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Abstract
Inspired by frictional behaviour that is observed when sliding matchsticks against one another at different angles, we propose a
phenomenological anisotropic friction model for structured surfaces. Our model interpolates isotropic and anisotropic elliptical
Coulomb friction parameters for a pair of surfaces with perpendicular and parallel structure directions (e.g. the wood grain
direction). We view our model as a special case of an abstract friction model that produces a cone based on state information,
specifically the relationship between structure directions. We show how our model can be integrated into LCP and NCP-based
simulators using different solvers with both explicit and fully implicit time-integration. The focus of our work is on symmetric
friction cones, and we therefore demonstrate a variety of simulation scenarios where the friction structure directions play an
important part in the resulting motions. Consequently, authoring of friction using our model is intuitive and we demonstrate that
our model is compatible with standard authoring practices, such as texture mapping.

Keywords: physically based animation, animation, physically based modelling, modelling, natural phenomena animation

ACM CCS: • Computing methodologies→ Physical simulation

1. Introduction

The isotropic Coulomb friction model is used by many rigid body
simulations in the field of computer graphics [BET14]. Most of the
work in this area has focused on the difficult problem of formulat-
ing and solving Coulomb frictional contact and its approximations.
However, there has been comparatively less attention in computer
graphics on more expressive anisotropic models of frictional con-
tact. In this work, we focus on anisotropic Coulomb friction where
the friction cone takes on an elliptical shape. This model is conve-
nient for several reasons: it is intuitive for non-expert users, simple
to compute, characterizes the frictional behaviour for a variety of
materials and the mathematical description fits easily into existing
numerical frameworks for computing contact forces.

We are missing a tool that allows realistic macroscopic descrip-
tions of surfaces and frictional phenomena to be used in simulators.
That is, we do not yet have the tools that can allow us to explore the
suitability or accuracy of the usual friction model choices, or new

models such as the one we present here. As such, our motivation for
pursuing a friction modelling framework with additional degrees of
freedom is to provide artistic control; the goal is not to match real-
ity, but to gain a desired and plausible motion behaviour. Our model
provides animators with artistic control over the friction behaviour
so as to promote motions with the desired traits during simulation.

Many rigid body simulators use friction models expressed as
cones, or as generic sets of feasible friction forces. Combining
feasible set descriptions with extra constraints, such as the principle
of maximum dissipation, allows us to compute the friction forces at
a given instant in time. The benefit of such friction descriptions is
that they permit an easy implementation within a simulator. One can
define a projection operator, and iteratively project the friction force
onto the closest feasible friction force. This property is the governing
principle about which many friction models can be defined. In this
paper, we design a friction model that we call the Matchstick model,
which produces a cone based on the directions of surface structure
on each object at the point of contact. Furthermore, we present a
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Figure 1: The Matchstick model allows for control of frictional behaviour in situations, such as tire ground contact, a hopper and soft robotic
gripping, where each example shown here also uses different simulators with different contact solvers (Vortex, PROX and Flex).

mathematical framework that supports the necessary operations for
straightforward implementation of our model.

The main contributions of our work are as follows. We present
a model with intuitive authoring and control that allows a range of
frictional behaviours to be rapidly defined. Our phenomenological
model has simulation state-dependent friction cones and supports
both semi-implicit and fully implicit time-integration schemes.
Finally, we describe methods for including our model in any
simulator that supports non-smooth cones, such as PROX schemes
and variants as demonstrated in Figure 1.

2. Related Work

Friction measurements in mechanical engineering have for a long
time demonstrated the shortcomings of the standard isotropic
Coulomb model used in Computer Graphics: Liley et al. [LGS*98]
prove asymmetric anisotropic friction due to molecular tilt of a
mica surface. Umbanhowar et al. [UVM*12] demonstrate direction-
dependent surface friction properties to help design friction-induced
velocity fields on a vibrating plate. Their experiments clearly show
anisotropic behaviour due to microscale orthographic rough geo-
metric features. Yu and Wang [YW12] show that very rough mi-
croscale geometry gives rise to anisotropic friction strongly corre-
lated to the microscale structure. Further, fine roughness appears to
give near isotropic behaviour. Hence, a certain sufficient roughness
scale and directional structure is needed to get strong anisotropic
response. This fits our scope of material modelling exactly. Walker
and Leine [WL17] demonstrate the behaviour of non-convex cones
and they propose a replacement approach for the principle of max-
imum dissipation based on a two-cone approach. One convex cone
is used to pick the direction of the friction, and the other (possibly
non-convex) cone is used to determine the magnitude. The Match-
stick model produces elliptical cones, and the simulation method
and modifications in our work are currently limited to convex cones
obeying principle of maximum dissipation.

