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Fig. 1. Challenging scenarios simulated with our method, from left-to-right: a stiff chain with attached mass (chain wrap); an intertwined system of cables
(cable spinner); a large stack of logs with heavy plate atop (log tower); a dual crane training simulation (tandem cranes). Each example is modeled as a
multibody system with hundreds or thousands of constraints, contacts, and mass ratios up to 40, 000 : 1. The corresponding decomposition of the simulation
is shown, where bodies of the same color belong to the same subsystem. Subsystems are coupled by our Schur complement solver for efficient simulation.

Substructuring permits parallelization of physics simulation on multi-core

CPUs. We present a new substructuring approach for solving stiff multibody

systems containing both bilateral and unilateral constraints. Our approach

is based on non-overlapping domain decomposition with the Schur comple-

ment method, which we extend to systems involving contact formulated

as a mixed bounds linear complementarity problem. At each time step, we

alternate between solving the subsystem and interface constraint impulses,

which leads to the identification of the active constraints. By using the

active constraints to compute the effective mass of subsystems within

the interface solve, we obtain an exact solution. We demonstrate that our

simulations have preferable behavior compared to standard iterative solvers

and substructuring techniques based on the exchange of forces at interface

bodies. We observe considerable speedups for structured simulations where

a user-defined partitioning can be applied, and moderate speedups for
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unstructured simulations, such as piles of bodies. In the latter case, we

propose an automatic partitioning strategy based on the degree of bodies

in the constraint graph. Because our method makes use of direct solvers,

we are able to achieve interactive and real-time frame rates for a number

of challenging scenarios involving large mass ratios, redundant constraints,

and ill-conditioned systems.
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1 INTRODUCTION
The Schur complement method permits the solution of a large linear

system through a number of smaller system solves. While early

uses of the method were important for systems that did not fit

in memory, now that multi-core processors are prevalent in all

consumer hardware, the method has become more interesting for

fast parallel computation. Furthermore, since Schur complement

domain decomposition works with direct solvers, it can deal with

stiff systems more gracefully than iterative methods. In contrast,

slow convergence can be a common problem with iterative methods

ACM Transactions on Graphics, Vol. 38, No. 5, Article 150. Publication date: October 2019.

https://doi.org/10.1145/3355621
https://doi.org/10.1145/3355621


150:2 • Albert Peiret, Sheldon Andrews, József Kövecses, Paul G. Kry, and Marek Teichmann

when dealing with the stiffness that frequently arises in physics-

based simulations. Specifically, we use the term stiff to describe

poor conditioning that can easily arise from a number of situations.

In the case of multibody systems, examples include large mass

ratios, redundant constraints from contacts or loops, and the small

compliances often used to regularize constraints. While iterative

algorithms have been very popular in computer graphics compared

to many other fields, and while preconditioning can help in dealing

with stiff systems, there is nevertheless a number of examples where

previous work has recognized the benefits and applied direct solvers,

such as in the solution of stiff rods [Deul et al. 2018] and for adaptive

discretization in cloth simulation [Narain et al. 2012].

Our work addresses the use of direct solvers for interactive simula-

tion of stiff multibody systems with contact. Typical systems include

both bilateral and unilateral constraints, as well as friction at the

contact interfaces. Bilateral constraints typically model joints and

actuators, while unilateral constraints are necessary to represent

direct contact interactions between rigid bodies. Bilateral constraints

can also have bounds that introduce further inequalities into the

formulation. A commonmodeling approach for these problems leads

to a dynamics formulation where the core mathematical model takes

the form of amixed linear complementarity problem (MLCP). Numer-

ous rigid body dynamics platforms employ MLCP formulations to

model physical problems. Unfortunately, the solution of an MLCP

is more involved than solving a linear system and does not permit a

direct application of Schur complement domain decomposition to

speed up computation.

The novelty of our work is the development of an algorithm to

speed up the solution of the MLCP representing the rigid body

dynamics problem. The main idea is to split the overall system

into smaller subsystems and solve each one separately. Individual

subsystems are then coupled to the others using reduced-order

models that rely on the concept of effectivemass. This is based on the

Schur complement domain decomposition approach, with important

adjustments to identify and correctly handle unilateral constraints.

The effective mass representation includes the effect of both bilateral

and unilateral constraints within a subsystem. This is a novel use

of the concept, which requires proper algorithmic considerations.

Our approach provides an efficient parallel computation of the full

system, without the convergence issues of iterative methods.

In this work, we target simulation for interactive and real-time

applications. Interactive simulation is particularly important for

training simulators, virtual reality, and video games, which are

application areas that can benefit from an improved performance

without sacrificing solution accuracy. Figure 1 shows a collection of

challenging stiff systems that we are able to simulate efficiently with

our method. In comparison to standard formulations and solvers,

such as those used in industry, we can observe more than 20 times

speedup while maintaining accuracy equivalent to a full direct solve.

2 RELATED WORK
Modeling contact dynamics in multi-rigid-body systems can gener-

ally lead to complementarity problems [Acary and Brogliato 2008;

Baraff 1994; Moreau 1988]. In such systems, the rigid bodies are

connected to each other through joints represented by bilateral

constraints and direct contacts given by unilateral non-penetration

constraints, which generally leads to an MLCP model [Stewart and

Trinkle 1996]. Such a model can also be formulated as a convex,

quadratic optimization problem [Moreau 1966].

The consideration of Coulomb friction at the contacts compli-

cates the mathematical formulation and turns it into a nonlinear

complementarity problem [Moreau 1988; Pfeiffer et al. 2006]. This

is specifically due to the physical nature of friction whereby the

friction force between a pair of bodies in contact depends on non-

interpretation forces, and it is limited by the friction cone constraint

[Pfeiffer et al. 2006]. However, with a proper approximation of the

friction cone [Anitescu and Potra 1997; Glocker 2001; Stewart and

Trinkle 1996], the core algorithmic problem leads back to an MLCP.

The solution of such MLCP contact formulations has significant

applications in computer graphics, various engineering fields, ani-

mation, and interactive simulation of virtual environments. In this

regard, Bender et al. [2014] provide an excellent survey of themodels,

numerical methods, and algorithms for interactive simulation of

multibody systems in computer graphics.

While fast linear time dynamics is possible for multibody systems

with tree-structured constraints [Baraff 1996], parallel computing

can offer possibilities to further accelerate the solutions in multi-

core CPU environments. For this, the multibody system has to be

partitioned into subsystems that interface each other. This problem

has received significant attention for various problems where the

rigid bodies interact only through joints represented by bilateral

constraints with no bounds. For such cases, the problem is a system

of linear equations rather than the more difficult general MLCP

problem. A divide and conquer algorithm was proposed for such

systems by Featherstone [1999]. In this approach, the subsystems are

termed articulated bodies and the interfaces are called handles. The

algorithm essentially imposes a sequential application of constraints

and makes a parallel implementation possible. Several enhanced

variants of this algorithm have also been reported, which target

both CPU and GPU implementations [Critchley et al. 2009; Laflin

et al. 2014]. However, the main disadvantages of the algorithm are

that it requires the explicit availability of inverse mass matrices, it

only works for bilateral joints with no bounds, and even for such

cases it cannot handle Coulomb friction.

The Schur complement is a common tool in the decomposition

of systems. Substructuring for vehicle dynamics analysis is one

example addressing the special topology of vehicles [Kang et al.

2015; Kim 2002]. Here, the chassis serves as the main subsystem,

with other components (suspension etc.) branching out from, and

only interacting with, the main subsystem. These formulations have

been developed only for bilateral constraints without bounds and

cannot handle friction. They also strongly depend on a specific

topology. However, there is a useful feature that implicitly arises

in them: the derivation of the interface forces between the core

subsystem and the branches leads to the expression of effective

mass matrices associated with the interface variables. These are

obtained in a form that is essentially the Schur complement of the

original coupled mass matrix. We use this effective mass expression,

or rather the inverse effective mass, in our algorithm. These kinds

of expressions have also proved useful in fluid simulation, where

the Poisson pressure solve can be seen as involving a large number
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of bilateral constraints [Chu et al. 2017; Liu et al. 2016]. Here, the

partitioning of subsystems benefits from the regular grid structure

of fluid simulations, whereas partitioning in our work is based on

the constraint graph whose topology changes at each time step.

When unilateral constraints such as contact are present, a general

form of the MLCP problem is needed and the subsystem analysis

becomes much more challenging. Tonge et al. [2012] propose an

iterative Jacobi-based method that uses the concept of mass splitting

in combination with a graph coloring algorithm to simulate large

piles of bodies. Their simulations are partitioned into blocks of

contacts involving sub-bodies, and these blocks are solved separately

and then later combined by considering the fixed joints between

the sub-bodies. Furthermore, although graph coloring approaches

such as parallel PGS facilitate simulating large scale problems on the

GPU, these methods are slow to converge for stiff and ill-conditioned

systems and this severely mitigates performance gains from paral-

lelization. In comparison, our approach produces results for sim-

ulations involving both bilateral and unilateral constraints, which

are modeled as connected subsystems that are solved in parallel.

The resulting constraint error and interpenetration is much lower

thanks to the use of a direct solver.

Tomcin et al. [2014] solve complex multi-body problems in the

presence of loops and contacts. Such highly over-constrained prob-

lems are poorly conditioned or have redundant constraints, and

are in many respects similar to the systems addressed by our work.

Tomcin et al. use a mixed iterative and direct approach which leads

to very low constraint violation error through the use of carefully

regularized linear solves to close loops in what could be called a

pre-stabilization approach. Parallel solution of their sparse direct

systems are possible with nested dissection.We distinguish our work

in that our focus is on the MLCP error, though we could also use

our formulation for a parallel position level post-step stabilization

solve [Cline and Pai 2003].

