying numerical methods, or reduce the complexity of the

original problem. In this section, we briefly review work that

focuses on employing these strategies, or combinations of them,

to improve the performance of soft-body simulations.

Model Reduction. Model reduction approaches

compute soft-body deformations using a mapping from a low-

dimensional deformation space to high-resolution deformations

in the full space of the model. By reformulating the equations

of motion in the reduced space, the size of the system of non-

linear equations to be solved for time integration is significantly

reduced, leading to major speed ups. Barbič and James [2]

apply modal analysis to the stiffness matrix, keeping only

the most relevant deformation modes, and derive a second-

order Taylor expansion around a given configuration to account

for non-linear elastic models. An et al. [1] accelerate the

computation of internal forces in a reduced space by choosing

only a coarse set of representative integration points in the

finite element mesh and compute energy gradients at those

points. Kim and James [14] enable updating and downdating

Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022) 3

the mapping dynamically. Fulton et al. [11] introduce neural

networks for non-linear model reduction by expressing the

mapping as a variational auto-encoder. Shen et al. [30]

build on the work of Fulton et al. [11] by introducing a

complex-step finite difference approach with reverse mode

automatic differentiation to compute higher-order derivatives

of the mapping function, thus enhancing the expressivity

of the deformations. While model reduction techniques

are particularly efficient, handling large mesh deformations

in real-time, they require non-trivial precomputation, and

recently proposed model reduction methods based on machine

learning often require manual intervention during the training

phase. Additionally, model reduction techniques do not lend

themselves well to varying boundary conditions and topological

changes due to the precomputation phase assuming their

invariance.

Constraint-based Methods. Projective dynamics [5]

reformulates the elastic potential as a sum of quadratic

constraint energies. In doing so, the optimization problem

associated with the backward Euler time stepping scheme

becomes a convex quadratic optimization problem with a

constant Hessian matrix that can be prefactored (e.g., by

a sparse Cholesky decomposition). A local-global iterative

approach is employed at each time step, where the local step

consists of constraint projections that may be computed in

a parallel fashion, and the global step solves the prefactored

linear system. Brandt et al. [6] apply model reduction to

projective dynamics and achieve simulation rates an order of

magnitude faster than the standard algorithm. Fratarcangeli

et al. [9] and Fratarcangeli et al. [10] accelerate the global solve

using graph coloring techniques with iterative linear solvers.

Wang [33] accelerate convergence using the Chebyshev semi-

iterative method by estimating a spectral radius associated

to projective dynamics solves. Peng et al. [26] express the

local-global steps as a fixed point iteration, enabling the

use of a stable Anderson acceleration scheme to improve

convergence. Although projective dynamics is highly stable

and efficient, constraints are restricted to a quadratic form,

and the global solve is not easily parallelized. Additionally,

dynamic constraints must be incorporated by refactorizing

the lead matrix, or by incremental updates and downdates.

These properties pose performance challenges for multi-body

simulations compared to other position based methods [4].

Extended position based dynamics [16, 23] (XPBD) is

another constraint-based framework that provides a unified

approach for multi-phase multi-body simulation. However,

it requires only that the constraint functions are rigid motion

invariant and first order differentiable. XPBD time integration

consists of a symplectic Euler step, followed by an iterative

solver loop that projects positions onto individual constraint

manifolds one at a time along constraint gradients. Exploiting

the sparsity of these gradients yields a massively parallel solver

loop, which is the key to XPBD’s performance. Although

PBD [21] methods were first used with geometric constraints,

recent methods favor continuum-based elasticity constraints [4,

17, 22].

It is also possible to employ global linear solves of the

compliant constraint formulation [28], which yields better

convergence. However, such approaches forfeit parallelizability

of the solver loop. Inclusion of a geometric stiffness term may

drastically improve stability in this case [32].

Graph Partitioning. Fratarcangeli and Pellacini [7] use

graph coloring [20] to determine independent sets of XPBD

constraints that can be solved in parallel on the GPU. The

number of colors determines the number of independent sets,

and consequently determines the number of GPU kernel calls

per solver iteration. Fratarcangeli and Pellacini [8] observed

that a large number of GPU kernel calls is the main culprit

for parallel execution time overhead, and succeed in reducing

the number of colors on the constraint graph by introducing

ghost constraints and ghost particles. Advantageous speedups

are thus obtained, but the dynamics of the physics change.

Matula and Beck [19] show that vertex reorderings can bring

the color count closer to the lower bound. They propose a

smallest degree last vertex reordering which may yield lower

numbers of colors in practice. Peiret et al. [25] and Liu and

4 Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022)

Andrews [15] use graph partitioning algorithms to parallelize

the simulation of highly connected systems of rigid bodies.

Our proposed method builds on the work of Macklin and

Müller [17]. They mention that it is possible to reduce

the number of constraint partitions by considering hexahedral

meshes in which each hexahedron contains 5 or 6 constrained

tetrahedra. A lower bound of 8 sets of hexahedra is attainable,

thus significantly reducing GPU kernel call overhead, making

simulation maximize parallelizability.

3. Background

For deformable tetrahedral meshes with vertices V and

tetrahedra T , XPBD simulations integrate in time Newton’s

equations of motion

Mẍ = fint(x) + fext(x) , (1)

where M ∈ Rn×n is the diagonal nodal mass matrix, fint(x) ∈

Rn is the internal elastic force vector, fext(x) ∈ Rn is the

external force vector, and x ∈ Rn are the degrees of freedom

corresponding to the vector of stacked tetrahedral mesh vertex

coordinates, where n = 3|V |.

The internal forces fint(x) are expressed as the negative

gradient of the potential

U(x) =
1
2

C(x)Tα−1C(x) , (2)

such that

fint(x) = −∇U(x)T

= −∇C(x)Tα−1C(x) ,
(3)

where C(x) =
[
C1(x),C2(x), . . . ,Cm(x)

]T
∈ Rm is a vector of

m constraint functions C j(x) ∈ R, and α ∈ Rm×m is a block

diagonal compliance matrix.

Following a finite difference time discretization, the

equations of motion in Equation 1 are reformulated by

introducing Lagrange multipliers λ ∈ Rm defined as

λ = −α̃−1C(x) , (4)

where α̃ = α
∆t2 and ∆t is the time step.

