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Measurement-based Modeling of Contact
Forces and Textures for Haptic Rendering

Jochen Lang, Member, IEEE, and Sheldon Andrews, Member, IEEE

Abstract—Haptic texture represents the fine-grained attributes of an object’s surface and is related to physical characteristics such as
roughness and stiffness. We introduce an interactive and mobile scanning system for the acquisition and synthesis of haptic textures
that consists of a visually tracked hand-held touch probe. The most novel aspect of our work is an estimation method for the contact
stiffness of an object based solely on the acceleration and forces measured during stroking of its surface with the hand-held probe.
We establish an experimental relationship between the estimated stiffness and the contact stiffness observed during compression. We
also measure the height-displacement profile of an object’s surface enabling us to generate haptic textures. We show an example of
mapping the textures on to a coarse surface mesh obtained with an image-based technique, but the textures may also be combined
with coarse surface meshes obtained by manual modeling.

Index Terms—Haptics, Texture, Contact Stiffness, Measurement-based modeling
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1 INTRODUCTION

HAPTICS refers to the stimulation of a person’s sense
of touch due to manual interaction with an object

or environment. Through computer controlled forces,
haptic technology is able to display tactile and kines-
thetic cues arising from interaction in a virtual setting.
This exposes characteristics about the application envi-
ronment that cannot be easily purveyed using graphical
or acoustic displays, and unlike these other displays,
haptic devices act as both an input and output human-
machine interface. This bi-directionalism is a distinguish-
ing feature of haptic interfaces [1], i.e., a simultaneous
exchange of information occurs between the machine
and the user. Areas of application for this technology
are widespread – medicine, entertainment, computer
aided design, and other multimedia applications stand
to benefit from haptic technology.

Rendering of haptic phenomena is often done based
on models that represent physical attributes of objects
in the application environment, including stiffness and
roughness. It has been shown that detailed surface char-
acteristics have a significant effect on object identifica-
tion [2], and that in the absence of structural feedback
material detail is solely relied on for identification. This
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indicates that the realism of virtual objects may be in-
creased by assigning realistic properties used in surface
interaction.

Assigning values to properties used for haptic ren-
dering can sometimes be done manually, but realistic
rendering often requires scanning of real-world object
properties. Scanning physical interaction behaviour has
previously required a complex and expensive robotic
environment [3], [4], which is cumbersome to use. In this
paper, we propose a mobile scanning system capable of
scanning tactile surface features, in particular roughness
and stiffness, which overcomes these limitations. Our
system does not require a robotic actuator. Instead, it
is implemented using inexpensive and readily available
components, which makes it an attractive alternative to
other tactile scanning systems. By registering scans with
coarse 3D geometry, we show that our system can be
employed to haptically texture virtual objects without
the need for high-resolution 3D meshes. However, this
does not exclude the option of integrating our system as
part of the standard 3D scanning pipeline [5].

We have described a preliminary version of our system
in the conference 3D-Imaging and Modeling 2007 [6]
and our texturing approach in the Workshop on Hap-
tic Audio Virtual Environments and Games 2007 [7].
However, the main focus of this paper is to present
a novel approach to obtain a measure of the stiffness
of the surface based on scanning and to present, for
the first time, an extensive evaluation of our approach
based on a complete example of scanning a wooden
statue (shown in Figure 1(a)). The performance of our
system has been significantly improved compared to
our initial implementation due to higher accuracy in
visual tracking and a sensor fusion for the scan profile
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(a) Scanning. (b) Scanning application. (c) Haptically textured 3D model. (d) User exploring the model

Fig. 1. Our scanning system in action. Figure 1(a) shows the user employing the WHaT force sensor to acquire haptic
texture and forces. Figures 1(c) and 1(d) show the result of the modeling effort with textured areas highlighted in
Figure 1(c).

generation.

1.1 Background
Describing textures and reproducing them in a virtual
environment is problematic due in part to the fact that it
is difficult to say which properties best characterize the
surface of an object. Rough-smooth, hard-soft, slippery-
sticky, and rigid-elastic are all descriptors for the feel of
a surface. A study by Hollins et al. [8] identified the
dimensionality of surface texture by asking subjects to
categorize 17 texture samples based on the perceived
similarity when the samples were stroked with a finger.
Their study found that we perceive texture mainly in the
dimensions of rough-smooth and hard-soft. Bergmann
Tiest and Kappers [9] conducted a similar experiment,
with 124 sample materials, for which the physical pa-
rameters of compression force related to the material’s
bulk-modulus and roughness were measured. Klatzky
and Lederman [10], [11] found that when an interme-
diary object is interposed between a surface and skin
(analogous to a stylus-based haptic display), vibrotactile
coding determines the perceived roughness of the sur-
face. A study by Pongrac [12] showed that frequency
and amplitude are key factors in perception of texture
when vibrotactile coding is used. Others studies have
shown the sensitivity of mechanoreceptors found in the
skin to peak at around 300 Hz [13]. The geometry and
physical parameters of a surface are not the only factors
affecting perception when considering computer-based
haptic texturing. Campion and Hayward [14] showed
that perception is also affected by the bandwidth and the
electromechanical transfer function of the haptic device
and needs to be considered when rendering textures,
including the ones acquired by our system. In summary,
vibrotactile information is important to the perception
of texture in haptic rendering, and consequently, our
system is designed to capture this information.