Early work by Baraff and Witkin [1997] consider partitioned

dynamics for interleaved simulations, with conjugate gradient it-

erations used to compute constraint forces between partitions. La-

coursière [2007] partition multibody systems at points where they

are weakly coupled, and resolves the interface with block projected

Gauss-Seidel iterations. The method needs warm-starting to achieve

faster convergence. For 𝑁 subsystems, it solves 𝑁 + 1 MLCPs every

iteration, but the system matrices are taken directly as blocks of

the main problem matrix. Although the constraint forces can be

solved by a direct method, this formulation only takes into account

the dynamics of the bodies directly connected at the interface, thus

ignoring the internal dynamics of each subsystem while solving for

the interface constraints. Because the subsystems are only weakly

coupled, interface forces are resolved in an iterative manner and

many iterations are required for stiff problems. Otherwise, the inter-

face constraints appear soft and produce large constraint violations.

We refer to this approach as force based interface coupling (FBIC)

and make specific comparisons to it throughout this paper.

An important aspect of our work is that we form the inverse

effective mass via the Schur complement based on the index set of

the subsystems constraints. Our approach accounts for coupling of

the entire subsystem, incorporating effects due to contact detach-

ment and frictional sliding, and uses this to compute the effective

mass and force/impulse terms. While we typically need only a few

coupling iterations to identify the active constraints, we can likewise

obtain the solution in one iteration if the active constraints do not

change from the previous time step. We compute the effective mass

using a modified Schur complement that only considers the active

constraints in each subsystem; this is an important contribution

of our work. Therefore, we not do not iterate over the values of

constraint forces, but rather the index set of the constraints, using a

pivoting approach.

Domain decomposition in elastic problems can exploit local model

reduction, providing opportunities for fast solutions in addition to

parallel computing [Barbič and Zhao 2011; Kim and James 2011].

Parker and O’Brien [2009] describe partitioning and parallelization

in elastic systems with contact, where the system is divided into

domains to parallelize the solve (a common technique in modern

multibody engines) and the matrix multiplication operation in con-

jugate gradient solves are also parallelized for very large systems.

Blocked Gauss-Seidel approaches are often preferred for large scale

parallelization on the GPU, for instance, using a graph coloring

algorithm to partition the system [Fratarcangeli and Pellacini 2015;

Fratarcangeli et al. 2016]. Related to this is the staggered projection

approach, which places contact normal and tangential forces into

separate blocks [Kaufman et al. 2008]. Solvers for elastic systems

can struggle to handle stiff multibody systems with LCP contact

constraints. Approximate solutions to stiff constraint problems may

need an additional solve to stabilize the constraints [Cline and Pai

2003]. While stabilization is generally unavoidable, stiff problems

and those with large mass ratios are scenarios where it is still

desirable to use methods that can produce accurate solutions.

Various techniques can be used to speed up convergence and

improve solutions to multibody simulation problems. Warm starting

and shock propagation can help projected Gauss-Seidel and impulse

based methods [Erleben 2007; Guendelman et al. 2003]. Long range

constraints can likewise be very beneficial in special cases, such as

chains [Müller et al. 2017]. In contrast, our approach does not require

any modifications to the model, nor do we make assumptions that

would otherwise limit the applicability of our solution.

In the context of off-line simulations, there are other interest-

ing methods, such as accelerated projected gradient descent with

applications in the simulation of granular materials [Mazhar et al.

2015]. Visseq et al. [2012] also propose a domain decomposition

algorithm for granular materials based on an approach they refer to

as gluing. Contact is present within the domains, which are made

of grains, and the grains between domains define the interface.

However, the interface problem consists of the gluing constraints,

which are essentially equality constraints that only take into account

the dynamics of the pairs of glued grains, and it does not consider

the internal dynamics of the domains.

Finally, we note that domain decomposition and substructuring

are related to graph partitioning algorithms, such as METIS [Karypis

and Kumar 1999] and SCOTCH [Pellegrini and Roman 1996], which

produce reduced fill-in orderings of sparse matrices. However, these

algorithms are not well-suited for the real-time and interactive appli-

cations we target in this paper. A comparison of matrix reordering

methods for multibody simulation by Torres-Moreno et al. [2013]

found that simple reordering strategies, specifically the column
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approximate minimum degree method (COLAMD), outperformed

graph partitioning algorithms for medium systems (i.e., 50 to 2000

degrees of freedom). We also propose an automatic partitioning

algorithm (see Section 6) that requires very little computational

overhead and operates directly on the constraint graph of similarly-

sized systems.

3 CONSTRAINED MULTIBODY SYSTEMS
We consider multibody systems composed of rigid bodies that inter-

act with each other through constraints that restrict their motion

bilaterally or unilaterally. Direct contact between the bodies is

commonly represented by such unilateral constraints, allowing the

dynamics to be formulated as a complementarity problem. Here, we

first introduce the general formulation for systems with bilateral

constrains, and then add contact to formulate an MLCP.

The motion of the system for a certain configuration is defined

by the velocity of 𝑛 bodies, which can be arranged in an array of 6𝑛

generalized velocities v. For each body, the velocity of its center of

mass with respect to an absolute frame can be represented by three

linear components and three angular components. The interactions

between bodies are described through constraints. The𝑚 constraint

velocities representing these modes of motion can be written as a

linear combination of the generalized velocities,

Jv = w0 (1)

where J is the𝑚×6𝑛 constraint Jacobian matrix, andw0 contains the

𝑚 constraint velocities. Eq. (1) is obtained through a linearization

of the constraint functions at a position level and can be used, for

example, to constrain the relative position and orientation between

bodies.

The dynamic equations that govern the motion of the system

relate the time derivatives of the generalized velocities to the forces

acting on the system. By introducing a finite-difference approxima-

tion, the change in the generalized momentum from one time step

to the next can be related to the generalized impulse as

M(v+ − v) = ℎf + JT𝝀+ , (2)

where v and v+ are the velocity at the beginning and at the end

of the time step, respectively, and ℎ is the time step size [Acary

and Brogliato 2008]. Here, M is the 6𝑛 × 6𝑛 symmetric positive-

definite mass matrix, which has a block-diagonal structure with

a bandwidth of 3 due to the inertia matrices associated with the

angular velocity components, and f is the 6𝑛-dimensional array of

generalized applied forces containing the Coriolis and centrifugal

terms and external forces, such as gravity. The 𝑚 unknown con-

straint impulses are arranged in 𝝀+ and are related to the constraint
forces and moments through the time step.

The constraints in Eq. (1) may not be independent (i.e., the Jaco-

bian matrix J is rank deficient), leading to a constraint redundancy

problem. In such a case, the impulses 𝝀+ cannot be uniquely deter-

mined. To cope with this, it is common to relax the constraints and

regularize the force using a constitutive relation such as

Jv+ + C𝝀+ + ℎ−1𝝓 = w0 , (3)

where C is the𝑚 ×𝑚 symmetric positive-definite matrix associated

with the compliance of the regularized constraints, which is usually

diagonal, and 𝝓 accounts for the constraint violation at the position

level in the current time step.

By combining Eq. (2) and Eq. (3), the augmented form of the

impulse-momentum level formulation can be written as[
M −JT
J C

] [
v+

𝝀+

]
=

[
p
−d

]
, (4)

where p = Mv + ℎf and d = ℎ−1𝝓 − w0 are used to simplify the

notation. In these kinds of formulations, the mass matrix M can be

modified in order to account for the discretization of gyroscopic

and constraint forces. For instance, by using the geometric stiffness

tensor, which has been shown to improve stability when simulating

stiff mechanical systems [Andrews et al. 2017; Tournier et al. 2015].

Furthermore, it is possible to formulate the problem using just

the constraint impulses 𝝀+ by taking the Schur complement of the

mass matrixM in Eq. (4)(
JM−1JT + C

)
𝝀+ = −d − JM−1p , (5)

where the inverse of the mass matrixM−1 can be computed in closed

form because of its block-diagonal structure. This formulation gives

a linear system in which fewer variables need to be solved at each

step, since typically 𝑚 < 6𝑛. Furthermore, the velocities can be

calculated at the end of the time step after having computed the

constraint impulses.

It is worth noting that the matrix in Eq. (5) can be ill-conditioned

for stiff systems that have low complianceC. Specifically, this occurs
when the system has large mass ratios, when the constraints are

redundant, or a combination of both. In such cases, the condition

number of the inverse effective mass JM−1JT can be quite large.

The position of all the bodies in the system is described by a

set of generalized coordinates q, and the dimensionality depends

on the representation. Here, we use a 3D vector and a quaternion,

respectively, to represent the position and orientation of each body

with respect to the absolute frame, which amounts to 7𝑛 generalized

coordinates. The position update at the end of the time step can

then be computed using the generalized velocities v+ as

q+ = q + ℎTv+, (6)

where q and q+ are the coordinates at the beginning and the end

of the time step, respectively, and T is the 7𝑛 × 6𝑛 transformation

matrix, which is computed using the known coordinates q. The
quaternions of each body are normalized after the update to ensure

numerically consistent rotations.

Although constraint violations can occur after the position update

in Eq. (6), the Baumgarte stabilization used in Eq. (4) will correct it

in subsequent time steps.