Algorithm 1 XPBD time integration for a single time step.

h← ∆t/numSubSteps ▷ ∆t is time step size
for s = 1 . . . numSubSteps do
λ← 0
x← xt + hvt + h2M−1fext(x)
α̃← 1

h2α
for j = 1 . . .m do ▷ Solver iteration

A← [∇C j(x)M−1∇C j(x)T + α̃ jj]
∆λ j ← −A−1(C j(x) + α̃ jjλ j)
∆x←M−1∇CT

j (x)∆λ j

λ j ← λ j + ∆λ j

x← x + ∆x ▷ constraint projection
end for
vt+1 ← x−xt

h
xt+1 ← x

end for

Integrating Equation 1 by one step in time then requires a

non-linear solve with the fixed point iteration

λk+1 = λk + ∆λ

xk+1 = xk + ∆x
(5)

starting from the initial iterates x0 = xt + ∆tvt + ∆t2M−1fext(x),

where xt are the degrees of freedom at time step t and vt are the

nodal velocities at time step t, and λ0 = 0.

Instead of using a global linear solve to obtain ∆λ and

∆x at every iteration, XPBD opts for a Gauss-Seidel type

local solver which projects every constraint C j(x), updating

their associated Lagrange multiplier and degrees of freedom

sequentially. The XPBD algorithm is presented in Algorithm 1,

where substepping is used [18].

Recent methods simulate hyper-elastic continuum-based

materials in a position based framework [3] by using tetrahedral

meshes and a piece-wise linear finite element discretization of

the deformation function ϕ(X). They constrain each tetrahedral

element e ∈ T by some strain energy density function Ψ(F)

integrated over the domain Ωe of e, where F = ∇Xϕ(X) ∈ R3×3.

Due to the piece-wise linear basis, F is constant over Ωe, such

that element e’s constraint function trivially becomes

Ce(x) =
∫
Ωe
Ψ(F)∂Ωe

= ωeΨ(F),
(6)

where ωe is the volume of the element.

Macklin and Müller [17] use the stable neo-Hookean model

of Smith et al. [31], where the strain energy density is defined

Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022) 5

as

Ψneo(F) =
λ

2
(det(F) − γ)2︸ ︷︷ ︸
ΨH (F)

+
µ

2
(tr(FT F) − 3)︸ ︷︷ ︸
ΨD(F)

, (7)

with γ = 1 + µ
λ
, where µ, λ are the Lamé coefficients.

The strain energy density may be decomposed into a

hydrostatic term, ΨH(F), and deviatoric term ΨD(F). Instead of

defining a single constraint function per element, Macklin and

Müller [17] exploit Equation 7 to determine a pair of hydrostatic

and deviatoric constraint function and compliance for every

element:

CH(x) = det(F) − γ (8a)

αH =
1
λωe

(8b)

CD(x) =
√

tr(FT F) (9a)

αD =
1
µωe

(9b)

We thus have that m = 2|T |, α is a diagonal matrix with

coefficient pairs αH and αD, and C(x) is a vector of constraint

pairs CH(x) and CD(x), for every element e.

3.1. Parallel Solver

Because constraint projection in solver loop iterations

directly updates x based on its current value, we cannot trivially

parallelize the algorithm. However, each constraint gradient

∇C j(x) is sparse. Two constraints that have non-overlapping

sparsity patterns can update x in any order because the

constraint projections modify independent degrees of freedom.

To better understand how the sparsity of the constraint

gradients can be leveraged for parallel updates, we define

C j =

{
i
∣∣∣ ∂C j(x)
∂xi

, 0,∀ i ∈ [1, n]
}

(10)

as the sparsity pattern of ∇C j(x) giving its non-zero structure.

In other words, C j gives the degrees of freedom that influence

constraint C j. Therefore, to parallelize the solver loop, we seek

to partition the constraints into a set of partitions P , where each

partition Pc ⊂ [1,m], for c ∈ [1, |P |], contains independent

constraints, i.e., C j ∩ Ck = ∅ for any two constraint indices j

and k in Pc.

Algorithm 2 Parallel XPBD solver iteration.

for c ∈P do
for j ∈Pc do ▷ Parallelize loop

A← [∇C j(x)M−1∇C j(x)T + α̃ jj]
∆λ j ← −A−1(C j(x) + α̃ jjλ j)
∆x←M−1∇CT

j (x)∆λ j

λ j ← λ j + ∆λ j

x← x + ∆x
end for

end for

Algorithm 1 can then be modified to loop over each partition

Pc and perform a parallel projection of all constraints in

Pc. The parallel variant of the XPBD solver is provided in

Algorithm 2.

3.2. Graph Coloring

Let us next consider how to construct the constraint partitions

Pc from a constraint graph G = (V,E), where the graph nodes

V are constraints, and E is the set of edges. An edge exists

between two graph nodes (constraints) iff they share at least

one degree of freedom, that is,

(C j,Ck) ∈ E ⇐⇒ C j ∩ Ck , ∅. (11)

It is possible to find one of many feasible constraint partitions

by a graph coloring algorithm acting on the constraint graph

G. A graph coloring algorithm will assign a color to each

constraint such that it is different from the color of any

neighboring constraint. That is, if (C j,Ck) is an edge in

E then the constraint gradient patterns overlap and the two

constraints must have different colors. This property permits

the construction of partitions by grouping constraints of the

same color, i.e., C j for j ∈ Pc will all have the same color,

and that color will be different from the color of constraints in

other partitions. Thus, all constraints of the same color may be

projected in parallel in the solver loop.

We refer the reader to the work by Fratarcangeli and Pellacini

[8] for further details on graph coloring approaches suitable to

position based dynamics simulations. The notation we use in

this section and the rest of the paper is summarized in Table 1.

6 Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022)

Initial mesh Constraint graph Graph coloring Constraint colors

Constraint colorsSupernodal graph Supernodal graph coloring

Fig. 2: Schematic overview of our graph clustering based constraint partitioning method. The top row shows the traditional partitioning approach based on directly
coloring the constraint graph G. In contrast, our method builds a supernodal graph Ḡ from G by means of a clustering algorithm. The coloring of Ḡ (sparse graph
bottom row), in comparison to the coloring of G (dense graph top row), generates significantly fewer constraint partitions and leads to superior solver performance.