Multiple projects [4], [15]–[17] have acquired estimates
of physical properties using various scanning facilities.
However, the cost and expertise required to operate such
a facility is a major obstacle in its acceptance. A robotic

measurement facility is also inherently inflexible due to
workspace limitations, robotic control, and the direct
contact between a robot and an object to be scanned.
For example, Pai et al. [4] developed a “one stop shop”
scanning facility capable of measuring several of the
physical properties discussed above. This system con-
sists of an expensive scanning setup and careful plan-
ning is required to perform measurement. The facility is
not mobile and has a constrained workspace. A “human-
in-the-loop” system can be far more flexible because of
the superior control a human can exert on a hand-held
probe. A human can perform in-the-loop acquisition
planning and direct the data acquisition to relevant
detail. Additionally, a human-held scanning device can
be made quite inexpensively at a small fraction of the
price of a professional 3D scanner. Recently, quite a
few human operator based systems have been proposed
for the acquisition of geometry and visual attributes
(e.g., [18], [19]). Systems have also been developed to
scan the visco-elastic properties of liquids and semi-
solids, deriving estimates for intrinsic physical proper-
ties through human interaction [17], as well as to scan
quasi-static materials estimating a data-driven deforma-
tion model [20]. We believe that interactive scanning of
physical object properties can eventually make scanning
physical interaction behaviour a routine part of the 3D
scanning pipeline.

Many approaches exist to measure surface profiles
of samples, and commonly a surface profilometer is
employed. Costa and Cutkosky [21] used an optical pro-
filometer to scan rock surfaces, and synthesized similar
textures using a fractal algorithm. Wall and Harwin [22]
used a linear variable differential transformer to measure
displacement of a probe as it is moved (at near constant
speed) over a surface. This system generates plausible
profiles, however a fixed assembly is required (linear
track, motors) and scanning is limited to planar surfaces.
One of the disadvantages of using the setup of Wall and
Harwin, or a commercial surface profilometer, is the lack
of force measurement. Such devices can measure rough-
ness, but not the hardness of a surface. The WHaT [23]
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tactile probe in our work measures force and acceleration
and we show how these measurements can be used to
estimate roughness and stiffness. Other approaches have
measured vibrotactile data during manual interaction by
attaching accelerometers to robotic linkages [15]. Surface
texture could also be measured with an array of pressure
sensors. This kind of sensor has been used for tactile
sensing in robotics and haptics [24] and the resolution
of recent experimental devices reportedly approach the
resolution of a human fingertip [25].

The modeling of surface texture is also an area which
is receiving increasing attention. These rendering ap-
proaches can be coarsely classified as correlated or un-
correlated stochastic, basis function, image-based, and
approaches based on digital half-toning [26]. Haptic ren-
dering algorithms for force-based displays often separate
the forces into individual components: forces due to
interaction with texture, forces due to interaction with
the object boundary, and frictional forces. A unified
rendering equation is used to compose the individual
forces and display to the user, e.g., fcontact = fconstraint+
ffriction + ftexture. We follow a similar approach.

Wall and Harwin [22] developed a procedural model
which incorporates the spatial frequency and amplitude
information of a surface, obtained by the discrete Fourier
Transform of an object’s surface profile. Okamura et
al. [15] reproduce texture detail using basis functions
generated based on real-world interaction. In their work,
the acceleration profile for a probe is captured as it is
dragged over a textured surface, which is then used
to determine parameters for a basis function (in this
case, an exponentially decaying sinusoid). Textures were
synthesized by replaying the basis functions as vibro-
tactile coding to users via a haptic interface. Basdogan
et al. [27] use an image-based approach for haptic tex-
turing, wherein a surface height field is calculated from
grayscale image data using static, procedural, and fractal
synthesis techniques. However, unlike Minsky’s image-
based rendering [28], Basdogan’s rendering algorithm
combines the image gradient to perturb the surface
normals of the textured object being displayed. This
approach is based on a graphical rendering technique
called bump mapping, introduced by Blinn [29].

A technique which departs from point-based haptic
texture rendering is the work of Otaduy and Lin [30],
[31]. They compute texture forces using probe geometry
and surface detail. In their experiments, Otaduy and
Lin allowed users to explore textured surfaces using
a virtual probe which had been textured using depth
images. The perceived texture could change drastically
depending on the size, shape, and texture of the probe.
However, it is also computationally challenging, espe-
cially for complex geometry. Shopf and Olano [32] have
created a haptic shading framework which builds on these
techniques and allows user-defined procedures to define
texture characteristics of an object. Their goal was to
provide a shading framework for 3D objects similar
to graphical shaders, such as the Renderman Shading

Language [33]. Our system remains compatible with the
techniques discussed in this section in that we synthesize
both a texture and compliance estimate.

2 SYSTEM OVERVIEW

Figure 2 contains a data flow diagram showing all the
components of our system1. At the core of our haptic tex-
turing system are a tactile probe and a visual tracker that
stream force-acceleration and position-orientation pro-
files, respectively, to a host PC. Sensor data is processed
offline using a number of steps as shown in the diagram.
The processed sensor data are used to generate texture
detail for the scanned object, represented as surface
profiles. To scan an object, the operator places the object
in front of the digital camera and, while the tip of the
probe remains in contact, scans the desired section of the
object’s surface. Figure 1(a) shows a wooden cobra statue
being scanned. If the scan is unsatisfactory (e.g, heavy
sensor noise), the section of the surface may simply be
scanned again. This is one of the great advantages of a
human-in-the-loop system. The operator is able to identify
regions of interest of an object’s surface and scan them
accordingly.