Table 1 presents a brief overview and comparison of relevant
work on related friction models used in the field of computer graph-
ics. In graphics, a wide collection of work has looked at different
formulations and different methods for solving the frictional con-
tact problem, largely using isotropic static Coulomb cones. Baraff’s
seminal work introduced linear complementarity problems to com-
puter graphics [Bar94]. Fast frictional dynamics [KEP05] efficiently
computes responses by merging cones across different contacts,
while staggered projections [KSJP08] alternate between normal

and tangent impulse solves for friction between elastic objects. Im-
plicit contact models are likewise useful for thin models, such as
cloth [OTSG09]. Exact Coulomb friction cones have been used for
hair [DBDB11], and alternatives to Coulomb friction prove useful
in the simulation of cloth at the thread level [CLO17]. Aggregate
contact models to approximate frictional contact patches have been
proposed for rigid bodies [BNT*15], elastic models [TMDO15]
and at arbitrary resolution through voxelization of volume
contacts [AFC*10].

The work addressing anisotropic friction modelling is sparse
[BET14]. Among the exceptions is the use of the friction tensors
by Pabst et al. [PTS09], which uses an additive model and has nine
parameters to describe the material for planar dynamic friction. Our
Matchstick model uses the angle between structure directions (much
like the tensor eigenvectors) to interpolate the physics in a common
frame, and only uses a small number of intuitive parameters. The
friction tensors do not provide an immediate cone description, but
give a direct equation for the dynamic friction force that does not
rely on maximum dissipation. Since we express our model in terms
of cones, it supports the principle of maximum dissipation.

Limit surfaces [GRP89] are a general concept that describe any
cone shape that scales linearly with the normal force. Our model
uses the same scaling concept, which means that our cones belong
to an elliptical family of limit shapes. However, in comparison
with limit surfaces, the ‘shape’ is dynamically dependent on the
simulation state. Furthermore, we provide a method to determine
the orientation of the cone in the world frame, whereas the limit
surfaces concept does not provide a direct solution to this aspect.
A pragmatic solution to this is to align the first axis of the contact
frame with the relative sliding direction, as done in many physics
engines and past work [BET14]. Instead, the Matchstick model
uses the mean of the material structure directions to estimate the
direction of least resistance and the friction cone intrinsically lives
in this contact frame. In comparison with Pabst et al. [PTS09], their
affine map is defined by a linear function, i.e. addition of tensors in
a common frame to give the intrinsic representation of the friction
model. See Appendix A for more details.

Data-driven nonlinear friction models have been demonstrated
for cloth animation [CFW13]. The data show structural state de-
pendence on relative orientation and nonlinear normal force scaling.
The model is similar to Pabst et al. [PTS09] except that three nonlin-
ear functions are used to form a symmetric tensor, which is then used
to determine the magnitude of the friction force using a quadratic
form dependent on sliding velocity. The model can be seen as a

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



K. Erleben et al. / The Matchstick Model 3

Table 1: Overview of common planar dynamic friction models used in computer graphics.

Model name Shape #Params Contact frame orientation Scaling ANISO PMD INT

Isotropic Coulomb [Bar89] Circle 1 None Linear in λn No Yes Yes(1)

Anisotropic Coulomb(2) Ellipse 2 Fixed on one object or by sliding velocity Linear in λn Yes Yes Yes(1)

Limit Surfaces [GRP89] Any cone ∞ Not specified Linear in λn Yes Yes(3) Yes
Friction Tensors [PTS09] Affine map 9 Fixed to one of the structure fields Linear in λn Yes No(4) No(5)

Cloth Friction [CFW13] Load force curve > 6(6) Fixed to material space Nonlinear in λn,
quadratic in v

No Yes Yes

Matchstick Ellipse 3 Mean of both structure field directions Linear in λn Yes Yes Yes

1. Many game engines either average friction coefficients assigned to objects use a material-pair look-up table.
2. Anisotropic Coulomb friction is used in many game engines, where the sliding direction is used to determine the first major principal axis of the contact
coordinate system. However, the sliding and least direction of friction are not always parallel in reality.
3. Supports non-convex cones giving rise to non-uniqueness even when the principle of maximum dissipation is applied.
4. Only under restriction of symmetric positive definite friction tensors is the principle of maximum dissipation fulfilled.
5. Two separate friction tensors combine to give the intrinsic friction map.
6. Three nonlinear functions are fit to data using linear regression. Hence, more than six parameters seem reasonable as otherwise the three nonlinear functions
would be no better than a linear fitting.
ANISO denotes aniosotropic, PMD denotes principle of maximum dissipation, INT denotes intrinsicly defined in the contact frame, λn is the normal force and
v is the contact velocity.

specialized version of the earlier work by reducing the choice of
parameter selection to fitting functions to data.