Table 1: Notation and symbols used throughout this paper.

Symbol Definition

C j jth constraint in vector C, where j ∈ V
C j Non-zero pattern of ∇C j(x)

G = (V,E) Constraint graph
Pc Constraint partition c
P Set of constraint partitions
r rth constraint cluster
χ(r) Constraint set of cluster r
π(j) Cluster of constraint j

Ḡ = (V̄, Ē) Constraint cluster graph
P̄c Cluster partition c
P̄ Set of cluster partitions

4. Graph Clustering

We observe from Section 3.2 and Algorithm 2 that

parallelization is directly related to the number of colors

obtained from the graph coloring process. In the limit, if we

have as many colors as constraints, our parallel solver reverts

to its sequential counterpart. In contrast, for a single color,

all constraints can be projected simultaneously. Hence, as the

number of colors decreases, parallelism is enhanced.

4.1. Bounds on Parallelizability

For a tetrahedral discretization, each continuum constraint

is parameterized by exactly 12 degrees of freedom comprised

of the x, y, z components of the four tetrahedral nodes.

Because a node is shared by all of its incident tetrahedra,

its corresponding degrees of freedom are also shared by all

constraints associated with these incident tetrahedra. The

number of colors is therefore bounded below by the largest

vertex one-ring neighbourhood of tetrahedra. For the stable

neo-Hookean constraints, there are exactly two constraints per

tetrahedra. The following lower bound on the number of colors

of a tetrahedral mesh model using this neo-Hookean material

thus applies

|P | ≥ max
i∈[1,|V |]

2|Ni|, (12)

where Ni is the one-ring neighbourhood of tetrahedra around

vertex i. In graph terminology, in the general case, the

minimum number of colors in a graphG is the size of the largest

clique in G.

In practice, this lower bound can be prohibitively high. For

instance, a tetrahedral mesh built from a regular grid of voxels,

with each grid cell containing 5 tetrahedra, has a lower bound of

around 40 colors. For general meshes, the number of necessary

colors can be much higher. Thus, GPU implementations of

XPBD are hindered by simulating tetrahedral finite element

meshes, which require a significant number of GPU kernel calls

per solver iteration.

Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022) 7

We know that hexahedral meshes have much better lower

bounds on coloring, such that it is possible to obtain only 8

colors, and each hexahedron can be chosen to encapsulate 5 or

6 tetrahedral elements. This is due to the fact that for a regular

hexahedral mesh, interior vertices have exactly 8 incident

hexahedra, while boundary vertices have even less. Thus,

for stable neo-Hookean constraints derived from a hexahedral

mesh, it is possible for every hexahedron to encapsulate either

10 or 12 constraints derived from their associated 5 or 6

tetrahedra. Rather than coloring the constraint graph, we may

then color the graph of hexahedra instead and thus obtain

much better parallelism due to the low number of hexahedral

partitions created. Each partition can then project groups of

constraints encapsulated by all hexahedra of the same color

(albeit in a sequential manner for those constraints within the

same hexahedron).

This analysis allows us to conclude that for the same

constraint set, it is possible to significantly enhance parallelism

by forming partitions of groups of constraints, rather than

partitions of constraints. However, we will show that these

constraints need not be derived from a finite element hexahedral

mesh. We thus propose to generalize this constraint grouping

approach as a graph clustering approach.

4.2. Grouping Constraints

Regardless of the underlying spatial discretization and

constraint set, we aim to identify non-overlapping clusters of

constraints in G. We thus define Ḡ = (V̄, Ē) as the supernodal

graph derived from the original constraint graph G, where V̄ is

the set of constraint clusters, or supernodes, such that coloring

Ḡ will result in fewer partitions. The supernodal graph Ḡ is

related to the constraint graph G by a parent map π(·) and a

children map χ(·). Given a constraint index j ∈ V, π(j) = r

tells us that constraint C j belongs to cluster r ∈ V̄, while

χ(r) = { j | j ∈ V , π(j) = r} lists all constraint indices

belonging to cluster r ∈ V̄.

Hence, our supernodal graph forms a topology of clusters

r ∈ V̄ whose connectivity is defined by the property

(r, s) ∈ Ē ⇐⇒ ∃ (j, k) ∈ E | j ∈ χ(r) ∧ k ∈ χ(s). (13)

Algorithm 3 Clustered parallel XPBD solver iteration.

for P̄c ∈ P̄ do
for r ∈ P̄c do ▷ Parallelize loop

for C j ∈ χ(r) do
A← [∇C j(x)M−1∇C j(x)T + α̃ jj]
∆λ j ← −A−1(C j(x) + α̃ jjλ j)
∆x←M−1∇CT

j (x)∆λ j

λ j ← λ j + ∆λ j

x← x + ∆x
end for

end for
end for

In other words, two clusters are neighbours in the supernodal

graph Ḡ if and only if they contain constraints (one from

each cluster) with overlapping sparsity pattern (i.e., overlapping

influence). Equivalently, Ē can be defined using the parent map

π as

Ē = {(π(j), π(k)) | (j, k) ∈ E, π(j) , π(k)}. (14)

A graph coloring algorithm applied to Ḡ thus outputs a set P̄ of

partitions P̄c of clusters r. The clustered parallel XPBD solver

variant is presented in Algorithm 3.

Once again, we have assumed the existence of such a

set of clusters V̄. How should one find such a convenient

clustering of G? Ideally, we would like |P̄ | ≪ |P |. Certain

classical clustering techniques [27] fail on constraint graphs

derived from meshes. This is due to the fact that classical

clustering techniques look for natural clusters in non-uniform

graphs, such as those formed in social networks, while meshes

are especially uniform. Computing exact solutions for such

clustering problems remains NP-hard [27]. Consequently, we

choose to develop a simple greedy clustering algorithm derived

from an intuitive heuristic.