Figure 1(b) shows a screen shot of the application used
to acquire texture detail. On the upper-half of the win-
dow, a real-time video obtained from the visual tracker
is overlayed with the position and orientation of the
probe tip. On the lower-half, the real-time acceleration
and force profiles from the WHaT are shown together.
Position, force, and acceleration data are streamed to the
host PC for offline processing in a later step. Although
online generation of textures would be desirable, we
found the raw acceleration and force profiles to be
sufficient feedback to the operator, e.g., it is easy to notice
if the force sensor becomes saturated or aliasing of the
acceleration peaks occurs.

Optionally, a geometric 3D model (obtained using an
external scanning system) of the scanned object may be
used to register synthesized textures to a global frame.
Rather than utilizing a high-resolution 3D scanner, we
demonstrate that our system can operate with low-
resolution image-based models. Various open-source
and services free of charge are available for the creation
of image-based models (e.g., ARC 3D offered by the EU
EPOCH project [35]). The results shown in this paper
(see Figure 2) are obtained with an off-the-shelf stereo
vision system (Point Grey Research Bumblebee), but
we expect similar results with monocular images in a
structure-from-motion approach.

2.1 Tactile Probe
We employ the WHaT [23] as a tactile probe (see Fig-
ure 1(a)) because it is a mobile and inexpensive device.
In our system, the WHaT senses small-scale motion

1. Preliminary versions of our system have been previously de-
scribed [6], [34]
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Visual Tracking

Texture Profile
Generation Stiffness Estimation

Fig. 2. The haptic texturing pipeline.

(a) Binocular stereo image. (b) Background subtraction.

(c) 3D Pointcloud. (d) Coarse 3D mesh.

Fig. 3. Coarse mesh acquisition based on stereo in-
put. The black-and-white stereo images are displayed as
red and green channel in Fig. 3(a). Figure 3(c) shows
the corresponding 3D pointcloud and Figure 3(d) the
reconstructed and simplified mesh based on 16 stereo
pairs. Meshes are processed in Geomagic Studio and
MeshLab.

and force data as it is moved across the surface of
an object. The probe consists of a force sensor, aligned
with the major axis of the device, and a pair of bi-
axial accelerometers which provide motion data in 3D
space. Each sensor uses 8-bits to represent its data, giving
a resolution of approximately 0.015g (where g is the

gravitational acceleration) for accelerometers and 0.019N
for the force sensor. Force and acceleration sensor data
is streamed over a wireless link at a rate of 500Hz to
a host PC. No online processing of the WHaT data is
performed, but offline processing occurs at the texture
profile generation stage (see Section 2.3).

2.2 Visual Tracking
We employ ARToolkitPlus [36], a C++ library for track-
ing fiducial markers with images obtained from a dig-
ital camera2. A single stationary camera (Point Grey
Dragonfly Express) is used to estimate the position
and orientation of the touch probe during the scanning
procedure. Figure 1(a) shows the WHaT with attached
markers during a scan. From our trials, the visual tracker
component is able to estimate the global position and
orientation of the touch probe at a rate of approximately
100Hz using this setup. This frame rate is limited by the
speed of the tracking software.

The problem of estimating the pose of a calibrated
camera (or equivalently a known target) is refered to
as the Perspective-n-Point (PnP) problem in computer
vision. ARToolkitPlus solves the PnP problem with the
robust planar pose (RPP) method of Schweighofer and
Pinz [38]. RPP in turn utilizes the iterative method of
Lu et al. [39] which is regarded as the gold standard
in solving the PnP problem. However, we found the

2. We have employed ARTag [37] in our earlier work but switched
due to licensing issues. Our new off-line approach achieves more than
double the frame-rate and is more accurate.
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TABLE 1
Tracker accuracy comparison with RPP and continuous
initialization of iterative solution method of Lu et al. [39]
and different number of points. (5 points uses centers of
fiducial markers only while 25 points uses centers plus

corners. ARToolkitPlus for comparison only since a
different data set is required.)

Initialization # Points V arx[mm] V ary [mm] V arz [mm]

ARToolkitPlus 5 targets 3.51e+00 4.38e-01 3.42e+00
RPP 5 2.78e-01 3.09e-02 9.36e-01

Continuous 5 2.52e-01 3.19e-02 9.75e-01
Continuous 25 8.21e-02 1.43e-02 3.45e-01

accuracy of the position estimated by ARToolKitPlus
unsatisfactory for our application mainly due to the low
number of target points and tracking speed. Instead of
using ARToolkitPlus to solve the PnP problem on-line,
we only detect marker positions in the images on-line
and store them for later processing. As a result our frame
rate increased from about 30fps to about 100fps.

We solve the PnP problem by using the iterative
method of Lu et al. with the centers and corners of five
fiducial markers. Because of the high frame rate, we can
simply use the camera pose in the prior frame as an
initial guess. We only need to rely on RPP to find a robust
starting point either at the beginning of a scan, or if the
pose in the prior frame results in a large error in the
current frame, indicating the target has moved rapidly.
We evaluated our approach by tracking the probe as
the user followed the circular indentation on top of a
beverage tin can multiple times. We repeat the scan
three times at distances of about 40cm, 45cm and 50cm
away from the camera, respectively. We fit a circle to
the position measurements and calculate the co-variance
matrix. Table 1 lists the results for different variants of
our approach confirming that using a higher number of
points and continuous estimation greatly decreases the
variance.

