
Inverse Kinematics Problems with Exact Hessian Matrices
Kenny Erleben

University of Copenhagen
kenny@di.ku.dk

Sheldon Andrews
École de technologie supérieure

sheldon.andrews@etsmtl.ca

ABSTRACT
Inverse kinematics (IK) is a central component of systems for mo-
tion capture, character animation, motion planning, and robotics
control. The �eld of computer graphics has developed fast station-
ary point solvers methods, such as the Jacobian transpose method
and cyclic coordinate descent. Much work with Newton methods
focus on avoiding directly computing the Hessian, and instead ap-
proximations are sought, such as in the BFGS class of solvers. This
paper presents a numerical method for computing the exact Hes-
sian of an IK system with spherical joints. It is applicable to human
skeletons in computer animation applications and some, but not
all, robots. Our results show that using exact Hessians can give
performance advantages and higher accuracy compared to standard
numerical methods used for solving IK problems. Furthermore, we
provide code and supplementary details that allows researchers to
plug-in exact Hessians in their own work with little e�ort.

CCS CONCEPTS
• Computing methodologies → Animation; Motion process-
ing;

KEYWORDS
inverse kinematics, Hessian, optimization

ACM Reference format:
Kenny Erleben and Sheldon Andrews. 2017. Inverse Kinematics Problems
with Exact Hessian Matrices. In Proceedings of MiG ’17, Barcelona,Spain,
November 8–10, 2017, 6 pages.
DOI: 10.1145/3136457.3136464

1 INTRODUCTION
Inverse kinematics is the problem of computing the con�guration
(i.e., joint angles) for a kinematic chain, skeleton, or mechanism,
such that an end e�ector will reach a prescribed goal. IK methods are
fundamental for many robotics and computer graphics applications,
as evidenced by literature on the topic dating back several decades
[Craig 1989; Girard and Maciejewski 1985]. In robotics, the problem
is usually phrased as a dynamic system which may lead to di�erent
schemes [Hsia and Guo 1991]. An overview of numerical methods
used in computer graphics can be found in the report by Buss
[2004].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MiG ’17, Barcelona,Spain
© 2017 ACM. 978-1-4503-5541-4/17/11. . . $15.00
DOI: 10.1145/3136457.3136464

Popular techniques for solving IK problems typically discount
the use of exact Hessians, and prefer to rely on approximations of
second-order derivatives. However, robotics work has shown that
exact Hessians in 2D Lie algebra-based dynamical computations
outperforms approximate methods [Lee et al. 2005]. Encouraged by
these results, we examine the viability of exact Hessians for inverse
kinematics of 3D characters. To our knowledge, no previous work in
computer graphics has addressed the signi�cance of using a closed
form solution for the exact Hessian, which is surprising since IK is
pertinent for many computer animation applications and there is a
large body of work on the topic.

This paper presents the closed form solution in a simple and easy
to evaluate geometric form using two world space cross-products.
Compared to robotics work, we target joints with general Euler
angles ordering and use the familiar homogeneous coordinates
representation to describe the kinematics. This technical choice is
based on the popularity of Euler angles in character animation appli-
cations, but the theory we present holds equally well for quaternion
representation or other parameterizations of rotation angles. We
consider the derivation and algorithm for the computation of the
exact IK Hessian to be a novel theoretical contribution. Further-
more, we investigate numerically whether using the exact Hessian
with a Newton’s method type of approach improves the perfor-
mance and accuracy for IK problems with many degrees of freedom
and large displacements of end-e�ectors. Our results suggest that
using exact Hessians can outperform using approximate Hessians,
or even Hessian free methods, under certain conditions.

We supplement this paper with Python and MATLAB code allow-
ing other researchers to harvest the bene�ts of using exact Hessians
in their own IK solvers.

2 NUMERICAL METHODS FOR IK
In Zhao and Badler [1994] a mathematical formalism is presented
for solving IK as a constrained non-linear optimization problem.