4.3. Greedy Algorithm

By noticing that the number of colors resulting from a

graph coloring process increases as the amount of dependencies

between constraints increases, we define the distance metric

d(C j,Ck) = 1 −
|C j ∩ Ck |

|C j ∪ Ck |
. (15)

Intuitively, this metric tells us that constraints sharing many

degrees of freedom in their parameterization should be

8 Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022)

considered close, while constraints sharing few degrees of

freedom or none at all should be considered far. Our clustering

approach then seeks to find clusters of constraints near one

another. In doing so, individual clusters contain highly

dependent constraints, while constraints from separate clusters

are less likely to depend on each other, thus reducing the lower

bound on optimal coloring for Ḡ.

However, as a cluster grows, so does its computational

workload in the parallel solver. Specifically, there is more

work to be done sequentially. Furthermore, uneven cluster

sizes can also negatively impact parallel implementations, since

smaller clusters scheduled in the same parallel batch must wait

for larger clusters in the same batch to finish executing, thus

occupying computational resources without actually executing

meaningful computations. Hence, we make the maximum

cluster size Ks a user-defined parameter to help keep cluster

sizes balanced.

We start our greedy clustering approach by initializing the

parents of constraints to be unassigned (i.e., π(Ci) = ∅),

and then choose a seed vertex u0 in G as the first constraint

satisfying

u0 = arg min
C j∈V, π(C j)=∅

∑
(C j,Ck)∈E, π(Ck)=∅

d(C j,Ck). (16)

Then, starting from u0, we traverse the graph G in breadth

first order while greedily adding unclaimed neighbouring

constraints in increasing order with respect to the distance

metric, and starting a new cluster each time the maximum

cluster size Ks is reached.

If not all nodes are assigned to clusters, but no clusters of size

Ks can be created, the process repeats with a seed constraint

identified by Equation 16, and with the the maximum cluster

size Ks decreased by 1.

This algorithm thus produces as output a set V̄ of constraint

clusters r, with 1 ≤ |χ(r)| ≤ Ks, where Ks denotes the initial

user-defined maximum cluster size. Traversing the constraint

graph in breadth-first order enables the clustering process to

exploit spatial locality in the underlying geometry from which

the topology of G is inherently derived. See Algorithm 4 for the

Algorithm 4 Greedy K-Neighbour Clustering.

V̄ ← ∅

while Ks ≥ 1 do
u0 ← Equation 16
for C j ∈ BFS G(u0) do ▷ Breadth first order from u0 in G

if π(j) = ∅ then
r ← |V̄|
χ(r)← χ(r) ∪ { j}
π(j)← r
for (C j,Ck) ∈ E do ▷ Sorted by increasing d(C j,Ck)

if π(k) = ∅ ∧ |χ(r)| < Ks then
χ(r)← χ(r) ∪ {k}
π(k)← r

end if
end for
if |χ(r)| = Ks then
V̄ ← V̄ ∪ {r}

else ▷ Cluster too small, undo
for k ∈ χ(r) do
π(k) = ∅

end for
χ(r) = ∅

end if
end if

end for
Ks ← Ks − 1 ▷ Make smaller clusters with leftovers

end while

pseudo-code and Figure 3 for a visual example of the clustering

procedure.

Using our graph clustering algorithm in a precomputation

phase, the parallel solver variant in Algorithm 3 is observed

to be at least as efficient as the classical parallel variant in

Algorithm 2, depending on the underlying hardware. In theory,

our variant becomes faster compared to the classical graph

coloring based parallel XPBD as the hardware parallelism

capacity increases. We further note that our clustering can be

used with any constraint type.

5. Neo-Hookean Constraint Coupling

While clustering improves computational efficiency, the

solver convergence is largely unaffected. In this section,

we propose a modification to the constraint formulation of

the stable neo-Hookean model that significantly improves the

convergence of the solver.

Although the constraint formulation for the stable neo-

Hookean material model of Macklin and Müller [17] exhibits

Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022) 9

5

8 7

6

1

4 3

2

5

8 7

6

1

4 3

2

5

8 7

6

1

4 3

2

Fig. 3: An example of how greedy clustering with Algorithm 4 computes supernodes with maximum cluster size Ks = 4. Given a constraint graph (left) derived
from triangle constraints, we use [1, 2, 4, 5, 3, 6, 8, 7] as a breadth-first traversal of nodes starting from the root node u0 = 1. The algorithm begins with node C j = 1
and attempts to create a cluster with the surrounding neighbours of C j sorted by distance (Equation 15). Node C j = 1 has neighbours 2, 4, and 5, and successfully
forms a cluster {1, 2, 4, 5} of exactly the maximum size (middle). The next three nodes in the breadth first search (2, 4, and 5) are skipped as they already belong to
a cluster. The next node C j = 3 is adjacent to all nodes but 1. While nodes 2, 4, 5 are already in a cluster, the remaining neighbours form the cluster {3, 6, 7, 8} of
maximum size Ks = 4. With all nodes claimed, the algorithm terminates.

desirable properties such as stability in the face of near

incompressibility, its convergence behavior fares poorly. Early

and mid stage solver iterations yield major artifacts such

as significant volume loss, wrinkling, and oscillations in

deformation. This behavior is attributed to the decoupled

constraint formulation where the hydrostatic constraint CH(x)

and the deviatoric constraint CD(x) are treated separately.

An important consequence of this decoupling is that rest

configurations, that is, zero-energy deformations, result in

non-zero constraint gradients ∇CH(x) and ∇CD(x). Hence,

even small perturbations δx from a rest configuration x are

magnified to non-trivial constraint projections ∆x when fed

into the XPBD solver. Because of the local nature of the

XPBD solver, constraint projections ∆x do not necessarily

descend into solution iterates which simultaneously decrease

the energy in surrounding constraints. In other words, the

constraint projection ∆xH resulting from CH(x) might send x

into directions of increasing CD(x) and vice versa.

It is important to note that this observation is not specific

to the stable neo-Hookean constraints. This reasoning could

be applied to any constraint type solved with XPBD’s Gauss-

Seidel like iterations. For example, geometric tetrahedral

volume conservation constraints produce erratic gradient

directions and must be coupled with tetrahedral mesh edge

distance constraints for stabilization. However, in previous

continuum-based constraint formulations where every finite

element is associated with a single constraint, a configuration x

such that C j(x) = 0 ensures an element rest configuration x such

that
∫
Ωe Ψ(x)∂Ωe = 0. In contrast, for the decoupled constraints

CH(x) and CD(x), configurations x such that CH(x) = 0 or x

such that CD(x) = 0 do not imply element rest configuration.