3.1 The Mixed Linear Complementarity Problem
We are primarily interested in simulating multibody systems con-

taining a mixture of unilateral and bilateral constraints. Figure 2

illustrates the different types of constraint forces that arise in such

simulations. The impulses 𝝀+ can be limited to certain values de-

pending on the kind of constraint, e.g., unilateral constraints have

non-negative impulses. For a given time step, the inequalities can

be written

l ⩽ 𝝀+ ⩽ u , (7)
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where l and u contain the lower and upper bounds for the constraint

impulses, respectively, which are set to −/+ infinity for bilateral

constraints. The formulation in Eq. (5) can then be written as an

MLCP, such that(
JM−1JT + C

)
︸           ︷︷           ︸

A

𝝀+ + d + JM−1p︸      ︷︷      ︸
b

= w+

l ⩽ 𝝀+ ⩽ u

 (8)

wherew+ = w+
l
−w+

u
contain the slack velocities associated with the

bounds of the constraint impulses. These are related to the constraint

velocities, and need to satisfy the complementarity conditions

0 ⩽ u − 𝝀+ ⊥ w+
u
⩾ 0

0 ⩽ 𝝀+ − l ⊥ w+
l
⩾ 0

(9)

where ⊥ denotes component-wise complementarity. To simplify the

notation, we only use the inequalities in Eq. (7) to denote an MLCP

with bounded impulses 𝝀+ and slack velocities w+. In this form, it

is also known as a bounded linear complementarity problem (BLCP)

with box constraints.

Contact is often represented by unilateral constraints, in which

the relative velocity of each contact point is decomposed in one nor-

mal and two tangential components, so that the constraint impulses

in 𝝀+ represent the normal and friction force components. To allow

contact detachment, the normal impulse must be non-negative, that

is,

𝜆+
n
⩾ 0. (10)

Geometric primitives, such as spheres, cylinders, and boxes, are used

to represent the geometry of the bodies, and a collision detection

algorithm determines the contact points and normal directions.

On the other hand, Coulomb friction defines a constraint on the

tangential velocity with a limit for the resultant friction force. The

friction constraint can be enforced component-wise by defining

upper and lower bounds for the two friction force components as

− 𝜇𝜆n ⩽ 𝜆+
t𝑗
⩽ +𝜇𝜆n, (11)

where 𝑗 = 1, 2 denotes the two directions in the tangent plane, and

𝜆n is taken from the previous time step. This is also known as the

box friction model, which likewise replaces the original nonlinear

inequalities of the Coulomb model by a linear approximation of the

friction cone [CM Labs Simulations 2017].

For a contact point, the slack velocity w+ in Eq. (8) is related to

the normal velocity component, and it must be zero while the bodies

are in contact. However, when the contact detaches, the impulse

must be zero and the slack velocity becomes positive to satisfy

the complementarity conditions. For the case of friction, when the

impulse is within the bounds, the slack velocity must be zero, and

so the contact is sticking. Otherwise, when it reaches a bound, the

contact is sliding, and so the slack velocity is non-zero.

In general, the complementarity conditions in Eq. (9) can be

defined as 
w+ ⩾ 0 if 𝝀+ = l
w+ = 0 if 𝝀+ ∈ (l, u)
w+ ⩽ 0 if 𝝀+ = u

(12)

where the impulses within bounds 𝝀+ ∈ (l, u) are known as free,
and those at the bounds, 𝝀+ = l or 𝝀+ = u, are known as tight. The

Contact
Joint

Unilateral constraint
𝜆+
n
⩾ 0

Friction
−𝜇𝜆n ⩽ 𝜆+

t𝑗
⩽ +𝜇𝜆n

Bilateral
constraints

Fig. 2. Illustration of the constraint forces in a multibody system with
contact, and definition of the normal and tangential impulses.

labels tight and free on all constraints together determines the index

set of the system.

In this section, we have summarized a common approach for

simulating a constrained multibody system modeled as an MLCP.

The following sections explain our primary contribution, which

is how domain decomposition can be applied to such systems by

partitioning them into smaller subsystems and solving these in

parallel.

4 SUBSTRUCTURING OF MULTIBODY SYSTEMS
The central idea behind substructuring of constrained multibody

dynamics is to define non-overlapping subsystems of bodies that

only interact through a set of interface constraints (Γ) that couple
the subsystems. In such a case, the internal constraints (Ω) of each
subsystem can be solved in parallel, which can lead to a significant

reduction in computational time. Many methods determine the in-

terface forces iteratively, by alternating between the interface solve

and internal subsystems solve. However, if we are not careful when

solving for the interface constraints, coupling between subsystems

is weakened and poorly conditioned systems will converge slowly.

We therefore propose a substructuring solver that formulates the

interface dynamics by taking into account the internal dynamics of

each subsystem.

Our formulation of the interface constraints is based on the Schur

complement method, and uses the effective mass of the subsystems

to account for their internal behavior. With this approach, it is

not necessary to perform any iteration if all the constraints in the

systems are bilateral. However, multiple iterations may be needed

if the subsystems contain unilateral constraints, such as contact

or any constraint with bounds. This is because the effective mass

depends on the internal topology of the subsystems, which changes

based on the index set of the constraint variables (e.g., if a contact

is detaching).

Figure 3 illustrates this idea using a chain example. Intuitively,

if the chain is pulled to the right or left, the mass of the links is

transferred along the chain, and any load on one end would be

perceived from the other end. Similarly, we take the effective mass

of every subsystem into account when solving for the interface

constraints.

However, in the presence of a constraint with bounds on the

impulses, the effective mass must be computed using only the free

constraints. For instance, if the chain in Figure 3 is pulled down, it

will make contact with the obstacle whose mass will be perceived
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represented by the 
effective mass

interface forces
(known)

interface forces
(unknown)

internal forces
(unknown)

obstacle

Contact

System Substructuring

Subsystem (Ω𝑖 )Interface (Γ) Interface (Γ)

Ω𝑖−1 Ω𝑖+1

Interface Solver
(using Schur complement)

Subsystem Solver
(solved in parallel)

Fig. 3. Substructuring of a multibody system illustrated with a chain
example in contact with an obstacle. The two solves performed by the
Schur complement method are described: interface solver and subsystem
solver.

by the rest of the chain. On the other hand, if the chain is pulled

up and the contact detaches, it will not perceive the mass of the

obstacle. Similar effects occur as the chain is pulled over the surface

of the obstacle and friction forces transition from static to sliding.

Therefore, tight constraints are not considered in the computation

of the effective mass, but rather as applied impulses with a fixed

value determined by the bounds. As we explain using our illustrative

example, this notably occurs when a contact is detaching or sliding.

However, the set of free and tight constraints are not known before

solving the subsystems, thus some iterations are needed in order to

determine the index set of subsystem constraints. At each iteration,

the free and tight sets of the internal constraint impulses are deter-

mined by the subsystem solve, which are then used to formulate

the interface dynamics using the Schur complement method and

solve for the interface impulses.

4.1 The Schur Complement Method
Consider a system partitioned into 𝑁 subsystems with a block

diagonal mass matrix

M =


M1

. . .

M𝑁

 , (13)

where M𝑖 is the mass matrix associated with the 𝑖-th subsystem,

and the constraint Jacobian matrix can be reordered to group the

constraints as internal (Ω) and interface (Γ) as follows:

J =
[
JΩ
JΓ

]
=


J1

. . .

J𝑁
JΓ1 · · · JΓ𝑁


. (14)

Here, diagonal block J𝑖 contains only the constraints inside the

𝑖-th subsystem, while JΓ𝑖 contains the interface constraints that

couple the 𝑖-th subsystem with the others. The subsystems are only

coupled through the interface constraints in JΓ , and each interface

constraint is split among the blocks JΓ𝑖 of the subsystems it couples.

Additionally, there are corresponding compliance matrices for all

these constraints, which we denote C𝑖 for the internal constraints

of subsystem 𝑖 , and CΓ for the interface constraints.

The MLCP in Eq. (8) can be rewritten using this grouping as
A1 GT

1

. . .
.
.
.

A𝑁 GT

𝑁

G1 · · · G𝑁 AΓ




𝝀+1
.
.
.

𝝀+
𝑁

𝝀+Γ


+


b1
.
.
.

b𝑁
bΓ


=


w+
1

.

.

.

w+
𝑁

w+Γ


l𝑖 ⩽𝝀+𝑖 ⩽ u𝑖 ∀ 𝑖 = 1 . . . 𝑁

lΓ ⩽𝝀+Γ ⩽ uΓ


(15)

where the diagonal blocks A𝑖 = J𝑖M−1𝑖 JT
𝑖
+ C𝑖 represent the inverse

effective mass of the internal constraints of each subsystem. The

interface constraint impulses are arranged in 𝝀+Γ , and the internal

subsystem constraint impulses in 𝝀+𝑖 .
The block AΓ = JΓM−1JTΓ + CΓ represents the inverse effective

mass of the bodies at the interface, and it does not include any in-

formation about the internal topology of the subsystems. Moreover,

the coupling block G𝑖 = JΓ𝑖M
−1
𝑖

JT
𝑖
maps the internal impulses of

subsystem 𝑖 to the interface velocities, but only includes the bodies

at the interface (i.e., the bodies that are simultaneously constrained

by JΓ𝑖 and J𝑖 ). From the 𝑁 top block-rows in Eq. (15), an MLCP for

the internal constraints can be formulated for each subsystem as

A𝑖𝝀
+
𝑖 + G

T

𝑖
𝝀+Γ + b𝑖 = w+

𝑖

l𝑖 ⩽ 𝝀+𝑖 ⩽ u𝑖

}
∀ 𝑖 = 1 . . . 𝑁 (16)

so that the internal impulses 𝝀+𝑖 can be determined in parallel.