We use simple outlier rejection and a linear Kalman
filter [40] to improve the estimate of the position and
orientation of the probe further. The outlier rejection
compares a position with its neighborhood weighted by
a Gaussian. If the difference is larger than a threshold,
the position is discarded and the interpolated position
used instead. Figure 4 shows the result of tracking the tin
can at about 45cm from the camera with the calibration
setup. For the circle, we measured a radius of 23.29mm
with calipers, the tracker estimated a radius of 23.30mm.
The co-variance matrix of the visual tracker is

Cov =

 8.21e− 02 5.07e− 03 1.25e− 02
5.07e− 03 1.43e− 02 −2.94e− 02
1.25e− 02 −2.94e− 02 3.45e− 01


with all dimensions in millimeters. As expected the main
error of the tracker is in the z-coordinate which is the
depth. We can also conclude that the tracker should be

used to acquire profiles fronto-parallel to the camera and
not by scanning away from or towards the camera.

(a) Top view

(b) Frontoparallel view

(c) Frontoparallel view (zoomed in)

Fig. 4. Tracker position after outlier filtering and Kalman
smoothing. A planar circular path is traced multiple times
by the probe. Data is shown in camera coordinates with
the nodal position of the camera at (0, 0, 0).

A last optional step in the visual tracking pipeline (see
Figure 2) is the registration of the scanning trajectory
with the surface geometry of an object being scanned.
Registration transforms the scanning trajectory from one
or more scans into a single coordinate system (e.g. the
coordinate frame used by a polygonal mesh). We obtain
our coarse geometry by an image-based method without
expensive 3D scanners. The details from the scanning
trajectory enable us to texture the coarse mesh with
haptic detail rivaling high resolution scanners (see Sec-
tion 4.1 for a comparison). We utilize the iterative closest
point (ICP) algorithm [41] implemented in MeshLab [42]
for cross-registration. The ICP algorithm as implemented
in MeshLab requires two meshes for registration. We
turn the scanning trajectory into a mesh by repeating the
scanning trajectory with a small offset in the plane nor-
mal to the z-axis of the WHaT and triangulating it. This
assumes that the user holds the WHaT approximately
normal to the surface which is a valid assumption in our
set-up. It is well known that the ICP algorithm requires a
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good initial estimate to converge to the correct solution.
We currently specify the initial transform manually (see
Figure 5 for registered scans).

2.3 Texture Profile Generation

In this section, we discuss the post-processing steps em-
ployed by our system to arrive at a texture profile from
sensor data. Sensor data is collected from the WHaT
and the visual tracker at uncoordinated, non-uniform
sampling intervals. We synchronize the data from both
sensors employing a first-order linear interpolation to
re-sample the data at a common period of 1ms. The
orientation of the probe, retrieved from the tracker, is
stored as a quaternion and spherical linear interpolation
(SLERP) [43] is used to determine intermediary values.
Synchronized data is essential when fusing the informa-
tion from the two sensors for the final profile generation.
Before this step outliers are removed, which are caused
by communication errors between the WHaT and the
host computer and errors in the tracking.

Since the operator is free to use the probe in arbitrary
orientations, the pose of the probe relative to the scanned
surface must be recovered in order to determine the
acceleration of the probe tip, ~an,i, in a direction normal
to the surface at each sampling step, i. The surface
profile is generated based on the probe’s motion in a
normal direction relative to the surface being scanned.
The normal vector, ~ni, is obtained by registering the path
of the probe tip with a 3D mesh. If object geometry is un-
available, the probe is assumed to be oriented orthogonal
to the scanning surface and tracker orientation values are
used to estimate the surface normal. After registration
we remove the gravitational acceleration because then
we know the global orientation of the probe. Given the
normal vectors along the probe path and the orientation
of the device along with its sensor coordinate system,
the acceleration is projected into the direction of the unit
normal in the camera or world coordinate frame. The
normal, the coordinate transform, and the acceleration
will change in general at each point i on the filtered path

~an,i =
[

C
n̂i ·

(
C
SRi

S
~ai

)]
C
n̂i.

We have experimentally observed that the measured
acceleration depends on the user applied force – if
the user presses the probe firmly against the surface,
the acceleration profile, and correspondingly the result-
ing texture, will contain amplified features; if the user
presses lightly, surface features are attenuated. Because
it is nearly impossible for a human operator to apply a
constant force as they scan the surface, variations in the
force profile occur frequently. To adjust for this phenom-
ena, which we simply name force variation, we apply
a scaling factor to the acceleration profile. Its value is
based on the observed linear relationship between force,
f , and RMS acceleration, aRMS , aRMS = kcf + c. An
experimental justification of the linear relationship can

be found in Section 3. The scaling factor then becomes

si =
(

f̄ + c/kc

fsmooth + c/kc

)
,

where f̄ is the mean force and fsmooth is a low-pass
filtered version of the force profile. The adjusted accel-
eration value, ~an,i, is calculated as ~a′n,i = si~an,i.