𝐉𝐉𝑖𝑖 =
𝜕𝜕𝐅𝐅(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑖𝑖𝐇𝐇𝑖𝑖𝑖𝑖 =

𝜕𝜕2𝑓𝑓(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑖𝑖𝜕𝜕𝜃𝜃𝑖𝑖

𝐅𝐅(𝜃𝜃)

𝜃𝜃𝑖𝑖

𝜃𝜃𝑖𝑖+1

𝜃𝜃𝑁𝑁

𝐫𝐫(𝜃𝜃)

𝐠𝐠

min
𝜃𝜃

1
2

𝐠𝐠 − 𝐅𝐅(𝜃𝜃) 2

𝑓𝑓(𝜃𝜃)

𝐭𝐭

Figure 1: Conceptualization of the IK problem: �nd joint
angles θ0, . . . ,θN that minimize the distance between end-
e�ector position F (θ) and the goal position д. The distance
is encoded by the residual r (θ). The non-linear optimization
problem is solved using the gradient ∇f (θ) = −JT r , and op-
tionally the Hessian matrix H .

MiG ’17, November 8–10, 2017, Barcelona,Spain K. Erleben and S. Andrews

This work allows for general types of constraints. Furthermore,
the optimization model can be used to derive a large spectrum of
known methods for solving the IK problem.

Our work too takes as its outset the IK optimization model of
Zhao and Badler [1994]. In fact, there exists many methods for
solving the IK optimization problem. Engell-Nørregård and Erleben
[2011] shows how the Jacobian Transpose (JT) method is equivalent
to a steepest descent (SD) method without a line-search. Further,
they show that damped least squares (DLS) is obtained from a Gauss-
Newton (GN) approach, and the damping results in a Levenberg-
Marquardt (LM) type method. Other quasi-Newton type methods
are readily available such as memory limited BFGS [Zhao and Badler
1994] and a wide range of methods using iterative methods like pre-
conditioned conjugate gradient (PCG) for solving the sub-system
or approximate the Hessians using low-rank updates. Even cyclic-
coordinate descent (CCD) [Wellman 1993] can be derived from
using a matrix-splitting approach for solving the gradient equation
that forms the basis for the JT method. Interestingly, solving the
gradient equation with pseudo-inverses yields a system of equa-
tions similar to the Newton systems that form the basis for GN/LM
type of methods. Hence, these quasi-Newton methods are linked to
the JT method. Recent work by Harish et al. [2016] investigates how
to parallelize a DLS approach for solving the IK problem. The work
focuses on creating a parallel line-search that can help eliminate
the need for the many iterations that JT method usually requires
to converge for highly nonlinear motions with many degrees of
freedom. This is expected from convergence theorems stating that
JT/SD method has linear convergence rate [Nocedal and Wright
1999]. However, it has also been observed in practice [Callennec
2006]. Other work incorporates higher order information, mimick-
ing the e�ect of a Hessian, by nonlinear conjugate gradients and
adding non-smoothness allows a full coupling of joint limits too
[Engell-Nørregård and Erleben 2009].

In Fedor [2003], three methods are revisited and evaluated for
computer game usage: an algebraic method, Cyclic-Coordinate-
Descent [Wellman 1993], and a Newton-Raphson method. The
Newton-based method is used for complex manipulation and claimed
to give the most realistic looking poses, but it is the slowest. How-
ever, joint limits were not dealt with in this work. Other formu-
lations have been investigated for instance in Ho et al. [2005] the
problem is solved using linear programming.

Finally, Zordan [2002] notes the importance of tuning parameters
for numerical methods in order to achieve good performance, and
this is a relevant step in our experiments.

3 THEORY
We begin by formally de�ning the IK problem of a serial chain
mechanism. Without loss of generality, we ignore branched struc-
tures and closed loops in this formalism and limit our presentation
to serial chains. Figure 1 conceptualizes many of the details we
discuss in this section.

Let the tool vector in a serial chain be given by t ∈ R3. We assume
the serial chain is made of rigid links. The tool vector is placed in
the last frame of the chain, which we call the end-e�ector frame.
Note that we adopt robotics terminology throughout this section,
and conceptually interpret t as the location of a tool being held by a

robotic manipulator. However, in the context of computer graphics
applications, t can be interpreted as a point with �xed position
relative to a bone in a skeleton armature (e.g. an optical marker).

Each link describes a coordinate frame with respect to the par-
ent link, or bone. The parent frame of the root link is the world
coordinate system. Hence, a link is equivalent to a transformation
of a point p in the current coordinate frame k to the coordinate
frame of its parent k − 1, and we write the transformation as[

p
1

]
k−1
= Tk

[
p
1

]
k
. (1)

The subscripts on the homogeneous vectors denote the frame of
reference with the world coordinate system (WCS) assigned index
k = −1.