However, an estimate of the interface impulses 𝝀+Γ is needed. In

order to do so, the last block-row of Eq. (15) can be used to formulate

the following MLCP

AΓ𝝀
+
Γ +

𝑁∑
𝑖=1

G𝑖𝝀
+
𝑖 + bΓ = w+Γ

lΓ ⩽ 𝝀+Γ ⩽ uΓ

 , (17)

where an estimate of the internal constraint impulses of the subsys-

tems 𝝀+𝑖 is also needed.

One approach is to iterate between Eq. (16) and Eq. (17) until the

error in the impulses satisfies a certain tolerance; such strategies

have been previously proposed [Lacoursière 2007; Visseq et al. 2012].
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However, the formulation of the interface dynamics in Eq. (17) only

considers the coupling between bodies at the interface and the

forces acting on them. This results in a weak coupling between

subsystems since their internal dynamics are not represented in

Eq. (17). Therefore, force based interface coupling approaches often

require a large number of iterations to converge. Warm starting
can be used to reduce the number of iterations by using impulses

computed at the previous time step as an initial solution, although

this may not be helpful when constraints change regularly across

time steps, for instance, when new contacts are established or detach.

Instead, we formulate the interface dynamics using the Schur

complement, so that the internal dynamics of the subsystems is

taken into account when solving for the interface impulses 𝝀+Γ . This
is equivalent to substituting the solution of the internal impulses 𝝀+𝑖
from Eq. (16) into Eq. (17). When all subsystem constraints are free,

w+
𝑖
will be zero, and the MLCP for the interface impulses becomes

SΓ𝝀+Γ + zΓ = w+Γ
lΓ ⩽ 𝝀+Γ ⩽ uΓ

}
, (18)

where

SΓ = AΓ −
𝑁∑
𝑖=1

G𝑖A−1𝑖 GT

𝑖 and zΓ = bΓ −
𝑁∑
𝑖=1

G𝑖A−1𝑖 b𝑖 . (19)

Here, SΓ is the Schur complement of the subsystems block in Eq. (15)

and it includes the inverse effective mass matrix of the subsystems

A𝑖 , ∀ 𝑖 = 1 . . . 𝑁 . This makes the formulation of the interface

dynamics consistent with the subsystem dynamics, and thus we do

not need all the coupling iterations that FBIC methods require for

convergence.

If the internal impulses do not have limits (i.e., they are bilateral

constraints), Eq. (18) only needs to be solved once. In that case,

the internal impulses 𝝀+𝑖 are linear in the interface impulses 𝝀+Γ ,
and the subsystems effective mass can be directly computed with

matrix A𝑖 . Therefore, the computed interface impulses 𝝀+Γ are also

the solution of the original problem in Eq. (15), and can be used to

solve the internal impulses 𝝀+𝑖 in Eq. (16) in one iteration. However,

in the general case, the existence of limits for the internal constraint

impulses makes it necessary to recompute the Schur complement if

the index set changes.

4.2 The Schur complement for constraints with bounds
Knowing if the internal constraints are free or tight is the key to

formulating the correct interface dynamics. The Schur complement

in Eq. (18) assumes that the internal impulses can take any value,

as if they were unbounded. This can be a fair assumption for the

free constraints because their impulses have some room to change

before they reach a bound. In contrast, tight constraints have a well

defined value and we therefore consider them as known.

Considering the free and tight constraints separately, the internal

constraint impulses of the subsystems can be rearranged as

𝝀+𝑖 =

[
𝝀+F𝑖
𝝀+T𝑖

]
, ∀ 𝑖 = 1 . . . 𝑁 , (20)

where 𝝀+F𝑖 ∈ (lF𝑖 , uF𝑖 ) are the free impulses and 𝝀+T𝑖 = lT𝑖 or uT𝑖
are the tight impulses at the lower or upper bound. Likewise, the

constraint Jacobian matrix can be rearranged as

J𝑖 =

[
JF𝑖
JT𝑖

]
, ∀ 𝑖 = 1 . . . 𝑁 , (21)

where JF𝑖 and JT𝑖 are the constraint Jacobian matrices of the free

and tight constraints, respectively. We can then rearrange the MLCP

in Eq. (16) for all the subsystems, 𝑖 = 1 . . . 𝑁 , as[
AFF𝑖 AFT𝑖
ATF𝑖 ATT𝑖

] [
𝝀+F𝑖
𝝀+T𝑖

]
+
[
GT

F𝑖
GT

T𝑖

]
𝝀+Γ +

[
bF𝑖
bT𝑖

]
=

[
w+F𝑖
w+T𝑖

]
l𝑖 ⩽ 𝝀+𝑖 ⩽ u𝑖

 , (22)

where all the free constraints satisfy w+F𝑖 = 0 by Eq. (12). On the

other hand, for the tight constraints we can only say that w+T𝑖 ⩾ 0

or w+T𝑖 ⩽ 0, depending on the bound. Therefore, the equations of

the free constraints can be written as

AFF𝑖𝝀
+
F𝑖 + AFT𝑖𝝀

+
T𝑖 + G

T

F𝑖𝝀
+
Γ + bF𝑖 = 0. (23)

By substituting the solution of the free impulses 𝝀+F𝑖 from Eq. (23)

into Eq. (17), we obtain the modified expression of the Schur com-

plement in Eq. (18), such that

SΓ = AΓ −
𝑁∑
𝑖=1

GF𝑖A
−1
FF𝑖G

T

F𝑖 (24)

and

zΓ = bΓ +
𝑁∑
𝑖=1

(
GT𝑖𝝀

+
T𝑖 − GF𝑖A

−1
FF𝑖

(
bF𝑖 + AFT𝑖𝝀

+
T𝑖
) )
. (25)

Here, the effective inverse mass of the subsystemsAFF𝑖 is computed

using only the set of free constraints. Moreover, the tight impulses

𝝀+T𝑖 are assumed to be known after the subsystem solve, which must

be at either the lower or upper bound. This is the case of contacts that

detach, where the impulse must be zero. Therefore, tight constraints

do not transfer the mass like free constraints. Instead, their impulse

is defined by the bounds, and they can simply be considered as

applied impulses acting on the bodies.

We note that the product inside the summation in Eq. (24) is

computed efficiently using a sparse Cholesky factorization of AFF𝑖 .
We first solve AFF𝑖KF𝑖 = GT

F𝑖 for KF𝑖 , and then compute GF𝑖KF𝑖 .
The matrixGF𝑖 is stored using a sparse data structure, which further
improves our solver performance.

5 SUBSTRUCTURING SOLVER
Our approach uses iterations to determine the index sets IΩ of the

internal constraints Ω, which determine if they are free or tight.

These sets are used to formulate the Schur complement and solve

for the interface impulses 𝝀Γ . Then, the 𝑁 subsystems can be solved

in parallel for the internal impulses 𝝀Ω , which makes up for most

of the performance boost.

Algorithm 1 describes the iterative process performed by our

substructuring solver. First, we initialize the index sets I0Ω to free

for all constraints. Alternatively, it is possible to warm start the

solver by using the index sets of the previous time step, as we
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ALGORITHM 1: Substructuring Solver

1: function SubstructuringSolver

(
A, b, u, l

)
2: 𝑘 ← 0

3: Initialize Index Sets I0Ω // all free or warm start

4: do
5: 𝑘 ← 𝑘 + 1
6: S𝑘Γ , z𝑘Γ ← SchurComp

(
A, b, I𝑘−1Ω

)
// Eqs. (24) and (25)

7: 𝝀𝑘
Γ ← InterfaceSolve

(
S𝑘Γ , z

𝑘
Γ , uΓ, lΓ

)
// Eq. (18)

8: for all Subsystems 𝑖 = 1 . . . 𝑁 do in parallel
9: b𝑘

𝑖
← GT

𝑖
𝝀𝑘
Γ + b0𝑖

10: 𝝀𝑘
𝑖 ← SubsystemSolve

(
A0
𝑖
, b𝑘

𝑖
, u𝑖 , l𝑖

)
// Eq. (16)

11: end
12: I𝑘Ω ← IndexSets

(
𝝀𝑘
Ω, uΩ, lΩ

)
// Eq. (12)

13: while I𝑘Ω ≠ I𝑘−1Ω and 𝑘 < 𝑘max

14: return 𝝀𝑘

15: end

later demonstrate (see Section 7.5). Then, at each iteration 𝑘 , the

algorithm uses the index sets of the previous iteration I𝑘−1Ω to

form the Schur complement with the method SchurComp, i.e., SΓ
and zΓ in Eqs. (24) and (25). The MLCP in Eq. (18) is then solved

using the method InterfaceSolve, which produces the interface

forces 𝝀𝑘Γ . Next, the MLCP of each subsystem in Eq. (16) is solved

in parallel with the method SubsystemSolve, which returns the

internal impulses 𝝀𝑘𝑖 , ∀ 𝑖 = 1 . . . 𝑁 . Finally, the new index sets I𝑘Ω
are determined and the process repeats until the index sets no longer

change, or a maximum number of iterations has been reached.

If the index sets are the same as in the previous iteration, i.e.,

I𝑘Ω = I𝑘−1Ω , the algorithm terminates with the solution given by the

last computed value of the impulses 𝝀𝑘 . This is because performing

an iteration using the same index sets would give the exact same

solution. However, if the index sets are different, the next iteration

starts, and the Schur complement is reformulated using the index

sets found in the previous iteration I𝑘−1Ω . The algorithm will also

terminate with an inexact solution after a maximum number of

coupling iterations.

It is important to note that the impulses computed in one iteration

are not used in the next one; only the index sets. Moreover, once

the correct index sets are determined, the solver terminates at the

end of the coupling iteration with an accuracy that is comparable

to a solution obtained using a direct method.