Thus, in our method, we wish to find a constraint formulation

such that configurations x where C j(x) = 0 imply element rest

configurations.

Hence, we propose a coupled constraint formulation to

address these instability issues. In our method, we allow vector-

valued constraints Cneo : Rn → R2, which we refer to as

constraint blocks, where

Cneo(x) =
[
CH(x)
CD(x)

]
. (17)

Using the convention that gradients are row vectors, we can

compute the 2-by-n Jacobian of Cneo as

∇Cneo(x) =
[
∇CH(x)
∇CD(x)

]
. (18)

The Schur complement operator and the constraint compliance

are now 2 × 2 matrices, such that

A =
(
∇Cneo(x)

)
M−1 (∇Cneo(x)

)T
+ α̃neo ,

and

α̃neo =
1
∆t2

[
αH 0
0 αD

]
,

10 Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022)

where αH and αD are the compliance parameters associated

with the hydrostatic and deviatoric constraints, respectively.

Thus, constraint projection corrections incorporate information

from both the hydrostatic constraint gradient and the deviatoric

constraint gradient simultaneously with a simple 2-by-2 block

solve.

When coupling constraints into a block solve, the resulting

constraint block inherits the union of the sparsity patterns of all

its child constraints. In the case of the neo-Hookean constraint

pair, the hydrostatic and deviatoric constraints have exactly the

same sparsity pattern, so the constraint block does not change

the clustered graph topology when we treat these constraints as

a coupled pair.

Hence, using constraint blocks Cneo does not affect any of

our previous XPBD solver variants, graph coloring algorithms,

and clustering algorithms, with the exception of requiring a

2 × 2 matrix solve in order to obtain our Lagrange multipliers

corrections

A
[
∆λH

∆λD

]
= −

[
CH(x)
CD(x)

]
− α̃neo

[
λH

λD

]
, (19)

where λH and λD are the lagrange multipliers associated with

hydrostatic and deviatoric constraints respectively, and α̃neo is

the 2 × 2 compliance matrix associated with constraint block

Cneo.

An LU solve with partial pivoting can be used to

solve for the Lagrange multiplier corrections, which is

equivalent to applying direct substitution to Equation 19 with

improved conditioning. Although in practice, we have not

encountered cases where the Schur complement matrix suffers

ill-conditioning issues, in theory, it is easy to craft such ill-

conditioned systems. A combination of varying nodal masses

and Lamé coefficients directly influence conditioning of the

2 × 2 system.

6. Results & Discussion

In this section, we present several experiments that highlight

the benefits of our graph clustering algorithm and blocked

constraint solve for elastic-body simulations with the XPBD

framework. We compare against a baseline solver that uses

the stable neo-Hookean constraint formulation proposed by

Macklin and Müller [17] and that applies a greedy graph

coloring algorithm on the constraint graph to parallelize the

solver. Animations of the experiments in this section can also

be found in the supplementary video.

6.1. Implementation

CPU results were obtained using an 8-Core AMD Ryzen

7 3700X 3.60 GHz processor with 16GB of memory, while

GPU results were obtained using an NVIDIA GeForce RTX

2060 Super processor. Our GPU implementation of XPBD is

rather straightforward, storing simulation state and constraint

parameters in global memory. The simulation state stores

positions x ∈ Rn, velocities v ∈ Rn, forces f ∈ Rn,

inverse masses w ∈ Rn and Lagrange multipliers λ ∈ Rm.

The constraint parameters store, for each element, quadrature

weights wg ∈ R, quadrature points Xg ∈ R3, Lamé coefficients

λ, µ ∈ R, basis function gradients ∇ϕ(Xg) ∈ R3 for each

tetrahedron vertex, the 12 unique non-zero values of the

deformation gradient derivatives ∂F
∂x ∈ R3×3×12, as well as

compliance parameters αH , αD ∈ R and C j, where |C j| =

12 for tetrahedral constraints. Clusters and cluster partitions

must also be stored in order to implement parallel constraint

projection. Additional book-keeping data structures are stored

for indexing into the various GPU arrays. Table 3 exposes the

GPU memory footprint of our XPBD implementation using

graph clustering in various scenarios, showing that memory

overhead is negligible even for large models.

Although much of the data stored on GPU is read-only, such

as constraint parameters, clusters, partitions and indexing data

structures, we do not exploit optimized read-only GPU memory

regions, which our timings would no doubt benefit from. Our

timings are also affected by the fact that we copy memory from

GPU to CPU every time step in order to render our animations.

Additionally, we use single precision floating point arithmetic.

Our CPU implementations of XPBD use the Eigen library

[12] for linear algebra routines, and Intel TBB to parallelize

various XPBD solver variants. CUDA 11.4 [24] was used

Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022) 11

Table 2: Timing results using constraint blocking and clustering. The abbreviations used in column headings are C for clustered and B for blocked constraints.
Timings are reported in milliseconds. Speedups are reported with respect to the baseline timings.

Model Tetrahedra Colors Time (ms) Speedup
Baseline C Reduction Baseline C B B+C C B B+C

Beam 3727 40 17 0.43 285.03 170.49 41.29 20.46 1.67x 6.90x 13.93x
Bunny 56371 52 21 0.40 432.28 315.33 90.86 52.81 1.37x 4.76x 8.19x
Armadillo 45593 62 26 0.42 528.26 374.81 108.89 61.13 1.41x 4.85x 8.64x
Spot 19835 104 25 0.24 885.07 324.18 173.78 54.25 2.73x 5.09x 16.31x
Octopus 22213 78 22 0.28 663.96 299.78 132.76 49.10 2.21x 5.00x 13.52x
Squirrel 64768 56 22 0.39 457.91 332.16 94.78 55.41 1.38x 4.83x 8.26x

Table 3: Total GPU memory usage per tetrahedral mesh using our clustered
parallel XPBD implementation with block neo-Hookean constraints.