A link between frictional behaviour and the simulation solver al-
gorithm has been observed, particularly for long kinematic chains
and ill-conditioned linear systems [EATK18]. This indicates that
in order to be useful, our friction model should be agnostic to
the underlying solver algorithm. Although the approach proposed
by Pabst et al. [PTS09] is tied to the semi-implicit time-stepping
method of Bridson et al. [BFA02], we demonstrate the compati-
bility of our Matchstick model using several solver types such as
both semi-implicit and fully implicit time-stepping methods. These
include a pivoting algorithm with direct solver, a nonlinear implicit
Newton-type solver [MEM19] and a PROX-based iterative Gauss–
Seidel scheme.

Daviet et al. [DBDB11] solve isotropic Coloumb friction for
hair dynamics with a Gauss–Seidel scheme, which is efficient due
to a scaling that makes impulse and velocity cones self-dual. The
sliding direction is an unknown and solved at each time step with a
fully-implicit treatment. Our model can likewise be solved in a fully
implicit manner given that our anisotropic cones depend on structure
directions rather than sliding velocity. However, it is less obvious
how the scaling approach of Daviet et al. can be adapted to work
for anisotropic friction without distorting space and not preserving
‘angles’. A somewhat similar distortion of angles is observed for
blocked r-factors [Erl17]. In contrast, Macklin et al. [MEM19] show
similarity between r-factors and preconditioners that create self-
dual isotropic cones; however, adaptive r-factors can adapt locally
to the anisotropy and rescale cones just in the direction needed.
For certain specific conditions, a cone description of the friction
tensor model can be recovered at added computational cost as we
prove in Appendix A, and with additional restrictions the maximum
principle of dissipation can be fulfilled.

Modelling restitution for rigid body impact using bounce maps
[WSJP17] shares some similarity to using structure maps. We too
consider the structural dependency of friction behaviour as mapped

to surfaces of objects. However, unlike bounce maps, which con-
sider the restitution as a two body function, we treat the physical
coefficients depending on the pair-wise material types and sepa-
rate only the structure (micro-geometry) into our maps. Given these
similarities, we speculate that restitution could be modelled in a
similar fashion. Recently, Costes et al. [CDA*18] propose a holis-
tic approach using texture maps to represent surface properties for
haptic simulation. Their material format includes friction, and our
proposed friction model is compatible with their format since we
demonstrate that it can be represented by a texture.

We consider the use of an active measurement facility by Pai
et al. [PDJ*01] to be an excellent early effort to capture and
model friction behaviour. Contact friction textures are recorded
with a robotic probe under the assumption of a symmetric isotropic
Coulomb model. Recent work by Dreßel et al. [DEKA19] re-
visits this idea by dropping these assumptions, and provides an
open data set that clearly demonstrates curved trajectories and ro-
tational alignment of cubed rigid bodies while sliding on inclined
wood planes. Our work reproduces these behaviours, which is only
possible if state dependency and anisotropy are included in the
models.

3. Friction Cone Modelling

The idea is to define a friction cone generator that we initially
require to be able to generate a convex pointed cone. The cone will
be generated on the fly within a typical solver allowing the cone to
change shape depending on the kinematic state.

Without loss of generality, we will study two objects that we
label A and B. We assume that they have materials assigned such
that the materials can be characterized by a single material struc-
ture direction associated with any surface point on the objects. The
directions can be interpreted as fibre directions or as micro-scale
geometry features, such as grooves. While some materials, e.g.
cloth with warp and weft directions, can be seen as having multiple
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structure directions, we limit our investigation to the case of a single
structure direction.

Let p ∈ R
3 be a single point of contact between A and B, with unit

normal n pointing from A to B, and with relative contact velocity v,
given by,

v ≡ J

⎡
⎢⎢⎣

uA

ωA

uB

ωB

⎤
⎥⎥⎦ , (1)

where uA, uB ∈ R
3 are linear velocities of the bodies and ωA, ωB ∈

R
3 are the angular velocities. The contact constraint Jacobian matrix

is given by J. The relative velocity can include both a normal and
tangential component, vn ∈ R and vt ∈ R

2.

The contact point frame at position p has orientation with respect
to the world coordinate frame given by

C ≡ [
n t b

]
. (2)

Here, t and b span the tangent plane of the contact point and are
given in the world coordinate system. The choice of t determines
the friction cone orientation and we use the mean of the structure
field directions for this, as explained in detail later.

A contact frame is needed for assembling the Jacobian matrix J
properly. For a one point contact with planar friction, the Jacobian
will be:

J ≡ CT
[−I3×3 −r×A I3×3 r×B

]
, (3)

where I3×3 is the identify matrix, rA and rB are the contact arms
from the respective object centres to the contact position and r× is
the skew symmetric matrix that computes the r cross product.

In above definitions, we have by convention chosen to order
normal components before frictional components. The reason for
this is that most iterative solves tend to solve normal constraints
before friction constraints. This is done because the friction part
depends strongly on the normal part, while strong dependence in
the opposite order is rare. This is merely a convention and our model
works with any ordering and is independent of solving normal force
before friction forces.