5.1 Interface Solver
The cornerstone of our substructuring approach is the method used

to solve for the interface dynamics in the function InterfaceSolve.

Recall that if there are contacts at the interface between subsystems,

the interface dynamics formulates an MLCP, as shown in Eq. (18).

There are many available solvers in the literature for such a problem,

however not all of them are suitable for all applications, especially

when dealing with stiff systems that can become ill-conditioned. We

therefore investigate two MLCP solvers for the interface dynamics

that are well-suited to this type of problem: block principal pivot-
ing (BPP) [Júdice and Pires 1994] and projected Gauss-Seidel with
subspace minimization (PGS-SM) [Silcowitz et al. 2011].

To better discuss the solution of Eq. (18), let us notice that the

MLCP can be rewritten as[
SFFΓ

SFTΓ
STFΓ

STTΓ

] [
𝝀+FΓ

𝝀+TΓ

]
+
[
zFΓ

zTΓ

]
=

[
w+FΓ

w+TΓ

]
lΓ ⩽ 𝝀+Γ ⩽ uΓ

 , (26)

where 𝝀+FΓ
and 𝝀+TΓ are interface impulses in the free and tight set,

respectively. Each solver uses different techniques to determine the

index sets of the solution, and once they are determined, the value

of 𝝀+TΓ is known. Then, since w
+
FΓ

= 0 by Eq. (12), a linear system

for the free variables can be formulated as

SFFΓ
𝝀+FΓ

= −zFΓ
− SFTΓ𝝀

+
TΓ , (27)

which can be solved by factorizing the matrix SFFΓ
. Here, we briefly

describe the two solvers we use for the interface dynamics.

Block principal pivoting. BPP is a direct solver and it uses pivot-

ing to move blocks of variables between free and tight sets, which

has the advantage of producing exact solutions. The algorithm

tries different sets and solves for the free impulses in Eq. (27) by

factorizing the matrix SFFΓ
. In each iteration, the impulses 𝝀+FΓ

that exceed their bounds are moved to the tight set. Moreover, the

complementarity between tight variables 𝝀+TΓ and slack variable

w+TΓ is checked in case they need to be moved to the free set.

PGS with subspace minimization. PGS-SM method uses a small

number of PGS iterations to determine the free and tight sets. Then,

a direct linear solve of Eq. (27) is performed in order determine the

exact value of the free impulses 𝝀+FΓ
. A Cholesky factorization of

SFFΓ
is again used here. If any impulses exceed the bounds, they

are projected to the bounds and a new series of PGS iterations are

performed. This method shows good convergence for determining

the free and tight sets, and it is able to obtain the exact value of the

free impulses 𝝀+FΓ
.

5.2 Subsystem Solver
Once the interface impulses 𝝀+Γ are computed, we use them to

solve for the internal constraints of each subsystem in parallel.

The subsystem dynamics is formulated in Eq. (16) as 𝑁 separate

MLCPs. Since we are interested in stiff systems that are highly ill-

conditioned, we use BPP as direct method to solve for the internal

impulses.

At each pivoting iteration of the BPP solver, the internal impulses

are split into free and tight as in Eq. (22). Since the value of 𝝀+T𝑖 is
known, and w+F𝑖 = 0, a linear system for the free constraints can be

formulated as

AFF𝑖𝝀
+
F𝑖 = −bF𝑖 − G

T

F𝑖𝝀
+
Γ − AFT𝑖𝝀

+
T𝑖 , (28)

which is solved at each pivoting step. To solve this linear system,

the matrix AFF𝑖 must be factorized, which is done by a Cholesky

decomposition. Interestingly, when the subsystems are solved, the

factorization of AFF𝑖 in the last pivoting iteration can be reused

to compute the expressions of the Schur complement in Eqs. (24)

and (25). This is because the free set found by the BPP solver is the

same that is used to determine the effective mass at the interface in
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Eq. (24). Therefore, we store the factorized matrix to be used in the

next substructuring iteration.

5.3 Convergence
In our experience, the index sets typically converge within a small

number of iterations of our algorithm (see results in Section 7). The

key is to obtain an approximation of the interface impulses such

that the solution of the subsystems yields the correct index sets.

There exists a large set of possible interface impulses that will give

the correct index sets of the internal constraints, and these are all

equally useful as they will allow the algorithm to terminate in the

next iteration. Our solver therefore qualifies as a direct solver for

substructuring.

Unfortunately, like other direct methods that use a block pivoting

strategy, it is not possible to provide a proof of convergence. This

is due to possible cycling of the index sets, which is difficult to

predict. One strategy to deal with cycling was proposed by Júdice

and Pires [1994]. Their algorithm switches to a single pivoting

strategy after a pre-specified number of pivoting steps, since single

pivoting schemes are proven to converge if a solution exists.

We use a similar strategy in our robust BPP implementation. A

hash table based on a checksum computed from the index sets is

used to detect cycles, and if a cycle is detected we fall back to single

pivoting for a small number of pivoting steps, 𝑝 , before returning

to block pivoting. A value of 𝑝 = 5 is used in all of our experiments.

5.4 Solving ill-conditioned systems
A common approach when using the Schur complement method is

to solve the interface variables using the conjugate gradient method,

since it avoids ever having to form the matrix SΓ and thus may be

solved efficiently. An example of this approach can be found in the

recent work by Chu et al. [2017].

Due to changing index sets and bounded variables, conjugate

gradient and its common variants are not applicable to our problem.

We performed preliminary experiments with the generalized con-

jugate gradient (GCG) method [O’Leary 1980], and found it to be

suitable for some simulations. However, this algorithm gives poor

convergence with the ill-conditioned problems that result from the

simulation of stiff systems. In addition, using simple preconditioners,

such as the diagonal Jacobi, did not noticeably improve convergence.

Therefore, we choose not to show the results here.

The ill-conditioning is inconvenient for other iterative solvers

such as PGS, which exhibits slow convergence. Then, iterative

solvers become completely inefficient, since the amount of iterations

needed in order to obtain an accurate solution is extremely large.

We reinforce this argument with examples in Section 7 and the

accompanying video. Direct linear solvers, on the other hand, behave

well under such conditions.

6 SUBSYSTEM PARTITIONING
When using substructuring techniques, a very important aspect is

how to partition the system into smaller subsystems. In the cases

which involve systems with a known topology, such as mechanisms,

the subsystems can easily be chosen as distinct parts of the system.

For instance, a load lifted by a cable crane can be partitioned so

that crane, cable, and load constitute three separate subsystems.

However, contact makes partitioning more challenging because it

changes the topology of the system by making and breaking con-

tacts between the bodies. Therefore, a good partitioning strategy is

required for systems where the constraint topology is only available

at runtime, such as piles of bodies with contact.

6.1 Semantic partitioning
In some instances, the dominant coupling effects of a system are

determined by bilateral constraints, with only a small number of

contacts occurring at runtime. This presents a known topology

that does not change much with time, and so fix-sized system

partitioning can be very useful. In such cases, it is the task of the

user to define the subsystems, which are usually grouped based

on their function in the system or their similarity. This semantic
partitioning benefits from considerations which are often intuitive to

the user, which can later translate into better numerical performance.

For instance, grouping the bodies so that the subsystems present a

certain topology, such as a chain or a tree, can reduce the fill-in of

the subsystem lead matrix, thus lowering the computational time

for each subsystem solver. Moreover, in some cases, it is possible

to reduce the number of contacts within the subsystems and have

contacts only at the interface, which further simplifies subsystem

dynamics. On the other hand, when there is a significant presence

of contact in the system, such as a large pile of bodies, a user defined

partitioning is not feasible because the constraint graph topology

changes at each time step. Therefore, an algorithm to generate the

subsystems based on the topology of the system can be very useful.

6.2 Minimum degree partitioning
In order to automatically partition our simulations, we propose a

heuristic that searches the constraint graph and forms groups of con-

nected bodies. Ourminimum degree partitioning algorithm begins at

a body on the periphery of an initial group and adds adjacent bodies

based on their degree, or connectivity, in the constraint graph. This

approach is inspired by the Cuthill-McKee algorithm [Cuthill and

McKee 1969], which reduces fill-in and creates small bandwidth

matrices. Bodies adjacent to a group are added based on their degree

in ascending order, such that bodies with a minimum degree are

prioritized at each step. The degree of each body is computed by

only considering connections to other bodies in the initial group.

Once the number of bodies in a group reaches the prescribed

maximum per subsystem, the algorithm begins again by starting

at a periphery body using the same criterion and a new subsystem

begins to grow. Since the connectivity changes dynamically (i.e., due

to contact) the partitioning is reinitialized at each time step based

upon the constraint graph. Figure 4 shows an illustrative example

demonstrating our partitioning scheme.

We found that this partitioning strategy produces constraint

orderings with reduced fill-in and small bandwidth in the subsystem

matrices A𝑖 , and also helps to reduce connections between adjacent

subsystems. The former characteristic is important for efficiently

solving individual subsystems, whereas the latter is an important

consideration when assembling SΓ using Eq. (24).
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least  
degree subsystem

growth

new subsystem

Find the bodies that have less bodies

in contact with them (least degree).

Grow the subsystem by adding the

adjacent bodies with least degree.

When the maximum number of bodies

per subsystem is reached, start again.

Finish when the number of bodies left

is small enough to form a subsystem.

Fig. 4. Minimum degree partitioning for an unstructured system with 𝑛max = 4.