The homogeneous transform matrix Tk is parameterized with
the Euler angles αk , βk , and γk and position of the joint. We use
homogeneous coordinates in deriving our equations and when we
present our �nal results we implicitly homogenize the formulas.
Also, our derivations use ZYZ Euler angle order to be speci�c and
make derivations less dense. However, in the code and supplemen-
tary material we generalize to any Euler angle convention and
extend our formulation to account for a translational moving root
bone, which is important for working with motion capture data of
human characters.

Given an N link serial chain and a tool vector t and known
joint parameters, we wish to compute the tool vector position in
the world coordinate system

[
tT 1

]T
WCS . This is called the end-

e�ector position, and is given by[
e
1

]
≡

[
t
1

]
WCS

≡ T0 T1 · · ·TN

[
t
1

]
N
. (2)

The matrix concatenation in (2) de�nes the end e�ector function
F(θ) where θ = [α0 β0 γ0 α1 β1 γ1 . . . αN βN γN]

T is termed the
joint angles or joint parameters.

We now have enough notation and terminology in place to de-
�ne what we understand of the unconstrained inverse kinematics
problem.

3.1 Non-linear optimization
Given a desired goal position g ∈ R3, we seek to �nd the joint
angles θ∗ that minimize the distance between the goal position and
the end-e�ector position

θ∗ = argmin
θ

1
2

[g1] − F(θ)

2 (3)

which de�nes the IK objective function f (θ). Joint angle limits are
added easily using box constraints

θ∗ = arg min
l≤θ ≤u

f (θ) , (4)

where l < u are lower and upper bounds on the joint angles. We
note that the IK problems in (3) or (4) are non-linear problems
and require specialized iterative numerical methods that utilize
the gradient, and possibly the Hessian, of f (θ). One may apply
Newton’s method in a root search setting, such that[

g
1

]
− F(θ) = 0 . (5)

Inverse Kinematics Problems with Exact Hessian Matrices MiG ’17, November 8–10, 2017, Barcelona,Spain

This de�nes a residual vector, r(θ) = [gT 1]T − F(θ), that is related
to the minimization form by f (θ) ≡ 1

2 ‖r(θ)‖
2. Solving the residual

equation (5) using an iterative Newton method implies solving the
equation

J∆θ = r(θ) (6a)

where J = ∂F(θ)
∂θ is the Jacobian matrix. A steepest descent method

for solving the optimization problem in equation (3) iteratively
updates the current iterate θk with the gradient ∇f (θk) as the
search direction and a step length α , to give the next iterate

θk+1 = θk + α∇f (θk) . (7)

The gradient of the IK minimization formulation is given as

∇f (θ) = −
∂F
∂θ

T
r(θ) = −JT r. (8)

From equation (6a) and (8) it shows that an e�cient method for
computation of matrix J is desired.

Iterative solvers based on Newton’s method use second deriva-
tive information contained in the Hessian matrix H by solving the
linear system

Hp = −∇f (θ), (9)
which is the form used in our experiments. Here, the descent di-
rection p is used to update the current solution by means of a line
search with step size α , such that θ ← θ + αp. The (i, j) entry of
the Hessian is given by

Hi, j =
∂2 f

∂θ j∂θi
= JTj Ji − K

T
i, j r , (10)

where Ki, j =
∂Ji
∂θ j

. We use a subscript on J to denote respective
columns of the matrix. Here, K is in fact a third order tensor. If we
used tensor algebra notation and double contraction operator : then
this can be written compactly as

H = JT J − K : r . (11)

Previous work has argued to ignore the term K : r, leading to Gauss-
Newton type methods, or using iterative techniques to approximate
H, such as the popular BFGS method. In this work, we examine
computing the exact Hessian.

3.2 Computing the Jacobian
Consider that for the rotational degrees of freedom in a kinematic
chain, the ith index of θ can be either the α , β or γ angle of the kth

joint. That is,
θi ∈ {αk , βk ,γk } . (12)

The instantaneous change in the end-e�ector position due to ro-
tation about joint axes αk , βk , or γk involves the cross-product of
the joint axes in the world coordinate system. The IK Jacobian for
each rotational DOF is therefore

∂F(θ)
∂αk

=
[
k
]
WCS × ∆pWCS , (13a)

∂F(θ)
∂βk

=
[
RZ (αk)j

]
WCS × ∆pWCS , (13b)

∂F(θ)
∂γk

=
[
RZ (αk)RY (βk)k

]
WCS × ∆pWCS (13c)

where ∆pWCS =
(
e −

[
tk

]
WCS

)
is the vector di�erence between

the end-e�ector position and the position of the joint origin in the
world coordinate system, and we make use of the unit-axis vectors
i = [1 0 0]T , j = [0 1 1]T , k = [0 0 1]T .