At this point, we begin generating the height profile
by using a Verlet integration scheme [44]. The filtered
acceleration values, ~an,i, are integrated over the interpo-
lated time vector, ~t, such that:

hi+1 = 2hi − hi−1 + |si~an,i|∆t
∆t = (ti − ti−1) .

where h is the resulting height profile. It is well known
that double integration of acceleration data is prone to
drift due to quantization and measurement error. We use
a high-pass (fifth order) Butterworth filter with a cut-off
frequency of 1.0Hz to remove the low frequency drift from
the acceleration measurements before integration.

The height estimate is mapped into the spatial do-
main using low-frequency components extracted from
the scanning trajectory. Since the scanning trajectory
and the acceleration data are synchronized in the time
domain, the correspondence for mapping is easily found.
However, the scanning trajectory is a 3D curve, whereas
the height profile corresponding to texture is a scalar
function. We find the average surface by applying a low-
pass filter to all components of the scanning trajectory
vectors. The resulting profile is decomposed into motion
normal to the surface of the object, and motion in the
tangent plane of the surface. The distances in the tangent
plane are used to map the height estimate from the time
domain to the spatial domain.

We have now two estimates of the surface height
profile: one based on the accelerometer data from the
WHaT, and one from the visual tracker. These profiles
have different properties – the scanning trajectory from
the tracker has good absolute error with high-frequency
noise while the trajectory from the accelerometers has
low-frequency drift but good high frequency resolution.
We fuse the profiles by adding the height estimates after
low-pass filtering the trajectory profile and high-pass
filtering the height estimate from the WHaT. We choose
the transition frequency for the profiles by inspecting
the power spectrum. We pick the transition frequency
such that the low-frequency content is removed from
the WHaT profile but content above what is present in
the trajectory profile is maintained (See Figure 12 for
examples of the Lomb [45] periodogram).

Next, we describe our approach to synthesize textures
using the height profiles.

2.4 Texturing
Creating texture coordinates for the height profile in-
volves two steps: (i) registering the scanning trajectory
with a 3D geometry, and (ii) generating texture coordi-
nates on the surface of the 3D object. We have reported
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our method in detail in [7] and only briefly summarize
it here for completeness.

Fig. 5. Scan registration for the cobra statue. Shown is
the coarse geometry of the image-based reconstruction.

Texture coordinates are assigned to elements of a 3D
mesh directly from the set of mesh points resulting from
scan path registration by the ICP algorithm (see Figure 5
for our example of the cobra statue). Two dimensional
texture coordinates are generated for each vertex of a
polygon. We consider the signed distance along the scan
path to be one of the parameters of the texture function.
The other parameter we estimate as the signed minimum
distance to the scan path, (e.g. between mesh vertices and
scanning segments) with positive and negative direction
being arbitrarily, but consistently, chosen.

3 COMPLIANT SURFACES

Compliance represents the force-displacement relation-
ship of a deformable surface and is the inverse of
stiffness. Measurement of the force-displacement rela-
tionship has been conducted in the context of haptics
before [4], [15], [20], [46]. In these approaches (cf. Oka-
mura), the surface’s compliance value may be computed
by deforming a surface (e.g., by pushing against it) and
directly measuring the force generated at the contact
point and the resulting displacement. It should be noted
that while it is theoretically possible to directly measure
this force-displacement relationship based on sensor data
from the WHaT, this is not possible in practice.

Direct measurement of the force-displacement rela-
tionship with the WHaT is not a practical option for two
main reasons: the inability to estimate precise surface
displacement for slow motions, and measuring large
forces with a hand-held device. The estimation of dis-
placement based on accelerometers is limited due to drift
as previously discussed. These errors are aggravated in
measuring slow motions as would be necessary in order
to perform this type of quasi-static force-displacement
measurement. Furthermore, many solids for which we
acquire deformable haptic texture are quite rigid (e.g.,
cork, pencil eraser) and would require large forces to
deform beyond the range possible with the WHaT. In
addition to the limitations of the WHaT sensors, the

visual tracker is not capable of measuring displacement
of the probe tip with a degree of accuracy for which a
reasonable force-displacement relationship can be deter-
mined. Instead, we develop an approach based on the
dynamic behavior during surface scanning.

3.1 Dependency of Acceleration on Force
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/s
2 ]

Fig. 6. Influence of applied force on acceleration sensing.
A surface is scanned repeatedly with different applied
forces. The force shown is the force measured by the
sensor which is proportional to the applied force.

Before introducing our approach of estimating a mea-
sure of surface compliance, we will present our obser-
vations about the experimental relationship between the
acceleration and force measured by the WHaT sensor. As
briefly mentioned in Section 2.3, we observe a propor-
tional increase in acceleration amplitude with the force
applied by the operator. Figure 6 shows the force and
acceleration profiles while a user repeatably scans the
surface of a stiff pencil eraser and changes the applied
force. Clearly, higher forces result in higher accelerations.
This is not surprising considering a second-order linear
dynamic system

mü+ bu̇+ ku = fext (1)

with stiffness k, damping b and displacement u and
external force fext. This can guide our understanding
of the observations, but it is unlikely to be an accurate
description of the contact behavior. It is also of no help
in estimating material parameters (e.g., b and k) since we
neither observe fext nor u.