Algorithm 2 provides pseudo-code for our minimum degree par-

titioning method. Initially, the algorithm creates a default group

G0 containing all the bodies in the system. Then, the body 𝛽 ∈ G0
with minimum degree is chosen to start a new group G𝑖 , and it is

removed from the default group. The body group grows following

the criterion of minimum degree, so that the next chosen body

𝛽 ∈ A𝑖 ∩ G0 is the adjacent body to the subsystem with minimum

degree. Bodies are successively added to the group until the number

of bodies in the group is equal to the maximum number 𝑛max, which

can be defined by the user or based on the total number of bodies.

Then, new groups are created following the same procedure, and the

algorithm terminates when the default group contains less bodies

than 𝑛max.

least  
degree subsystem

growth

new subsystem

Orphan partitions. Sometimes the minimum

degree algorithm will produce partitions con-

sisting of just one body, such as the gray body

shown in the example on the right. This results

in additional constraints being added to the

interface set and unnecessary work for our

algorithm.

To avoid creating orphan partitions, we per-

form an additional check for any adjacent bodies with degree zero.

In other words, bodies that are not connected via a constraint to

any other bodies in the default group G0. If such bodies exists, we

simply add them to the new partition G𝑖 . Although this produces a

partition that exceeds the maximum body threshold, our algorithm

benefits from reduced overhead due to fewer constraints in Γ.

7 RESULTS
This section evaluates our proposed substructuring method using

various challenging examples. Many of these involve high mass

ratios, stiff constraints, and long kinematic chains. As demonstrated

in the accompanying video, fixed-point iterative methods such as

PGS usually fail to achieve the same quality as direct solvers and

require many iterations.

All results were obtained using a six core Intel Core i7 3.3 GHz

CPU with hyper-threading enabled. Simulations were performed

using a time step of ℎ = 1/60 s. We use the Vortex physics engine to

perform collision detection and build constraint Jacobian matrices.

The algorithms for substructuring, constraint solvers, and subsystem

partitioning are implemented in C++. We use the Eigen linear

ALGORITHM 2: Minimum Degree Partitioning

1: function MinimumDegreePartitioning

2: G0 ← all bodies // initialize default group

3: 𝑖 ← 1 // number of groups

4: while Size(G0) > 𝑛max do
5: 𝛽 ←MinDegreeBody(G0) // body with min. degree

6: G𝑖 ← {𝛽 } // create a new group

7: G0 ← G0 − {𝛽 }
8: while Size(G𝑖 ) < 𝑛max do
9: A𝑖 ← AdjacentBodies(G𝑖 ) // get adjacent bodies

10: 𝛽 ←MinDegreeBody(A𝑖 ∩ G0) // get next body

11: G𝑖 ← G𝑖 + {𝛽 } // add body to the group

12: G0 ← G0 − {𝛽 }
13: end while

// check for orphan partitions

14: A𝑖 ← AdjacentBodies(G𝑖 )
15: O = {𝛽 | 𝛽 ∈ A𝑖 and Degree(𝛽) is zero}
16: G𝑖 ← G𝑖 + O
17: G0 ← G0 − O
18: 𝑖 ← 𝑖 + 1
19: end while
20: end function

algebra library to perform matrix and vector operations. A sparse

Cholesky factorization is used to solve the linear systems in Eq. (16)

and Eq. (18), and for the subsystem matrix G𝑖A−1𝑖 GT

𝑖
.

We compare the performance of our substructuring method to the

BPP solver without substructuring, which we consider as a baseline

algorithm. Two implementations of this solver are included in the

results: one using the sparse Cholesky decomposition provided by

Eigen (Eigen-BPP), and another using the PARDISO direct sparse

solver (PARDISO-BPP) [Intel 2019]. We also include a comparison to

PGS, which is a popular method among real-time physics engines,

and the FBIC technique proposed by Lacoursière [2007]. We imple-

ment our substructuring method using the two solver algorithms

described in Section 5.1, that is, block principal pivoting (Schur-BPP),

and projected Gauss-Seidel with subspace minimization (Schur-

PGS-SM). We use a multithreaded implementation for our substruc-

turing methods (Schur-BPP, Schur-PGS-SM) and for the FBIC and

PARDISO-BPP solvers. We use a single threaded implementation

for the Eigen-BPP and PGS solvers.
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Table 1. Default parameters for each of the solvers used in our experiments,
including: maximum number of coupling iterations (𝑘max), the maximum
iterations or pivoting steps (𝜅iter), the tolerance when computing index set
changes (𝜂), stopping tolerance of iterative methods (𝜖).

Solver 𝑘max 𝜅iter 𝜂 𝜖

(Eigen/PARDISO)-BPP - 50 10−5 -

PGS - 1000 - 10−9

Schur-BPP 10 50 10−5 -

Schur-PGS-SM 10 50 10−5 10−9

FBIC 250 50 10−5 -

In order to provide a fair comparison of their runtime perfor-

mance, each solver was tuned to produce behavior qualitatively

similar to the baseline Eigen-BPP algorithm. Table 1 gives the pa-

rameters used for each solver, which are used across all of our

experiments unless stated otherwise. In the case of the PGS and FBIC

algorithms, reasonable behavior was often unachievable without

allowing a very large number of Gauss-Seidel iterations or coupling

iterations. These methods also use warm starting, which initializes

the solution with constraint impulses from the previous time step.

Substructuring was not used for the Eigen-BPP and PGS solvers,

meaning that the entire system was solved using a single matrix,

although in the case of PGS the matrix is never fully assembled.

Graph coloring was not used to parallelize the PGS solver since

the convergence of this method was poor for the systems we tested.

Likewise, other researchers have observed that parallel PGS may

introduce jitter artifacts in the simulation Tonge et al. [2012].

A maximum iteration count of 1000 and 250 was used for PGS

and FBIC, respectively. Warm starting was also used for both of

these solvers, in which the constraints impulses at the previous

time step are used as an initial solution for the current time step.

However, even with many iterations, these methods struggled to

produce results that match the baseline.

7.1 Examples
Here we provide a brief description of the examples used to evaluate

our substructuring approach. Figure 5 shows screenshots from

simulations of these examples, and the color coded partitioning

of some examples is shown in Figure 1. Constraint compliances

used to regularize the multibody system (i.e., diagonal values of

C) range from 10−7 to 10−10. The examples involve mass ratios

up to 40, 000 : 1. Therefore, due to constraint redundancy and the

large mass ratios, the MLCP matrices in the examples typically have

high condition numbers. Table 2 gives the condition number of the

interface matrix SΓ , as well as the partitioning scheme we use for

each example.

Log tower. This example involves 160 logs (50 kg each) stacked

vertically with a 2500 kg box dropped on top. Partitions are created

using the minimum degree algorithm proposed in Section 6, and

the partitions change at each time step. The stack is initially stable,

but is perturbed when a rolling ball collides with the base of the

stack that causes it to collapse.

Cable spinner.A complex system involving 8 flexible cables is used

to suspend a 10 kg plate and 2500 kg ball. Each cable consists of

Table 2. The partitioning scheme (and bodies per partition) and the average
condition number of the matrix SΓ for each example.

Example Partitioning (# of bodies) cond(SΓ)
Log tower min.degree (16) 2.2×106

Cable spinner semantic (36–48) 3.9×107
Chain wrap semantic (16) 5.6×104
Chain drop semantic (16) 2.7×104
Rock pile min. degree (16) 1.5×104

Net with truck semantic (48) 2.5×1012
Tandem cranes semantic (24–50) 4.8×1010

Cable links (0.1 kg each) coupled to neighboring links using a joint

with 6 degrees of freedom that is nearly inextensible, but allows

bending and torsional motion.

Chain wrap. A stiff chain consisting of 100 links (0.25 kg each) is

used to support a massive box (500 kg). Each neighboring link is

coupled by a universal joint, with the last link coupled to the box.

A user defined partitioning algorithm is used to create subsystems

of each sequential grouping of 12 bodies.

Chain drop. A stiff chain consisting of 250 links (0.25 kg each) is

dropped onto an inclined plane. Each link is connected by a universal

joint, and the chain is partitioned into groups of 32 bodies each. The

friction coefficient is low enough so that the chain slowly slides off

the plane. This example evaluates the ability of our approach to

handle coupling between subsystems when many friction variables

are sliding (tight).

Rock pile. A large pile of rocks (masses ranging from 80 − 250 kg)
is pushed by a stiff, lightweight shovel (1 kg). The constraint con-

nectivity of the system is not known a priori. Therefore, this highly
unstructured simulation tests our partitioning algorithm. Partitions

are created using the minimum degree algorithm proposed in Sec-

tion 6.

Net with truck. A dump truck is dropped onto a web of cables. The

cables have high stiffness, but very low mass (0.2 kg per body). Each

section of cable is a partition consisting of 48 − 65 bodies and more

than 280 constraints per partition. The truck (8000 kg) is a separate

partition consisting of 22 bodies and more than 120 constraints. A

user defined partitioning is used to decompose the simulation so

that the truck constitutes one subsystem, and each cable section is

one subsystem. Exceptionally, a maximum iteration count of 1000

was needed with this example when using the FBIC method.

Tandem cranes. Two cranes (approx. 75, 000 kg each) suspend

a heavy pipe (3500 kg) in the air. Each crane consists of several

subsystems: the cable systems, vehicle track and drivetrain, boom

and hoist, and hooking mechanisms. The pipe is given an initial

velocity to produce a trajectory that results in sliding motion.

7.2 Performance
A summary of timing information and speedup factors for each

solver for all examples can be found in Table 3. Figure 7 shows

the time to solve the dynamical system for several of the examples

shown in Figure 6.

We note that our method gave a significant speedup in all the

examples, and in several cases was an order of magnitude faster. The
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Fig. 5. The examples used in our performance evaluation. Top row (left-to-right): cable spinner, chain drop, chain wrap, net with truck. Bottom row (left-to-right):
rock pile, tandem cranes, log tower.