For the translation degrees of freedom {tx , ty , tz } of a moving
root bone, it has the nice property that the bone vector lives in the
world coordinate system and will be independent of any rotational
degree of freedom in the system. Hence, the IK Jacobian is simply

∂F(θ ′)
∂tx

= i ,
∂F(θ ′)
∂ty

= j ,
∂F(θ ′)
∂tz

= k . (14)

Further details about deriving (13) and (14) are provided in the
supplementary material.

3.3 Computing the Hessian
We observe from equation (10) that we seek an e�cient way to
compute the third order tensor K, which is de�ned as

Ki, j ≡
∂

∂θ j

(
∂F
∂θi

)
= Xh−1

0
∂Th
∂θ j

Xk−1
h+1
∂Tk
∂θi

XN
k+1

[
t
1

]
N
. (15)

Here we assume θi ∈ {αk , βk ,γk } and θ j ∈ {αh , βh ,γh } and the
homogeneous matrix concatenation is de�ned as

Xb
a ≡ Ta ,Ta+1 · · ·Tb−1Tb

for a ≤ b . We notice that (15) involves a recursive application
of the transformation rules. The �rst derivative will change the
position into a vector direction and apply a cross-product with the
instantaneous joint axis from bone k . The second derivative will
add a cross-product with the instantaneous joint axis from bone
h. Hence, we may now immediately write up a world-coordinate
system equation for computing Ki, j .

Let the instantaneous joint axis of bone k be given by

v =


k if θi = αk
RZ (αk)j if θi = βk
RZ (αk)RY (βk)k if θi = γk
0 otherwise

(16)

and similarly for bone h by

w =


k if θ j = αh
RZ (αh)j if θ j = βh
RZ (αh)RY (βh)k if θ j = γh
0 otherwise

. (17)

This gives

Ki, j = wWCS × (vWCS × ∆pWCS) = wWCS × Ji , (18)

where vWCS = RkWCSv and wWCS = RhWCSw are the instanta-
neous joint axes transformed in the world coordinate system.

Finally, assuming the �rst three degrees of freedom are reserved
for the root translation, then Ki, j = 0 if i ∈ {0, 1, 2} or j ∈ {0, 1, 2}.

3.4 Other implementation details
A tree branched IK structure essentially consists of several serial
chains that all share the same root and may have overlapping
“trunks” of the tree structure in common. Such an IK structure is
easily created by traversal over all bones S to identify end-e�ector

MiG ’17, November 8–10, 2017, Barcelona,Spain K. Erleben and S. Andrews

bones, followed by a back-traversal from each end-e�ector to the
root. This results in the end-e�ectors L and set of kinematic chains
C. This process is run once at initialization, or whenever the tree-
structure changes its connectivity or becomes re-rooted. A recursive
traversal can then be used to perform forward kinematics and
compute the world orientations and positions of all bones This step
should be invoked prior to any Jacobian or Hessian computation.
Also observe that in order to get the IK gradient one must use the
result of the Jacobian in (8).

4 RESULTS
This section presents comparisons of tracking real motion data
using quasi-Newton and exact Hessian-based methods. All exper-
iments are performed on a Windows PC with Intel i7 2.80 GHz
processor and 32 GB of memory.

A MATLAB implementation of the objective function, and Ja-
cobian and Hessian computations is used in our evaluation. The
exact Newton method uses the interior-re�ective trust region algo-
rithm [Coleman and Li 1996], and the quasi-Newton method used
the BFGS algorithm [Broyden 1970; Fletcher 1970]. The nonlinear
optimization is performed using the built-in fminunc function, or
fmincon in the case of a constrained optimization. We also compare
our results for unconstrained optimization with the LM algorithm,
which uses the Hessian approximation JT J and is equivalent to the
damped least squares method proposed in Buss [2004].

4.1 Motion capture data
We evaluate the performance of solving IK problems using motion
examples from the HDM05 database [Müller et al. 2007]. This data-
base provides skeletal motion and optical marker trajectories for a
variety of motion classes. Examples of motions contained in this
database are shown in Figure 2.

A total of 41 optical marker trajectories sampled at 120 Hz are
used for tracking. We solve for the motion of a skeleton with 58
degrees of freedom (DOF). The skeleton initialization and forward
kinematic updates are done using code provided with the database.