In order to clarify the relationship between the force f
and the acceleration a measured by the sensor, we plot
the root-mean-squared (RMS) acceleration over the low-
pass filtered force. We opt to low-pass filter the force in
order to obtain a force which may be considered propor-
tional to the average applied force by the user during a
scan or portion of a scan. In our experiments, we used
a first-order Butterworth filter with a cutoff frequency
of 2.5Hz. The RMS acceleration aRMS =

√
1
N

∑
i ai

2
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Fig. 7. Force and acceleration during scanning of sand-
paper. Top plot shows the measured force (grey, light)
and low-pass filtered force (brown, bold) used for surface
compliance estimation. The user applied force increases
with time (from left to right).

gives us an indication of the amount of acceleration
caused by the external force and enables us to bin
measurements. We bin the measurements arbitrarily in
24 equidistant bins along the force dimension. We fit a
line through the measurements by weighted linear least
squares with measurement weights as the inverse of the
measurement standard deviation for each bin. The result
of the line fitting for the data shown in Figure 7 is found
in Figure 8(a). The line is aRMS = a0 +0.9068 1

kg ∗flowpass

with a fitting standard deviation of 0.7247.
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Fig. 8. Linear approximation of the dependency of accel-
eration on force. Error bars indicate the inverse weight of
a sample in linear least squares. Nearly rigid sandpaper
in Figure 8(a), compliant pencil eraser in Figure 8(b).

3.2 Compliance Estimation
The above observations about the relationship between
dynamic force and acceleration helps us to find a mea-
sure of surface compliance. We start by noting that tap-
ping on a hard surface causes vibrations while tapping
on soft materials does not. It is therefore reasonable
to expect that hard materials cause high deceleration
values as the WHaT probe impacts them, while soft
materials cause lower values. In the second order system
of Equation 1, the vibrations based on sudden variation

of displacement are controlled by the damping ratio
ζ = b

2
√

km
. The damping ratio is inversely dependent on

the square-root of the stiffness. Based on this argument,
we expect to see smaller accelerations with the increased
damping ratio of more compliant surfaces.

We quantify the effect by the same line fitting proce-
dure described in Section 3.1. We expect the linear coeffi-
cient to be proportional to the stiffness of the material, or
equivalently, we expect that locally, we can approximate
the dependency of the acceleration on the force linearly.
However, we note that the standard deviation of fit
for the line in the case of sandpaper is high and that
scanning with an increasing amount of force is difficult
for many surfaces. Therefore, we propose a scanning
procedure for compliance which consists of repeatably
scanning the same surface with different amounts of
applied force. The advantage of this scanning procedure
is the larger number of samples in general and the easier
variation of applied force. Raw sensor data for such a
repeated surface scan is shown in Figure 6. Note, as
well, that the profile again clearly shows the dependency
of the acceleration on the applied force. We devised a
simple segmentation routine which cuts out sections of
the data where the force sensor does not record any force
or the acceleration is constant suggesting that the probe
is stationary. The segmented profile is shown in Figure 9.
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Fig. 9. Segmentation result for repeated scans of an
eraser; Figure 6 shows the input data.

The described scanning procedure for the eraser re-
sults in the line fit shown in Figure 8(b) and a linear
coefficient kc = 0.1793 with a standard deviation of
σ = 0.1121. These values support our argument; the
linear coefficient is smaller than for stiff sandpaper and
the scanning procedure of repeat scans results in a
lower standard deviation than one scan with varied
force. However, we note that our approach depends on
the occurrence of acceleration bursts caused by surface
roughness, i.e., completely smooth surfaces will exhibit
only very small accelerations no matter what force is
applied. As a result, very smooth surfaces will not be
usable in our estimation procedure of compliance. We
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present more complete results in Section 4.2 including
a comparison to independently measured material stiff-
ness and Young’s moduli.

4 RESULTS

In this section we present the results of using our sys-
tem to scan real-world object. In addition to showing
the haptic textures we generate, a comparison is done
using scans from a high-resolution laser scanner. We
refer the reader to our earlier work [7] for additional
haptic textures, including scanning stochastic surfaces
such as sandpaper and cork. Compliance estimates are
also obtained for a variety of materials, perceptually
ranging from hard to soft. These results are obtained
with our new method for estimating the stiffness coef-
ficient and we compare the results to measurements of
stiffness and the object’s reduced Young modulus from
an independent measurement setup (described in the
Appendix).

4.1 Surface Profiles

(a) Front body. (b) Front hood. (c) Back hood.

Fig. 10. High-resolution 3D mesh of the cobra (shown in
flat shading).

Here, we present the results of scanning different areas
of the wooden cobra statue shown in Figure 2. Our
method does not require a 3D scanner but only a coarse
3D model which can either be obtained with image-
based methods as presented in this paper or manually.
We employ high-resolution scans in the following only
for comparison and clarification. The statue has three
distinctly textured areas: on the back of its hood, the
front of its body and the front of its hood. The textures
can be visually identified in the meshes obtained with
high-resolution laser scans shown in Figure 10. The
laser scans are obtained with a Minolta Vivid Vi-910
scanner with a tele-lens for which Minolta specifies
an accuracy of δx = ±0.22mm, δy = ±0.16mm and
δz = ±0.10mm [47]. Scans were taken with the object
on a turntable at 30◦ steps and have been merged with
Geomagic Studio, a commercial software packaged with
the scanner.