Table 3. The average wall-clock time of the MLCP solver for all the time steps (and speedup factor) for each example. The average number of coupling
iterations used for each example (avg. 𝑘) and the percentage of frames where the maximum number of coupling iterations is reached (max. 𝑘) are also
provided. The fastest algorithm is highlighted in gray. Speedup factors are computed relative to the baseline algorithm, which is the Eigen-BPP method
without substructuring. Examples with an asterisk (*) regularly reach the maximum number of coupling iteration.

Example Eigen-BPP PGS Schur-BPP Schur-PGS-SM FBIC PARDISO-BPP avg. 𝑘 max. 𝑘

Log tower
∗

202.6ms 302.4ms (0.7×) 59.7ms (3.4×) 51.4ms (3.9×) 111.6ms (1.8×) 113.4ms (1.8×) 5.8 39.2 %

Cable spinner 141.3ms 229.1ms (0.6×) 8.7ms (16.2×) 8.8ms (16.0×) 93.2ms (1.5×) 170.5ms (0.8×) 2.1 0 %

Chain wrap 54.6ms 198.5ms (0.3×) 11.6ms (4.7×) 12.3ms (4.4×) 132ms (0.4×) 27.6ms (2.0×) 4.4 1.9 %

Chain drop 46.9ms 150.5ms (0.3×) 9.1ms (5.2×) 8.7ms (5.4×) 20.5ms (2.3×) 20.4ms (2.3×) 3.2 2.1 %

Rock pile
∗

311.7ms 284.4ms (1.1×) 101.5ms (3.1×) 98.6ms (3.2×) 373.9ms (0.8×) 102.5ms (3.0×) 6.3 10.2 %

Net with truck 252.3ms 802.4ms (0.3 ×) 11.9ms (21.1×) 12.7ms (19.9×) 632.0ms (0.4×) 396.7ms (0.6×) 2.6 0 %

Tandem cranes 180.6ms 222.9ms (0.81×) 12.9ms (13.9×) 13.0ms (13.8×) 134.3ms (1.3×) 100.4ms (1.8×) 2.4 0.2 %

Schur-BPP implementation using our proposed method typically

gave best performance. However, for the log tower and rock pile

examples, Schur-PGS-SM gave slightly better performance. We

note that these examples involve complex contact between a large

number of bodies, which indicates that PGS-SMmay be better suited

to solve the interface constraints in such cases.

Our algorithm was faster than the PARDISO implementation of

the BPP solver in all examples. Surprisingly, the PARDISO version

performed slower than the Eigen implementation of the BPP solver

in some instances, specifically, the net with truck, and the cable

spinner. We hypothesize that this is due to the overhead of per-

forming a sparsity analysis, which is done automatically by the

PARDISO solver, and in certain cases this step is futile. For the

rock pile example, we also note that the PARDISO solver performs

similarly to the Schur-BPP and Schur-PGS-SM algorithms (see right

panel in Figure 7). This is due to the diminishing returns offered by

our algorithm for simulations requiring more coupling iterations.

7.3 MLCP error
We compute the error when solving Eq. (8) by the natural residual
[Enzenhöfer et al. 2018]. The residual for each variable 𝑖 is computed

as

𝑟𝑖 = max

(��
min

(
𝜆+𝑖 − 𝑙𝑖 , 𝑤

+
l,𝑖

) �� , ��min

(
𝑢𝑖 − 𝜆+𝑖 , 𝑤

+
u,𝑖

) ��) . (29)

We report the total MLCP error of the system as ∥r∥. Figure 8

shows the per frame error for the examples shown in Figure 6.

Our approach produces error which is comparable to the baseline

Eigen-BPP solver, and many orders of magnitude reduced compared

to the other methods.

The noisy plots in Figure 8 indicate that the Rock pile example is

one of the most challenging examples. As reported in Table 3, for

a significant percentage of frames, our algorithm did not converge

within the allotted number of coupling iterations 𝑘max. These cor-

respond to time steps where a large error is reported in the plot,

although the simulation remained stable and visually authentic.
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Schur-BPP

Eigen-BPP 
(no substructuring)

PGS 
(no substructuring)

FBIC
Our method

Schur-PGS-SM

Eigen-BPP
(no substructuring)

PGS 
(no substructuring)

FBIC
Our method

Schur-PGS-SM

Eigen-BPP 
(no substructuring)

PGS 
(no substructuring)

FBIC
Our method

Fig. 6. Representative frames from the cable spinner (left), chain drop (middle), and rock pile (right) examples. Each panel provides a visual comparison of the
baseline method (Eigen-BPP) with our method (Schur-BPP,Schur-PGS-SM) and other existing methods (PGS and FBIC).

frame number
0 50 100 150 200 250 300 350 400 450

so
lv

e 
tim

e 
(m

s)

100

101

102

103

Schur-BPP
Eigen-BPP
PGS
FBIC
PARDISO

frame number
0 50 100 150 200 250 300 350 400 450

so
lv

e 
tim

e 
(m

s)

100

101

102

103

Schur-BPP
Eigen-BPP
PGS
FBIC
PARDISO

frame number
0 50 100 150 200 250 300 350 400 450

so
lv

e 
tim

e 
(m

s)

100

101

102

103

Schur-PGS-SM
Eigen-BPP
PGS
FBIC
PARDISO

Fig. 7. Solve time per frame for the cable spinner (left), chain drop (middle), and rock pile (right) examples, showing the first 8 s of the simulation
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Fig. 8. LCP error per frame for the cable spinner (left), chain drop (middle), and rock pile (right) examples, showing the first 8 s of the simulation.

Note that the algorithm converges most of the time in the other

examples.

The rock pile and log tower are not only problematic for our

approach, but the baseline algorithm too. This is due to the large

number of non-interpenetration and friction constraints at the

interface that alternate between tight and free index sets at each

time step. In these cases, we found that the PGS-SM algorithm gave

slightly better performance and error convergence, and so we report

performance values for this algorithm for the rock pile and log tower

example in Table 3.

We observed that with the PGS method it was often impossible

to reduce the error below a minimum bound, even by increasing the

number of iterations and lowering the stopping tolerance. In other

words, convergence of the PGS method stagnates. Similar behavior

could be observed for the FBIC method, although lower error could

often be achieved.

7.4 Qualitative comparison
Since the interface in many examples typically consists of non-

interpenetration and friction constraints, error often manifests as
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Fig. 9. Comparison of performance for the log tower example using a single
threaded implementation of our substructuring solver (violet) versus a
multithreaded implementation with warm starting (orange).

noticeable penetration and pronounced sliding. For instance, in the

rock pile example, the PGS and FBIC methods produced behav-

ior where the rocks spread out quickly compared to the baseline,

whereas our approach better preserves the integrity of the pile. In the

same example, we also observed that some rocks would occasionally

slip underneath the blade when simulating with too few iterations

for the PGS and FBIC algorithms, or if warm starting was not used.

The PGS algorithm also produced artifacts in the cable spinner

example. Specifically, some of the cables pass through each other,

and thus become permanently entangled. This demonstrates the

inability of this method to deal with large forces produced by the

tightly intertwined cables. The simulation with the baseline and our

approach does not produce these artifacts.

With the log tower, it begins to collapse prematurely when simu-

lated with PGS and FBIC. The final distribution of logs and location

of the heavy box is most faithfully simulated using our method

compared to the baseline.

In the chain drop example, we note that the chain slides off the

inclined plane early for the PGS and FBIC solvers. In the chain wrap

example, the PGS solver produces visible sliding and bouncing of

the chain, whereas the FBIC solver results in noticeably more vibra-

tions in the chain and a different wrapping pattern. Our approach

produces a simulation most similar to the baseline.

With the net example, neither PGS or FBIC are able to produce

adequate tensile forces to support the truck. However, our approach

gives nearly identical behavior to the baseline. Further side-by-side

comparisons with the examples and each solver method can be

found in the supplementary video.

7.5 Single threaded and warm starting
A benefit of our method is that the workload of simulating con-

strained multibody systems can be shared across multiple processor

units. However, single threaded implementations also stand to ben-

efit from our method. Figure 9 shows the solve time per frame for

the log tower for a single threaded implementation of our method

using the Schur-PGS-SM solver. Simply decomposing the simulation

into smaller subsystems gives a performance speedup. We attribute

this to the Cholesky factorization, which has O(𝑚3) computational

simulation # bodies = 8

# bodies = 16 # bodies = 32

Fig. 10. Partitioning of the rock pile (upper left) using our minimum degree
algorithm, showing 8 (upper right), 16 (lower left), and 32 (lower right)
bodies per partition. Each color is a label indicating the partition for the
body.

Table 4. The average solve time and average partition count for examples
using the minimum degree partition algorithm. The performance of our
substructuring algorithm varies with the number of bodies per partition.
Parameters highlighted in gray were used in our evaluation.

Example # bodies avg. solve time avg. partitions

8 53.4 ms 30.4

Log tower 16 51.4 ms 19.1

32 63.3 ms 14.3

64 88.8 ms 12.8

8 169.1 ms 21.2

Rock pile 16 98.6 ms 12.1

32 129.7 ms 6.8

64 142.7 ms 4.9

complexity where𝑚 is the number of constraints. By breaking the

system into smaller components, this reduces the computational

complexity to 𝑁O(𝑝3), where 𝑁 is the number of subsystems and

𝑝 is the average size of the reduced subsystem, which is typically

much smaller than𝑚.