For any given contact frame, we can write the material structure
direction of each surface in coordinates of the tangent plane of the
common frame as unit vectors sA and sB. These structure directions
depend on the point of contact on each surface, and in a typical
implementation can be stored in a texture or generated procedurally.

We can then consider a simple parameterized friction cone gen-
erator, GA↔B, specific to a pair of materials A and B. The generator
computes a friction cone that describes the set of allowable friction
forces based on a set of local parameters. We denote the cone by
the symbol FA↔B. We will ease notation and not explicitly write
the material pairs. The generator in general abstract notion can be
defined as:

F ≡ G(λn, v, sA(p), sB(p)). (4)

Figure 2: We use the angle between matchsticks to determine the
friction cone. The Matchstick model interpolates between isotropic
CI and anisotropic CA extremes (see Equations 6, 9 and 12).

The normal force magnitude is given by λn. The above parameter-
ization could be extended with even more parameters to account
for many other dependencies, which is an interesting avenue for
future work. We will abuse notation and simply write F to indi-
cate any parametric friction cone model to enhance the readability
of equations.

3.1. The Matchstick model

We derive the Matchstick model from several observations and pro-
pose a novel model that interpolates between isotropic and extreme
anisotropic Coulomb behaviours using the minimum angle between
the structure directions (Figure 2).

1. Some materials have a visually noticeable simple structure, for
instance a matchstick has a directional material structure (fibre)
direction. Probing with a fingertip, sliding along the structure has
less resistance than sliding orthogonal to the structure direction.
Hence, the structure direction describes the direction of least
resistance of the material.

2. Friction (resistance) appears to be isotropic for a pair of match-
sticks when moving in different direction but keeping structure
directions orthogonal.

3. Friction (resistance) appears to be an extremely anisotropic for
a pair of matchsticks when sliding in different directions while
keeping structure directions parallel. In general, one observes
very low resistance in common structure directions and very
large resistance in orthogonal direction.

4. Friction (resistance) appears to be anisotropic, but not as ex-
treme, for a pair of matchsticks when sliding in different di-
rections while keeping structure directions at oblique angles.
As the angle approaches orthogonality, the behaviour becomes
isotropic, while the behaviour becomes maximally anisotropic
as the angle goes to zero.

With the simplifying assumption that we can ignore the sign of
the structure vector (i.e. if the friction only depends on the orienta-
tion and not the direction), then the Matchstick model interpolation
parameter is based on the angle θ and is defined as:

d ≡ 1− 2

π
cos−1 |sA · sB|︸ ︷︷ ︸

≡θ

. (5)

Let the friction force in the world frame be given by f and let the
coefficient of friction for a planar isotropic Coulomb friction cone
be μ, equal to the tangent and binormal direction coefficients for
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the isotropic cone, i.e. μIt = μIb = μ, then the isotropic cone can be
written as:

fT RT

[
1
μ

2
0

0 1
μ

2

]
︸ ︷︷ ︸

≡CI

Rf = λ2
n. (6)

Here, R can be any rotation matrix for an isotropic cone, but for
consistency we define R as the 2D rotation of (sA + sB) onto the
t axis, assuming that sA · sB is positive (again, given that we only
need the orientation, we can swap the sign of one of the vectors to
ensure positive dot product). This implies that

t ≡ sA+ sB
‖sA+ sB‖ , (7)

b ≡ n× t. (8)

We only need a 2D rotation matrix R to explain the model. How-
ever, the t and b column vectors for the contact coordinate frame
are needed when assembling the Jacobian matrix as shown in Equa-
tion (3). By construction, t and b are the major and minor axis of
the anisotropic ellipse cone, respectively.

We define the coefficients of friction for a planar anisotropic
Coulomb friction cone asμAt ≤ μAb , where theA superscript denotes
anisotropic, and can define the anisotropic cone by

fT RT

⎡
⎣ 1

μAt

2
0

0 1
μA
b

2

⎤
⎦

︸ ︷︷ ︸
≡CA

Rf = λ2
n. (9)

In our model, the friction cone generator computes actual coeffi-
cients through spherical linear interpolation,

μt ≡ d μAt + (1− d)μ, (10)

μb ≡ d μAb + (1− d)μ, (11)

and thus, the actual Coulomb cone will be given by

fT RT

[
1
μt

2
0

0 1
μb

2

]
︸ ︷︷ ︸

≡CM

Rf = λ2
n. (12)

We give an outline of the Matchstick friction model generator in
Algorithm 1. Finally, note that the Matchstick friction cone can be
written as:

FM ≡
{
λf |

(
λ2
t

μ2
t

+ λ2
b

μ2
b

)
≤ λ2

n

}
. (13)

The model has small memory footprint and fast computational
complexity for both generating the cone and also for using the
cone at run time. Immediate benefit of our model is that it al-
lows artistic modelling of the isotropic and extreme anisotropic
behaviours, and automatically determines the orientation and shape
of the anisotropic friction cone.