In order to compare the profiles with the 3D scans,
we register the profiles to both, the coarse 3D model
and the 3D high resolution mesh with the approach
described in Section 2.2. We process the sensor data from

our system as discussed in Section 2.3 using the normals
from the coarse 3D model and determine the direction
of the gravitational acceleration by the global orientation
of the coarse 3D model. The registration with the high-
resolution mesh is used only to be able to compare the
height profile with the high-resolution mesh. Figure 11
shows the comparison for the three selected areas of
the statue. Our system performs satisfactory in all three
comparisons since the characteristic features of the sur-
faces are visible and the feature locations between the
high-resolution 3D mesh and the profiles obtained with
our system align. In comparison to our earlier work [6],
there is a drastic improvement in the localization of
the features. This improvement has been the result of
the new sensor fusion approach utilized in our current
system which in turn has been possible due to the
improved visual tracking capabilities.

Our approach to sensor fusion is quite simple, we
determine a spatial transition frequency between the
height-profile obtained with the tracker and with the
WHaT. The motivation for this transition is that the
height-profile from the tracker has good absolute ac-
curacy but the WHaT has superior higher frequency
relative accuracy. The lower frequencies from the WHaT
are polluted by drift. In Figure 12, we show the spatial
power spectra for three scans of the wooden cobra in
Figure 11. The power spectrum of the tracker is the
complete spectrum while the WHaT spectrum is only
the part above the transition frequency which enables
a direct comparison of the power in higher frequencies
between the two profiles. For all three profiles, the WHaT
spectrum adds higher frequencies to the fused profile.
However, the spectrum plots can not reveal if these
higher frequencies are simply noise or part of the profile.
Figure 11 shows the fused profiles in comparison to the
tracker-only profiles, and it reveals that the WHaT helps
to flatten the top of the peaks in the profiles and bring
the profiles closer to the 3D mesh profile. We believe
the visible error to be caused by two facts: On the one
hand, our system will produce large acceleration spikes
during traversal of sharp features in a profile and the
probe may even lift-off from the surface for a short
period of time. On the other hand, there may be some
amount of synchronization error between the WHaT and
the tracker. We believe the synchronization error to be
caused by high frequency variations in the scanning
velocity which are not captured by the tracker.

4.2 Compliant Surfaces

In the following, we will present the results of our dy-
namic stiffness estimation procedure for a set of objects
with different stiffness ranging from a soft mouse-pad to
sandpaper. We start our evaluation by measuring base-
line values for the stiffness of the materials in our test set.
We conduct a compression test by probing each object
(except the sandpaper) with a spherical indenter with a
radius of R = 6.265mm. The indentation is executed with
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(c) Back hood profile.

Fig. 11. Height profiles for the wooden cobra. The height profile from our system are shown with solid (purple) lines,
top row is from the tracker only, bottom row are fused profiles from visaul tracking and the WHaT. The dashed (gray)
lines are the height profile obtained based on the high-resolution laser scans for comparison. A height profile is the
deviation from the average surface.
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(b) Front hood spectrum.
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(c) Back hood spectrum.

Fig. 12. The power spectral density of profiles in Fig-
ure 11. Dashed (gray) and solid (purple) lines on the left
are the spectra of the height profiles from the tracker and
from the WHaT, above the transition frequency of the
fusion algorithm, respectively. The spectra of the fused
profiles are shown on the right. The spatial transition
frequencies are on average 0.59 1

mm , 0.41 1
mm and 0.86 1

mm ,
respectively. The spectra are calculated by the Lomb [45]
periodogram.

a probe consisting of a 6D force-torque sensor (ATI Nano
25) mounted in a haptic device (MTB Freedom 6S). We
compress the material by manually applying force and
measuring the force with the force-torque sensor and the
position with the haptic device. See the Appendix for a

TABLE 2
Stiffness estimates kc and standard deviation of fit σ for

several materials. Experimental verification from a
spherical indentation test. Proportionality factor
k̃comp = f/u3/2 and reduced Young’s modulus Er.

Material kc σ k̃comp Er[MPa]

mouse pad 0.108 0.020 0.276 0.083
foam B 0.108 0.059 0.212 0.063
foam A 0.115 0.310 1.83 0.548
sponge B 0.117 0.055 1.56 0.469
sponge A 0.132 0.054 3.29 0.986
toy (foam) 0.157 0.102 4.02 1.21
floor felt 0.163 0.038 9.14 2.74
pencil eraser 0.179 0.112 13.2 3.97
toy (crocodile) 0.266 0.145 25.8 7.74
rubber tire 0.526 0.096 39.4 11.8
cork 0.853 0.257 49.0 14.7
sandpaper 0.907 0.725 n/a n/a

more detailed description of the set-up. We repeat this
test a number of times and estimate a stiffness and the
reduced Young’s modulus of the material. We do not
employ the well-known method by Oliver and Pharr [48]
for the estimation since their method assumes plastic
deformation of the surface during the indentation test.
Our materials are soft and the forces small and we can
assume elastic deformation. We employ a full non-linear
fit to the loading curve in a similar fashion as proposed
by Briscoe et al. [49]. Both methods are based on the
Hertzian contact model for a sphere-plane contact given
by

f =
4
3

√
R

E

1− σ2
u

3
2 =

4
3

√
REru

3
2 = k̃compu

3
2 (2)

E and Er are the Young’s modulus and the reduced
Young’s modulus, respectively, and σ is the Poisson’s
ratio of the object. We assume that our indenter is
infinitely stiff as compared to our materials.