Figure 9 also demonstrates that our approach can benefit from

using the index set of constraints from the previous time step. This

is a type of warm starting, though we note that the performance

improvement is moderate (when contacts frequently detach, there

is little benefit to warm starting the solution). However, if the active

set changes infrequently, such as when the tower is static at the

beginning of the simulation or when the logs are piled at the end,

using data from the previous step helps improve performance.

7.6 Partitioning
We use the algorithm described in Section 6 to automatically create

subsystems based on the constraint graph. Figure 10 shows the

result of applying our minimum degree partitioning scheme to the

rock pile example. Bodies of the same color are grouped into the

same partition, and our algorithm traverses the constraint graph

to form coherent subsystems. Although the colors change from

frame-to-frame, the grouping of bodies is consistent. Occasionally,

bodies become entirely disconnected from the rest of the simulation,

creating islands, in which case they are arbitrarily added to one of

the existing subsystems. The accompanying video also shows color
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coded examples of our partitioning scheme across many simulation

frames. The time required to perform partitioning is 0.1 ms for the

rock pile example, and 0.2 ms for the log tower example.

Our partitioning algorithm is parameterized by the maximum

number of bodies per partition. We evaluate the effect of this param-

eter by measuring the performance of the simulation and sweeping

multiple values of the parameter. The results are shown in Table 4.

It is clear that the size of the subsystems (and total number of

subsystems) has an effect on the performance of our method. Ideally

the number of partitions would match the number of available

processing units. However, since our method computes a Cholesky

factorization at each step, large subsystems can adversely affect the

performance. This is therefore a parameter of our method that must

be tuned for optimal performance.

We have noticed small changes in the solution which depend on

the partitioning. These can be observed in the accompanying video

for the chain wrap, log tower, and rock pile examples. This sensi-

tivity is to be expected when solving such stiff systems involving

unilateral constraints. However, we note that the motion produced

by our approach is qualitatively similar to the baseline algorithm

independent of the partitioning scheme.

7.7 Scalability analysis

Fig. 11. The log tower with 256 logs
(left); the bridge with 128 planks
has a total of 893 bodies and 1278
bilateral constraints (right).

We evaluate the scalability of

our method using several ex-

periments to assess the strong
scaling and weak scaling of the

approach. Strong scaling is mea-

sured by simulating a fixed-

size problem and increasing the

number of threads.Weak scaling

is measured by increasing the

size of the simulation along with

the number of threads (e.g., if

the number of bodies is doubled,

so are the number of threads). For this analysis we use the log tower

and chain wrap examples, since the former involves only unilateral

contact constraints and the latter involves a mix of bilateral and

unilateral. A bridge example is also introduced that involves only

unbounded bilateral constraints. The log tower and bridge are shown

in Figure 11 along with their partitions.

The scalability experiments were performed on a 16 core Intel

Core i9 2.80 GHz CPU. Note that in all examples used for the scala-

bility analysis, our substructuring technique was applied and the

larger system was decomposed into smaller individual subsystems.

Strong scaling. Figure 12 shows the simulation speedup for a

variety of examples using up to 16 threads. These plots highlight

the portion of the solve time that can be parallelized. Performance is

expected to increase with the number of cores due to the paralleliza-

tion of solving individual subsystems. However, the speedup ratio

diminishes as the number of threads increases. This is due to the

inherent overhead of each coupling iteration, which is not paralleliz-

able and thus becomes the bottleneck of our solver. The scaling of

systems with a defined topology, such as the chain wrap and bridge

examples, follows a monotonic increase in speedup. These examples
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Fig. 12. Speedup of fixed-size simulations of the log tower, chain wrap, and
bridge when using various numbers of threads. A plot of the ideal scaling is
shown as reference.

use the semantic partitioning. Whereas for unstructured systems

like the log tower example, the scaling is less effective. We attribute

this to two main factors: (i) using the minimum degree partitioning

does not guarantee that the number of partitions and their size are

constant along the simulation, which might contribute to an uneven

load of threads; (ii) a larger number of partitions translates into a

larger interface, which further increases the iteration overhead.

Weak scaling. Figure 13 shows the solve time for multiple sizes

of the log tower and bridge examples, with the number of threads

increased proportional to the size of the simulation. We note that

the solve time increases as the size of each example increases. This

is due to the aforementioned overhead and uneven load distribution

among cores.

Nevertheless, for some examples, the multithreaded implementa-

tion of our method using 16 threads achieves nearly a 5× speedup

with respect to the single threaded implementation. Note that the

bridge example only contains bilateral constraints, thus our method

converges in one coupling iteration. In systems with contact, such

as the chain and tower examples, the scaling is expected to be

inferior since the solution of an MLCP is required for the interface

constraints, which further increases the overhead. Therefore, the

maximum scaling speedup is given by examples with fewer contacts

and a small interface.

8 CONCLUSIONS
Solving multibody systems can be challenging when they involve

large numbers of bodies, and complex systems of constraints. Unilat-

eral contact, friction, and bilateral constraints with limits can make

the problem particularly difficult. Additional numerical issues arise

in systems with widely varying masses, singular configurations,

and redundant constraints. For stiff, poorly conditioned systems,

direct methods are desirable to ensure accurate solutions, but direct

methods typically do not scale well as systems become large. Our

contribution is a new substructuring method for the efficient solu-

tion of large multibody systems involving unilateral constraints. We

use direct methods to solve both the subsystems and the interface,

which produces high quality solutions. Subsystem solves are trivially

parallelized, while solving the interface using the effective mass
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Fig. 13. Solve time using different number of threads for the log tower and
bridge examples. As the size of each simulation is increased, so are the
number of threads. We show plots of some simple polynomials as reference.

of subsystems provides an efficient means of resolving accurate

subsystem interaction forces. Our algorithm typically only needs

3 to 4 coupling iterations to identify the active constraints and

solve the system. We describe a simple yet effective partitioning

method that can be applied to any multibody system to target a

desired number of CPU cores. We demonstrate our method on a

number of challenging simulation scenarios and show that we can

compute solutions up to 20 times faster than traditional solvers used

in industry without compromising solution quality.

8.1 Discussion
Table 3 indicates that using the BPP and PGS-SM algorithms to solve

for the interface constraints offer similar performance improve-

ments. The algorithms differ fundamentally in how they estimate

the index set. The BPP method performs a search in the space of

possible index sets (active and tight). However, if a solution cannot

be found in the allotted number of pivoting steps, it may return a

solution which is far from a physically valid one. In such cases it is

easy for the simulation to become unstable. The PGS-SM algorithm

estimates the index set using Gauss-Seidel iterations. We found

that it will often make progress towards a more stable solution,

even if it is not an exact one. It also seems better suited to handle

nearly degenerate problems, which can arise in scenarios involving

complex contact at the interface.

In our experiments, we use only the BPP method to solve for

individual subsystems. But a heterogeneous combination of solver

algorithms is possible with our proposed technique. In other words,

the solver could be selected based on the characteristics of each

subsystem. For instance, PGS may be used if approximate solutions

are suitable for a particular subsystem. Integration with our method

would only require adding an extra step to compute the Cholesky

decomposition of the AFF𝑖 matrix once the iterative algorithm has

converged.

8.2 Limitations
A major limitation of our approach is that the performance benefits

diminish as the number of coupling iterations increases. This can

be seen in Table 3. The speedup factor appears to be inversely

proportional to the average number of coupling iterations. We

attribute this to the overhead of factorizing the matrix SΓ at each

coupling step. This serial portion of our algorithm must be done

at each coupling iteration, even if only one of the subsystems

has changed its index set. This is most problematic when there

are a significant number of redundant contacts in the simulation,

such as in the log tower and rock pile. In other words, complex

and unstructured piles of bodies are problematic for our method.

We observed that only a small percentage of variables (usually

friction constraints) persistently pivot after the first few coupling

iterations. Yet these prevent our algorithm from converging within

the allotted number of iterations. Our BPP implementation is robust

in that it detects index set cycling within each subsystem solve.

However, we do not currently have a strategy to deal with cycling

that can occur during coupling iterations. This occurs primarily

when simulating the aforementioned contact scenarios and, in some

cases, can prevent our algorithm from converging.

From a modeling standpoint, the use of box friction in our work

presents some limitations since it assumes that the normal force is

known based on the previous time step. This can be problematic,

for instance, if contacts form and detach frequently and their cor-

respondence to the previous time step is ambiguous. One way to

resolve this is by performing an initial pass to estimate the normal

force at each time step and then updating Coulomb friction bounds

accordingly. However, our approach is agnostic to the underlying

contact model, so long as it can be represented as a complementarity

problem. For instance, we could use the formulation of Anitescu

and Potra [1997].

8.3 Future work
There are several interesting avenues for future work. The heuristic

we use for automatic partitioning can likely be improved by taking

inspiration from the vast body of work on graph partitioning. For

even larger systems, we believe that our substructuring technique

can be applied recursively, with solver iterations resembling multi-

grid cycles. Recursive partitioning of subsystems could lead to

interesting new results in out-of-core solves of massive systems

of bodies with unilateral and bilateral constraints.

Currently, ourmethod recomputes a Cholesky factorizationwhen-

ever the index set of a subsystem changes. We believe the efficiency

of our method could be improved by computing the factorization

of A𝑖 once, and then reusing the existing Cholesky factorization

to obtain AFF𝑖 . For instance, Enzenhöfer et al. [2019] recently pro-

posed an efficient block pivoting method that successively applies

low rank downdates to an initial factorization based on the current

index set.

Finally, a possible solution to mitigate artifacts due to non con-

vergence would be to perform a last step of our algorithm, with

pivoting disabled. This would only require an additional linear solve

and it would ensure consistency across the interface and subsystem

solutions.
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