4. Simulator Integration

Iterative methods for contact force computations are the natural
choice for arbitrary friction cones. We will first consider the class
of methods based on proximal operators [Erl17]. In methods based
on proximal operators, the next feasible friction force iterate λk+1

f

is given by projecting the current friction force guess λkf onto the
friction cone, F ,

λk+1
f ← proxF

(
λkf − r vkf

)
. (14)

Algorithm 1: MATCHSTICKFRICTIONGENERATOR The generator gives
both the world orientation of the friction cone as well as the coef-
ficients of friction, which is an advantage when working with an
analytic cone that is fully described by these parameters.

Algorithm 2: PROXGAUSSSEIDEL The PROX Gauss-Seidel variant
with an adaptive r-Factor strategy and parametric friction cones.
The product M−1JT may be precomputed.
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Here, k is the iteration index and r is a scalar relaxation parameter
known as the r-factor. This is how our parametric model can be
used in a typical sweeping process. First, Equation (4) is used to
instantiate the current friction cone, F , and then that cone is used
in the proximal point update given by Equation (14).

Algorithm 2 illustrates how a PROX-based block Gauss–Seidel
variant is modified to accommodate our friction models. Observe
that the only change is the addition of line 8 in the algorithm, before
the friction proximal step. This line instantiates the friction model
using Equation (4).

4.1. Linear complementarity problem (LCP) based simulators

For LCP-based approaches, one may discretize a parameterized
cone by shooting rays from the origin of the limit surface in various
directions and use the limit surface points to build a polygonal ap-
proximation to the generated cone. Each facet of the polyhedral cone
will match one complementary constraint in the LCP model. While
it is trivial to generate the polygonal facets, the main drawback is
that one may need many facets to obtain a good approximation. The
memory footprint of the LCP has quadratic scaling with the number
of constraints and the solver time will suffer accordingly. Hence,
nonlinear complementary formulations can be more attractive for
parametric cones.

4.2. Nonlinear complementarity problem (NCP) based
simulators

We will now outline how to use a parameterized F in a Newton-
type framework using non-smooth functions, such as the Fischer–
Burmeister function [MEM19]. Without loss of generality, assume
that we have any type of complementary function, ψ(a, b) : R×
R �→ R such that

0 ≤ a ⊥ b ≥ 0 ⇔ ψ(a, b) = 0. (15)

Using an implicit limit surface models of the cone, we let φF be the
corresponding implicit function of F ,

φF ≡ fT RT CMRf − λ2
n. (16)

Then, by the principle of maximal dissipation, we can write:

∇φF (f) = −β vt , (17)

where β ≥ 0 is an auxiliary scalar variable. We can now restate the
model with the help of the complementary function,

ψ(β,−φF (f)) = 0, (18)

ψ(vTt vt ,wT w) = 0, (19)

where we now introduce w = ∇φF (f)+ β vt . The above model
gives us a root search problem and can be solved with a Newton
type of method. For this purpose, we must obtain the generalized
Jacobian of these equations. The differential becomes

dψ(β,−φ(f)) = ∂aψ dβ − ∂bψ ∇Tφ df, (20)

dψ(vTt vt ,wT w) = 2∂aψ vTt dvt + 2∂bψ wT dw, (21)

where

dw = vt dβ + ∇2φ df + β dvt . (22)

Here, we use ∇2 to denote the Hessian of φ. Assembling all parts,
we can write:

[
dψ(β,−φ(f))

dψ(vTt vt ,wT w)

]
= Jψ

⎡
⎢⎣
dβ

df

dvt

⎤
⎥⎦, (23)

where Jψ is the Jacobian one will need for implementing a Newton
method, and is computed as:

Jψ ≡
[

∂aψ −∂bψ ∇Tφ 0

2
(
∂bψwTvt

)
2
(
∂bψwT∇2φ

)
2
(
∂aψvTt +∂bψwTβ

)
]
.

4.3. Pivoting solver

Pivoting methods for solving frictional contact attempt to find a
partitioning of the system into active and inactive variables. These
labels indicate whether a variable is within bounds, and thus un-
known, or if boundary conditions are violated by its current value,
and hence it is determined by a projection onto the limit surface,
or a linear approximation of it, and the variable is treated as a
known entity.

The pivoting method used in our experiments initializes the limit
surfaces using an estimate of the non-interpenetration forces, λn,
by a preliminary step that finds a solution to the multibody system
excluding friction. The friction cones are then updated according to
Equation (13), and a direct solver is used to find a solution of the
system combining normal forces and friction forces. The labelling
of active and inactive variables is revised, and subsequent iterations
can be used to refine the limit surfaces. Further details on the block
Bard-type algorithm used in our experiments can be found in the
Vortex Dynamics documentation [CM 17].