The stiffness coefficients and variance of the force-
acceleration ratio for our test set are listed in Table 2.
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The table shows that our dynamic stiffness estimation
procedure has successfully ranked the objects according
to stiffness. This enables us to use the stiffness estimates
in our haptic rendering application. While we cannot
provide an analytic relationship between the stiffness
coefficients estimated in our dynamic estimation pro-
cedure and the results of the compression tests, an
experimental relationship can be easily observed (see
Figure 13). We fit an exponential curve with the Matlab
routine fminsearch taking into account the uncertainty in
the stiffness coefficents from our scans. The relationship
is

kc = 0.0217 + 0.0883e0.149Er[ 1
MPa ]

There are some limitations to this relationship. The stiff-
ness estimation method for kc from our scans assumes
that the object’s surface is not smooth since we require
accelerations normal to the average surface. The object
must also be reasonably homogeneous, e.g., the estimate
for packaging foam A is low likely due to the foam
having large variations in stiffness due to an internal
coarse cell structure. Our scanning procedure signals this
issue with a high fitting error. However, we can conclude
that our novel technique for stiffness estimation gener-
ates a good heuristic regarding the stiffness of scanned
surfaces and we were able to establish an experimental
relationship between the Young’s modulus of an object
and the stiffness coefficient kc.

E
r
[MPa]

K
c

Fig. 13. Relationship between (reduced) Young’s Modu-
lus and experimental stiffness coefficient kc.

The stiffness coefficients are used to modify the stiff-
ness of textures when they are displayed to users in a
haptic interface to a hapto-visual application. We feel
that the textures are pronounced and salient texture fea-
tures are easily detectable if using a very rigid stiffness
value, such as the sandpaper. For lower stiffness values,
texture features are attenuated, with the soft mouse-pad
being mostly characterized by rigid body contact forces.

4.3 Haptic Rendering
We demonstrate our compatibility with the standard
rendering algorithms by incorporating several of the
techniques discussed in Section 1.1. To display the tex-
tured objects, a hapto-visual application that renders
textured models to the PHANTOMTMseries of devices
is used, particularly the Premium 1.0 device since it
enables one to explore the haptic textures with higher
fidelity. Users can interact with textured 3D objects using
a virtual proxy, which is a single point of contact interface
metaphor for the haptic device.

We adopt a force model similar to that used by Siira
and Pai [50], whereby the overall rendered force is
decomposed into those acting along the normal, ~n, and
tangential, ~t, directions to a point on the surface of the
3D object where the virtual haptic proxy makes contact

~f = ~fc + ~ft + ~ff = [ks ∆x+ kc ∆h]~n+
[
us |~fc + ~ft|

]
~t.

The forces due to rigid body constraints, ~fc, and texture
forces, ~ft, are rendered using a penalty-based method,
whereby spring forces are generated proportional to the
penetration depth of the proxy into the surface, ∆x, or
the texture, ∆h. The frictional force, ~ff , uses a prese-
lected static friction coefficient, us, and its magnitude is
proportional to the rigid body and texture forces.

Figures 1(c) and 1(d) show a hapto-visual application
which is displaying the textured 3D cobra object. Sec-
tions of the mesh which have been textured are high-
lighted and, when the user brings the proxy in contact
with these areas of the mesh, the texture is displayed
according to our haptic rendering algorithm.

5 CONCLUSION

Our system is a viable solution for creating textures
for use in 3D hapto-visual applications demonstrated
by the results of scanning a wooden cobra statue. Our
textures are based on surface height profiles fused from
data from the visual tracker and from the WHaT probe.
We compared the height profiles from our system with
profiles calculated from high-resolution scan data. Some
spatial warping and scaling are present in our con-
structed surface profiles but the overall characteristics
of the scanned surfaces are well captured. We also have
presented an indepedent analysis of the accuracy of
the visual tracking in form of a covariance matrix of
the position estimates of the tracker. The most novel
aspects of our approach is the estimation of a stiffness
coefficient for haptic texturing. Our method estimates
this coefficient solely based on the analysis of the force
and acceleration during a surface scan and we are able
to show an experimental relationship to the contact
stiffness as measured during compression.

APPENDIX

The compression test described in the following are
employed in the evaluation of our dynamic stiffness
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(a) Test Set-Up.
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Fig. 14. Compression Test. The test is perfomed to
obtain an indepedent verification of our dynamic stiffness
estimation method based on scan profiles. Measurement
data in Figure 14(b); set-up in Figure 14(a).

estimation method. The tests are only used in evaluating
system performance and are not part of our scanning
system. Figure 14(a) shows the setup for the measure-
ment. The force-displacement curves recorded by the
set-up in testing the black packaging foam is shown in
Figure 14(b). The curves are recorded during repeated
slow compressions of the object. The curve shows some
non-elastic deformation of the packaging foam which
needs a larger recovery time to return to its original
shape. We correct the offset value in the subsequent
processing. We segment the curves into individual com-
pression curves (see Figure 15(a)) and fit each segmented
curve separately. We accomplish the curve fitting of
the Hertzian contact model with the Matlab routine
fminsearch (see Figure 15(b)). Applying Equation 2 to
the stiffness estimation leads to the results presented in
Table 2.
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(a) Segmented Tests.
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(b) Model fit.

Fig. 15. Fitting a Hertzian contact model. Figure 15(a)
shows the data, while Figure 15(b) shows the fit to the
Hertzian contact model (purple solid line).
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