Model Vertices Tetrahedra Memory (Mb)
Armadillo 987 2922 0.63

Beam 936 3727 0.78
Spot 5135 19835 4.19

Octopus 6731 22213 4.79
Armadillo 9751 45593 9.50

Bunny 13808 56371 11.97
Squirrel 15408 64768 13.73

Armadillo 39062 162385 34.44

for our GPU implementations. We used polyscope [29] to

render the animations, and TetWild [13] was used on hand-

picked models from the Thingi10K dataset [34] to generate our

tetrahedral meshes.

6.2. Performance

We test our clustering algorithm on tetrahedral models of

varying size and topology. Table 2 summarizes the performance

of blocked and clustered simulations compared to a baseline

solver. The reported timings are the average execution time of

each timestep over 300 frames using the GPU.

Time step and substeps. A time step ∆t = 0.01 s is

used for all performance experiments. The number of substeps

changes depending on the example and whether clustering and

blocked constraints are being used. We determine the number

of substeps by a convergence analysis (see Figure 5), as well

as qualitative visual assessments aiming to compare equivalent

simulations. For all blocked simulations, 50 substeps are used,

except the beam model, which was simulated with 30 substeps.

Otherwise, 250 substeps are used for unblocked simulations,

except the beam, which was simulated using 200 substeps.

Constraint graph processing. The block neo-Hookean

constraints were used to build the constraint graph G, such that

each constraint is associated with a tetrahedral element. Prior

to assembling G, we reorder the vertices based on the smallest

degree last ordering [19]. Then, we apply Algorithm 4 on G

to obtain the supernodal graph Ḡ using Ks = 5. By applying

the same greedy graph coloring algorithm on both G and Ḡ,

we observe that Ḡ yields between 17 to 26 colors, while G

yields between 40 and 104 colors, demonstrating reductions in

number of colors between 24% and 41% of the original number

of colors.

Effect of clustering. Figure 4 visualizes the partitions using

the jet colormap for various tetrahedral models when clustering

and graph coloring algorithms are applied. When a typical

graph coloring algorithm is used, there are many more colors,

indicating a larger number of partitions. Yet when clustering

is applied, there are fewer colors, thus giving a significant

improvement in solver performance. We can see from Table 2

that solve times have much higher correlation with the number

of colors, rather than the size of the tetrahedral models. Indeed,

one can see that the Spot model is simulated at 54 ms per time

step, while the Bunny is actually simulated more efficiently

at 52.81 ms per time step, even though the workload triples

from 19.8k elements to 56.3k elements, because our clustering

yields only 21 colors for the Bunny, which is less than the 25

colors obtained for the Spot model. Note that even though our

clustering algorithm is highly effective in enhancing theoretical

parallelism, we are still bounded by hardware capacity. Our

parallel CPU implementations are limited to 16 threads, such

12 Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022)

Fig. 4: Each pair of images shows constraint partitions generated with and without clustering for selected examples. Tetrahedral elements of the same color are
solved in parallel. Using our clustering approach, there are fewer colors (left images) compared to partitions generated using typical graph coloring approaches
(right images).

0 20 40 60 80 100
Solver substeps

105

106

E
la

st
ic

 e
n
e
rg

y

Baseline
Clustered
Blocked
Blocked + Clustered

Fig. 5: Convergence for the Beam example using different GPU solver
variants shows the superior behavior of block solves of coupled neo-Hookean
constraints, while clustering does not hinder convergence.

that there is no speedup between Algorithms 2 and 3, although

there are no slowdowns either. While our clustering method

does not reach the lower bound obtainable using hexahedral

meshes [17], it does not make any assumptions on the constraint

model, thus generalizing to arbitrary constraint types.

Effect of coupled constraints. Solving for the neo-

Hookean constraints using a block form has the most impact

on the performance of all examples. This is due mainly

to the notably improved convergence that is observed when

the blocked constraint formulation is used. We analyze the

convergence in further detail in the next section.

6.3. Solver Convergence

To evaluate solver convergence, we select a simulation frame

from the Beam example in which the elastic body exhibits the

highest total elastic potential energy and perform 100 solver

substeps. We then evaluate the decrease in elastic energy with

respect to solver iterations using the decoupled neo-Hookean

constraint formulation, and again using our coupled constraints

and graph clustering strategy. Recall that the beam is comprised

of 3.7k elements with a Young’s modulus Y = 107 Pa, Poisson

ratio ν = 0.45, and mass density ρ = 103 kg m−3. The results of

our implementations are shown in Figure 5.

In a single substep, the coupled constraint solve reduces the

elastic energy at least one order of magnitude faster than the

decoupled approach. This convergence improvement occurs

regardless of whether clustering is being used to parallelize

the solver or not. After approximately 10 substeps, the

elastic energy is reduced to convergence for the blocked

constraints, while the decoupled constraint formulation still has

not converged after 100 substeps. In our experiments, wrinkling

artefacts on the beam model remain noticeable using the

decoupled constraint model, and close to 200 solver substeps

are required to attain the same visual quality as the blocked

solve.

To further reinforce the implications of convergence

improvements using our coupled formulations, we conduct

experiments in which the same computational budget is allotted

to the baseline configuration and its corresponding blocked

version. Figures 6 and 7 show the results. For the same

material and simulation parameters, tetrahedral meshes in

blue use our coupled formulation, while pink ones use the

decoupled formulation from Macklin and Müller [17]. The

decoupled formulation fails to remain stable given such a

tight computational budget, whereas our coupled formulation

produces a stable simulation.

The improved convergence due to using coupled constraints

is typically an order of magnitude faster than the baseline

solver with decoupled constraints, and performance is even

further accelerated by using constraint clustering. The

Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022) 13

Fig. 6: The Beam example simulated using the baseline method (left) and the
block neo-Hookean constraints (right). Both simulations use equivalent time
step, 30 substeps, and 1 iteration per substep. The normal map of the boundary
surface is displayed to highlight the differences between the two simulations.

Fig. 7: Our coupled neo-Hookean constraint formulation remains stable
using 20 substeps for a 2.9k element Armadillo model, while the decoupled
constraints fail for the same computational budget. Simulation with coupled
constraints (left) and with decoupled constraints (right).