4.4. Implementation details

Notice that the friction cone generator G returns both a friction cone
FM and a cone orientation C ≡ n t b as indicated in Algorithm 1.
However, C is needed for the assembly of the contact Jacobian,
as is evident from Equation (3). Hence, one may wish to invoke
the generator when assembling the contact Jacobian or split the
generator implementation into two sub-routines. The choice is in-
timately related to how the time-discretization of the friction cone
is implemented. Imagine that the cone generator parametrically de-
pends on the sliding velocity vt and that a full implicit scheme is
wanted, in which case, the generator truly needs to be invoked every
time before calling a proximal operator. However, in most cases,
the positions and orientations are not updated inside an algorithm
as shown in Algorithm 2. In this case, both the cone orientation
and limit surface can be computed outside the solver for improved
computational efficiency. For the Newton-type solver, we outlined
that one must update cone orientations continuously as positions
and velocities are solved in a fully coupled way in a full implicit
time-integration method.
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Figure 3: Procedurally generated structural directions provide in-
tuitive interactive control. These didactic examples demonstrate
channelling (top), spreading (middle) and slaloming (bottom).

Figure 4: A structure field on a ravine slope can be used to steer a
log slide towards (top) or around (bottom) a cube-shaped building.

Figure 5: Visualization of the ravine example structure fields. Logs
collide with the box (top) and spread prior to collision (bottom).

We note that in our implementation, an additional drilling torque
is included in the friction model that introduces an angular moment
about the contact normal based on an additional friction coefficient,
μτ . The value of this coefficient is computed similarly to μt and μb.
Inclusion of this torque is optional from a modelling perspective, but
does result in a higher order limit surface and thus requires a third
diagonal term in C as 1

μτ

2
and promoting R to a 3D rotation matrix.

The proximal operator for this surface can then be solved numeri-
cally, as outlined in [Erl17], whereas omitting this additional term
gives a planar surface and the projection can be solved analytically.

Figure 6: Grasping with a robotic gripper demonstrates how our
model affects the friction behaviour during interaction with a de-
formable object.

Figure 7: A box on an inclined plane shows how oblique structure
directions allow control of the sliding trajectory.

Figure 8: Structure directions of a cylinder and inclined plank
are visualized on the left. These produce different rolling and slid-
ing behaviours (top to bottom): cylinder-concentric with plank-
aligned produces stable rolling; cylinder-concentric with plank-
oblique causes the cylinder to skid off the plank; orthogonal cylin-
der and plank directions yield isotropic friction cone behaviour;
and cylinder-axial with plank-oblique also produces skidding.

5. Results

To demonstrate the agility of the new model and its ability to be
included in very different simulation paradigms, we decided to im-
plement the Matchstick model into three existing simulators: Vor-
tex Dynamics, NVIDIA Flex and PROX [Ken]. Respectively, these
frameworks use an LCP-based formulation with direct solver, NCP-
based formulation with fully implicit Newton solver and iterative
Gauss–Seidel type scheme [Erl17]. Figures 3–6 use Flex [MEM19],
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Figure 9: Pills in a hopper flow or jam depending on structure
directions. Top left shows concentric structure directions (promotes
jamming), while top right shows radial/axial structure directions
(promotes flowing). Middle and bottom rows show resulting simula-
tions of jamming and flowing, respectively. Note that the anisotropic
simulations result in different orientations of the capsules. This kind
of behaviour difference cannot be created using only isotropic fric-
tion to cause the jam.

Figure 10: A zero-structure field sphere projectile causes a tower
to fall or break depending on structure directions. Top, structure
directions orthogonal to impact permit large friction forces, and the
impact causes the tower to tip and fall. Bottom, structure directions
parallel to impact permit only small friction forces, and the sphere
impact only knocks the top blocks off the stack.

Figures 7–11 use PROX and Figures 12 and 13 use Vortex. This
choice of solvers shows examples of semi-implicit time-integration
and fully implicitly time-integration, as well as global versus local
coupled schemes, and fully coupled normal and friction forces too.

Using the Flex solver, Figure 3 shows simple cases where the be-
haviour of sliding boxes can be altered easily by generating a vary-
ing structure field for the plane. On a sloped plane, Figures 4 and 5
show control of a log slide in a ravine. We also demonstrate chang-
ing structure directions on a soft object with the robotic grasping
example shown in Figure 6. As seen in the Supplementary Movie,
interactive changes to the structure fields immediately change the
behaviour as the Allegro gripper strokes the soft gel-like material.

Using the PROX solver, Figure 7 shows a didactic example of a
box on an inclined plane. Likewise, Figure 8 illustrates cases of a
rolling cylinder that changes behaviour when sliding occurs on an

Figure 11: Structure directions for the destruction of an arch. Top
left, the design provides only weak radial friction. Top right, the
directions provide strong radial friction. Middle row, with strong
radial friction, the arch breaks with the pillars being pushed out-
wards. Bottom row, with weak radial friction, the arch falls faster
due to sliding between the upper stones.

inclined plane. Structure fields can be used for flow rate control or
jamming effects, as shown in Figure 9. Artistic structure directions
may be used to control the desired behaviour for destruction of
masonry structures, as demonstrated in Figures 10 and 11.

Using the Vortex solver, Figure 12 shows a variation of the con-
trolled channelling behaviour seen in Figure 3, and Figure 13 shows
an example of ground structure directions used to influence the
skidding behaviour of a vehicle.

In our work, we either procedurally generate structure fields for
mesh vertices and interpolated these values for contact points, or
we use texture maps to store the structure fields. The texture maps
allow for a traditional artistic way of modelling structure directions
with an imaging inspired approach.

5.1. Structure field direction textures

The structure directions used by
the Matchstick model can be con-
veniently stored as a texture map.
The inline figure on the right
shows an example of one such
texture map used in our experi-
ments, along with structure direc-
tions shown in grey. Here, the red
and green channels of the image
are used to store the direction in-
formation. The process we use to compute the structure direction
from a texture is similar to normal mapping, which is a common
computer graphics technique, and we briefly explain this process
below.

Each vertex in the object’s polygonal mesh stores a normal
and a tangent vector that are used to define surface characteris-
tics at the vertex. These are specified during the modelling process.
When a collision is detected between two objects, the barycentric
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Figure 12: Three boxes with different starting orientations slide down an inclined plane with a Matchstick friction texture. The path of the
boxes is determined by the principal structure direction, which has lower friction compared to the lateral direction. As a result, all boxes exit
the plane near the same location.

Figure 13: A moving vehicle brakes hard on a terrain with a friction texture. The region of the terrain with the orange texture has a high
friction coefficient in the direction lateral to the tires. However, when the vehicle skids onto the green region, the structure direction changes
suddenly and the vehicle begins to fishtail due to friction anisotropy.

coordinates at the contact point are used to interpolate between the
normal and tangent vectors at each vertex in the colliding triangle.
This gives a normal n and tangent t vector at the contact point,
and this is done for both objects. We compute the binormal vector
as b = n× t, which gives an orthogonal set of basis vectors. The
barycentric coordinates are also used to interpolate the UV texture
coordinates, which are likewise specified at each vertex. Using the
interpolated texture coordinates u, v, we perform a lookup in the
friction texture I such that

c = I (u, v),

where c = r, g, b is a tuple with red, green and blue colour values
in the range [0, 1]. The structural direction si at the surface of body
i may then be computed using the red and green channels, such that

si = (2r − 1)t+ (2g − 1)b.

Figures 12 and 13 show examples of friction textures being used to
encode the structure directions. The textures were created using a
typical image editing software application.

6. Discussion and Limitations

We note that there is a need for accurate normal force distributions.
Most stationary point method solvers just pick one out of multiple
solutions; however, we want the solution that is closest to the
real contact force distribution. Iterative methods, such as the one
outline in Algorithm 2, tend to average out force distributions
when no friction is present. But, there is no guarantee on which
of multiple solutions this type of method will choose once

converged. Adding compliance and friction to the dynamics is
one solution that can help, and we note that Newton-type methods
may ultimately be more appropriate due to improved convergence
behaviours.

Inaccuracy in solving proximal operators can produce imprecise
frictional forces, generating torque effects even when no torque
effects should be present. This is not a problem specific for our
model, but shared by any simulator that uses a projection onto an
elliptical cone with a large aspect ratio.

The Matchstick model is limited to classes of materials that can be
described by a structural direction with low frictional resistance. Our
new model includes all the behaviours that can be obtained with the
usual Coulomb friction modelling done in rigid body simulations.
However, in the extension of a simulation to an anistropic friction
model, our Matchstick model offers an intuitive solution to defining
highly anisotropic friction cones. Note that our model supports set-
ting one of the structural directions to zero, in which case only the
object with the non-zero structure determines the anisotropy. This
will make the object with the zero structural field appear isotropic,
and the non-zero object anisotropic.