Fig. 8: Crazy scramble unfolding test. Our constraint formulation recovers
a smooth shape from degenerate configurations using 30 substeps. Different
frames of the simulation are displayed in chronological order from left to right.

block solve plays a significant role in improving the

performance due to its better convergence behavior, whereas

the clustering consistently reduces computational time through

parallelization. Implementing our method requires only minor

changes to an existing XPBD framework, specifically 2 × 2

block solves during constraint projection and a simple breadth-

first search algorithm applied to the constraint graph.

6.4. Robustness

As a sanity check, we conduct an experiment to validate

that our blocked constraints preserve the robustness of Macklin

and Müller [17]. We re-use the bending beam example

and scramble the vertex positions erratically. Then, we

simulate using our blocked neo-Hookean constraints using 30

substeps and 1
60 s time steps. Our blocked model recovers

from degenerate configurations as expected due to the volume

conservation properties of neo-Hookean materials. Using only

30 substeps, our blocked model recovers its initial smooth

geometry. Selected frames from this experiment are shown in

Figure 8.

7. Conclusion & Future Work

In this paper, we introduce a novel approach to parallelizing

XPBD solvers for arbitrary constraint types based on graph

clustering. Our graph clustering method enhances the

computational efficiency of existing XPBD frameworks using

graph coloring based partitioning, and significant performance

gains were observed in all our experiments. Furthermore,

we introduce a coupled constraint formulation for neo-

Hookean materials that only requires using 2 × 2 linear solves

during the constraint projection step. The computational

overhead of the approach is negligible, but it is quite

14 Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022)

effective for improving solver convergence compared to recent

formulations. Combining these two contributions, we observe

an order of magnitude faster performance compared to a

baseline XPBD solver.

Our experiments did not include dynamic constraints, which

frequently occur when contacts are simulated. In this case,

an efficient algorithm is required to introduce these dynamic

constraints to the supernodal graph such that they too can be

solved for in parallel. Additionally, although our clustering

approach is general, greedily forming clusters in heterogeneous

constraint graphs may be unstable, since constraint projection

order affects convergence.

Our approach could further benefit from more sophisticated

clustering algorithms, which have been presented in the

literature on graph clustering [27]. This could reduce the

number of constraint partitions even further compared to

our greedy approach, though care must be taken, since the

constraint graphs for soft-body simulations are particularly

dense and uniform, rendering clustering algorithms which

assume non-uniformity ineffective.

Other constraint formulations could also benefit from a

coupled blocked solve. However, as the coupled constraint

blocks get larger, time complexity of block solving increases

as a cubic polynomial if direct solves are used. If iterative

solvers are employed, computational cost may be reduced

in exchange for approximate solutions. Designing judicious

blocking strategies is thus an interesting area of future research

for highly parallel local solvers.

Acknowledgements

This work was supported by NSERC grant no. ALLRP-

570702-21.

References

[1] Steven S. An, Theodore Kim, and Doug L. James. 2008. Optimizing
Cubature for Efficient Integration of Subspace Deformations. ACM Trans.
Graph. 27, 5, Article 165 (dec 2008), 10 pages. https://doi.org/10.

1145/1409060.1409118

[2] Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration
for St. Venant-Kirchhoff Deformable Models. ACM Trans. Graph.
24, 3 (jul 2005), 982–990. https://doi.org/10.1145/1073204.

1073300

[3] Jan Bender, Dan Koschier, Patrick Charrier, and Daniel Weber. 2014.
Position-based simulation of continuous materials. Computers &
Graphics 44 (2014), 1–10. https://doi.org/10.1016/j.cag.

2014.07.004

[4] Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and
Miles Macklin. 2014. A Survey on Position-Based Simulation Methods in
Computer Graphics. Computer Graphics Forum 33, 6 (2014), 228–251.
https://doi.org/10.1111/cgf.12346

[5] Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and
Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections
for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (jul 2014),
11 pages. https://doi.org/10.1145/2601097.2601116

[6] Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018.
Hyper-Reduced Projective Dynamics. ACM Trans. Graph. 37, 4, Article
80 (jul 2018), 13 pages. https://doi.org/10.1145/3197517.

3201387

[7] Marco Fratarcangeli and Fabio Pellacini. 2013. A GPU-Based
Implementation of Position Based Dynamics for Interactive Deformable
Bodies. Journal of Graphics Tools 17, 3 (2013), 59–66. https:

//doi.org/10.1080/2165347X.2015.1030525

[8] Marco Fratarcangeli and Fabio Pellacini. 2015. Scalable Partitioning for
Parallel Position Based Dynamics. Computer Graphics Forum 34, 2 (may
2015), 405–413. https://doi.org/10.1111/cgf.12570

[9] Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016.
Vivace: A Practical Gauss-seidel Method for Stable Soft Body Dynamics.
ACM Trans. Graph. 35, 6, Article 214 (Nov. 2016), 9 pages. https:

//doi.org/10.1145/2980179.2982437

[10] Marco Fratarcangeli, Huamin Wang, and Yin Yang. 2018. Parallel
Iterative Solvers for Real-time Elastic Deformations. In SIGGRAPH Asia
2018 Courses (Tokyo, Japan) (SA ’18). Article 14, 45 pages. https:

//doi.org/10.1145/3277644.3277779

[11] Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and
Alec Jacobson. 2019. Latent-space Dynamics for Reduced Deformable
Simulation. Computer Graphics Forum 38, 2 (2019), 379–391. https:

//doi.org/10.1111/cgf.13645

[12] Gaël Guennebaud, Benoı̂t Jacob, et al. 2010. Eigen v3.
http://eigen.tuxfamily.org.

[13] Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and
Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans.
Graph. 37, 4, Article 60 (July 2018), 14 pages. https://doi.org/10.

1145/3197517.3201353

[14] Theodore Kim and Doug L. James. 2009. Skipping Steps in Deformable
Simulation with Online Model Reduction. ACM Trans. Graph. 28, 5 (dec
2009), 1–9. https://doi.org/10.1145/1618452.1618469

[15] Yinchu Liu and Sheldon Andrews. 2022. Graph Partitioning Algorithms
for Rigid Body Simulations. In Eurographics 2022 - Short Papers.
https://doi.org/10.2312/egs.20221036

[16] Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016.
XPBD: Position-Based Simulation of Compliant Constrained Dynamics.
In Proceedings of the 9th International Conference on Motion in Games
(MIG ’16). 49–54. https://doi.org/10.1145/2994258.2994272

[17] Miles Macklin and Matthias Müller. 2021. A Constraint-Based
Formulation of Stable Neo-Hookean Materials. In Motion, Interaction
and Games (MIG ’21). Article 12, 7 pages. https://doi.org/10.