Surface descriptions in simulators using our Matchstick friction
model must be extended with information about structure directions
such that these can be extracted at points of contacts. From an imple-
mentation perspective, this is no more complicated than applying
textures to surfaces. This is straightforward in computer graphic
applications, and also allows artistic modelling, where artists can
paint structure directions on surfaces, or directions can be obtained
through image processing of photographs of real materials. Material
descriptions are no longer simple coefficients of friction. Instead,
friction cones are instantiated and evaluated during simulation as
they depend on the kinematic state of the system.
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7. Conclusion and Future Work

We have presented a new phenomenological anisotropic friction
model for structured surfaces. We proved that our novel friction
modelling can be incorporated into simulators that support convex
cones. We note that our model is particularly convenient for PROX
schemes and variants thereof. Our results include a wide range of ex-
amples using different simulators and scenes ranging from small di-
dactic cases illustrating the intuitive nature of the Matchstick model
to more complex scenarios of digital prototyping, jamming, de-
struction physics, masonry structures, ravines, skidding cars and
more. This provides evidence that using the Matchstick model to
control friction behaviour is intuitive. The behaviours we obtain
throughout these examples were designed with minimal effort in
tuning structure fields. Even for robot hand grasping scenario, we
can interactively play with structure fields generated on the fly to
explore the consequences of stroking a gel object with robotic fin-
gers. Furthermore, we have shown how normal mapping techniques
are a convenient way to generate the material structure fields of
different objects.

The novelty of considering cones as state-dependent high-
dimensional parametric functions that can change dynamically
opens up a doorway for a multitude of modelling possibilities not
yet seen in the field of computer graphics. We believe that it will
be straightforward to extend our work to address friction models
with other dependencies, such as sliding velocity (Stribeck effect)
or nonlinear scaling with normal forces as employed in the recent
work on cloth simulation [CFW13]. We note that anisotropic friction
is generally in demand for cloth simulation [LDN*18].

Our car skidding example is highly motivating from an animation
system viewpoint. We note that Berry et al. [BBM*17] demonstrate
usability improvement in a driving system by using splines to sketch
trajectories of cars. We speculate that it may be possible to produce
similar trajectories using our friction model.
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Appendix A: Friction Tensors

This appendix contains a detailed analysis of the friction tensors
model. Pabst et al. [PTS09] define dynamic friction by a direct
evaluation of

f = −λn κ
(
QA + RQBRT

)
v̂t , (A.1)

where

v̂t ≡ vt
‖vt ‖ , (A.2)

φ ≡ cos−1 (sA · sB), (A.3)

R ≡ R(n, φ) (A.4)

where R(n, φ) is the rotation around n with angle φ. Material pa-
rameters are described by one scalar and two tensors: κ ∈ R+ and
QA,QB ∈ R

2×2. For planar friction, this gives a total of nine param-
eters to describe.

We will now examine if a cone description can be extracted from
the model by Pabst et al. We define the linear operator L as follows:

f = −λn κ
(
QA + RQBRT

)︸ ︷︷ ︸
≡L

v̂t , (A.5)

= −λn L v̂t . (A.6)

Under the assumption that L is non-singular, we may now write:

f = −λn L v̂t , (A.7)

L−1f = −λn v̂t , (A.8)

‖ L−1f ‖2 = λ2
n, (A.9)

fT
(
L−T L−1

)︸ ︷︷ ︸
≡CP

f = λ2
n. (A.10)

We observe that this is the same as an elliptical-cone Coulomb
friction model. An eigenvalue decomposition will recover the usual
cone description.

CP ≡ RT

[ 1
μ2
t

0

0 1
μ2
b

]
R. (A.11)

Next, we will investigate dissipation of the model. We start by
writing up the instantaneous power

vt · f = −λvTt Lvt
‖ vt ‖ . (A.12)

We observe that if QA and QB are symmetric positive definite,
then we have sufficient conditions to state that L will always be
symmetric and positive definite. In this case, friction force is al-
ways dissipating.

Recall that principle of maximum dissipation is equivalent with
−v̂t ∈ NCP (f) that is the negative sliding velocity must be in the
normal cone of the friction cone if f is the maximal dissipate force.
We will use an implicit function to express the friction cone of Pabst
et al.,

ψ(f) ≡ fT
(
L−T L−1

)
f − λ2

n. (A.13)

To prove if f is maximal dissipating, we wish to show that there
exists some value β > 0 such that

− β v̂t = ∇f ψ(f). (A.14)
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We find

df ψ = dfT
(
L−T L−1

)
f + fT

(
L−T L−1

)
df (A.15)

= 2fT
(
L−T L−1

)︸ ︷︷ ︸
≡(∇f ψ)T

df. (A.16)

Hence,

− β v̂t = 2
(
L−T L−1

)
f. (A.17)

We redefine β ← β

2λn
and recall f = −λnLv̂t , then we have

β v̂t = L−T v̂t . (A.18)

This shows that Pabst et al. model is only maximal dissipating when
the direction of sliding is an eigenvector of L−T . This proves that
there can be single cases (two for planar sliding), where the model is
maximal dissipating but in general vt can have any direction. Hence,
there are infinitely many cases where the principle of maximum
dissipation will not hold.

In conclusion, the model by Pabst et al. cannot efficiently plugged
into an existing simulator based on the concept of cones as it re-
quires L to be non-singular and needs the computation of Cp and
its eigenvalue decomposition. Further, when L is symmetric pos-
itive definite, the model is always dissipating but not necessarily
maximal dissipating.
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