1145/3487983.3488289

[18] Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong
Chentanez, Stefan Jeschke, and Matthias Müller. 2019. Small Steps
in Physics Simulation. In Proceedings of the 18th Annual ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA
’19). Article 2, 7 pages. https://doi.org/10.1145/3309486.

3340247

[19] David W Matula and Leland L Beck. 1983. Smallest-last ordering and
clustering and graph coloring algorithms. Journal of the ACM (JACM)
30, 3 (1983), 417–427.

[20] David W. Matula, George Marble, and Joel D. Isaacson. 1972. Graph
coloring algorithms. In Graph Theory and Computing, Ronald C.
Read (Ed.). Academic Press, 109–122. https://doi.org/10.1016/

B978-1-4832-3187-7.50015-5

[21] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff.
2007. Position based dynamics. Journal of Visual Communication and
Image Representation 18, 2 (2007), 109–118. https://doi.org/10.

1016/j.jvcir.2007.01.005

https://doi.org/10.1145/1409060.1409118
https://doi.org/10.1145/1409060.1409118
https://doi.org/10.1145/1073204.1073300
https://doi.org/10.1145/1073204.1073300
https://doi.org/10.1016/j.cag.2014.07.004
https://doi.org/10.1016/j.cag.2014.07.004
https://doi.org/10.1111/cgf.12346
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1145/3197517.3201387
https://doi.org/10.1145/3197517.3201387
https://doi.org/10.1080/2165347X.2015.1030525
https://doi.org/10.1080/2165347X.2015.1030525
https://doi.org/10.1111/cgf.12570
https://doi.org/10.1145/2980179.2982437
https://doi.org/10.1145/2980179.2982437
https://doi.org/10.1145/3277644.3277779
https://doi.org/10.1145/3277644.3277779
https://doi.org/10.1111/cgf.13645
https://doi.org/10.1111/cgf.13645
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/1618452.1618469
https://doi.org/10.2312/egs.20221036
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/3487983.3488289
https://doi.org/10.1145/3487983.3488289
https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1016/B978-1-4832-3187-7.50015-5
https://doi.org/10.1016/B978-1-4832-3187-7.50015-5
https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.1016/j.jvcir.2007.01.005

Parallel Block Neo-Hookean XPBD using Graph Clustering /Computers & Graphics (2022) 15

[22] Matthias Müller, Miles Macklin, Nuttapong Chentanez, and Stefan
Jeschke. 2022. Physically Based Shape Matching. Computer Graphics
Forum (2022). https://doi.org/10.1111/cgf.14618

[23] Matthias Müller, Miles Macklin, Nuttapong Chentanez, Stefan Jeschke,
and Tae-Yong Kim. 2020. Detailed Rigid Body Simulation with Extended
Position Based Dynamics. Computer Graphics Forum 39, 8 (2020), 101–
112. https://doi.org/10.1111/cgf.14105

[24] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. 2020. CUDA,
release: 10.2.89. https://developer.nvidia.com/cuda-toolkit

[25] Albert Peiret, Sheldon Andrews, József Kövecses, Paul G. Kry, and
Marek Teichmann. 2019. Schur Complement-Based Substructuring of
StiffMultibody Systems with Contact. ACM Trans. Graph. 38, 5, Article
150 (oct 2019), 17 pages. https://doi.org/10.1145/3355621

[26] Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and
Ligang Liu. 2018. Anderson Acceleration for Geometry Optimization
and Physics Simulation. ACM Trans. Graph. 37, 4, Article 42 (jul 2018),
14 pages. https://doi.org/10.1145/3197517.3201290

[27] Satu Elisa Schaeffer. 2007. Graph clustering. Computer Science Review
1, 1 (2007), 27–64. https://doi.org/10.1016/j.cosrev.2007.

05.001

[28] Martin Servin, Claude Lacoursière, and Niklas Melin. 2006. Interactive
simulation of elastic deformable materials.. In SIGRAD 2006. The Annual
SIGRAD Conference; Special Theme: Computer Games.

[29] Nicholas Sharp et al. 2019. Polyscope. www.polyscope.run.
[30] Siyuan Shen, Yin Yang, Tianjia Shao, He Wang, Chenfanfu Jiang, Lei

Lan, and Kun Zhou. 2021. High-Order Differentiable Autoencoder for
Nonlinear Model Reduction. ACM Trans. Graph. 40, 4, Article 68 (jul
2021), 15 pages. https://doi.org/10.1145/3450626.3459754

[31] Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable
Neo-Hookean Flesh Simulation. ACM Trans. Graph. 37, 2, Article 12
(mar 2018), 15 pages. https://doi.org/10.1145/3180491

[32] Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and François Faure.
2015. Stable Constrained Dynamics. ACM Trans. Graph. 34, 4, Article
132 (jul 2015), 10 pages. https://doi.org/10.1145/2766969

[33] Huamin Wang. 2015. A Chebyshev Semi-Iterative Approach for
Accelerating Projective and Position-Based Dynamics. ACM Trans.
Graph. 34, 6, Article 246 (oct 2015), 9 pages. https://doi.org/

10.1145/2816795.2818063

[34] Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000
3D-Printing Models. arXiv preprint arXiv:1605.04797 (2016).

https://doi.org/10.1111/cgf.14618
https://doi.org/10.1111/cgf.14105
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1145/3355621
https://doi.org/10.1145/3197517.3201290
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1145/3450626.3459754
https://doi.org/10.1145/3180491
https://doi.org/10.1145/2766969
https://doi.org/10.1145/2816795.2818063
https://doi.org/10.1145/2816795.2818063

	Introduction
	Related Work
	Background
	Parallel Solver
	Graph Coloring

	Graph Clustering
	Bounds on Parallelizability
	Grouping Constraints
	Greedy Algorithm

	Neo-Hookean Constraint Coupling
	Results & Discussion
	Implementation
	Performance
	Solver Convergence
	Robustness

	Conclusion & Future Work