4.1.1 Unconstrained optimization. Figure 3 shows the conver-
gence when performing the unconstrained optimization in (3) for
selected frames of motion. The frames contain three types of mo-
tion: walking, kicking, and punching. In each case, the joint angles
and root position of the previous frame of motion were used as
the initial solution to the IK solver in order to give a reasonable
initial estimate for both the gradient and Hessian since we found
that both methods exhibited linear or sub-linear convergence when
initialized with a con�guration dissimilar to the current frame.

The average timings to solve for the examples shown in Figure 3
using kmax = 100 are 2.6 s for the quasi-Newton BFGS solver and
19.2 s for trust region with an exact Hessian with. In the latter
case, the longer timing is due to the overhead of computing the ma-
trix of second-order partial derivatives. However, using a stopping
tolerance f (θ) < 10−2, we observe the average timings shown in
Table 1. For Newton’s method based algorithms it’s clear that the
exact Hessian gives a much lower residual with fewer iterations
and less wall-clock time. However, the LM algorithm clearly gives
the fastest performance when a good initial solution is provided.

Type quasi-Newton Exact Hessian LM
Walking 5.30 s (24,383 calls) 0.59 s (7 calls) 0.25 s (34 calls)
Punching 6.05 s (49,333 calls) 2.54 s (226 calls) 0.49 s (167 calls)
Kicking 4.68 s (27,184 calls) 0.64 s (10 calls) 0.29 s (54 calls)

Table 1: Mean computation time & function calls per frame
for motions in Figure 3 with stopping tolerance f (θ) < 10−2.
Motion seq. quasi-Newton Exact Hessian Exact Hessian

(HDM05) kmax = 100 kmax = 10 kmax = 10
dg_03-05_02 3.11 s / 36.1 cm 0.54 s / 2.5 cm 0.92 s / 0.3 cm

Table 2: The mean computation time and error per frame
for solving a complete motion sequence with stopping toler-
ance f (θ) < 10−2 and prescribed maximum iterations kmax .

4.1.2 Constrained optimization. Figure 4 shows the convergence
when performing the constrained optimization in (4), which ac-
counts for joint limits. Compared to the unconstrained convergence
shown in Figure 3, the constrained optimizer seems to give slightly
performance in some instances, which is surprising. We hypothe-
size that the box constraints can sometimes help to avoid solutions
where inde�niteness or singularities may occur, and this is a point
for future investigation.

4.1.3 Initial solution. Here we set θ = 0 as the initial solution
and re-solve for the motion frames used in our previous analysis. As
shown by Figure 5, the convergence across all of the tested methods
becomes worse. Speci�cally, the trust region method with exact
Hessian exhibits linear, or even sub-linear, convergence early on.
The quasi-Newton and LM algorithms are also unable to achieve a
low error solution in many of the example frames. The LM algo-
rithm tends to get stuck in a local minimum when not initialized
with a good solution.

The trust region with exact Hessian was the only method to
consistently reach low error residual in instances of poor initial
solution. We note that as progress is made towards a solution, the
expected quadratic convergence behavior is observed.

4.1.4 Reconstructingmotion sequence. We evaluate the IK solvers
when reconstructing a complete motion sequence contained more
than several thousand frames. The average timing and error per
frame can be found in Table 2, where the error is measured as the
sum of the di�erence between the real and reconstructed marker po-
sitions (in cm). A video of the reconstructed motions, with side-by-
side comparison to the original motion from the HDM05 database,
can be found in the supplementary material.

The exact Newton solver with kmax = 10 gives low error when
�tting to marker data and qualitatively the best reconstruction.
The exact method typically required fewer than 4 iterations to
achieve the prescribed error of f (θ) < 10−2. The quasi-Newton
BFGS method with kmax = 10 does a very poor job of reconstruct-
ing the motion, and for some frames the residual is quite high.
Increasing the maximum iteration count to kmax = 100 improved
the reconstruction, but still does not achieve the low error of the
exact method, even through the computational time is comparable.

4.1.5 Tuning the optimization. Here we delve into some speci�c
details about the trust region and BFGS algorithm used in our
experiments. While the BFGS method gave consistently similar
rates of convergence, we found that the trust region method was
particularly sensitive to selection of parameters related to the PCG
algorithm that is used to solve the trust region subproblem.

Inverse Kinematics Problems with Exact Hessian Matrices MiG ’17, November 8–10, 2017, Barcelona,Spain

Figure 2: Exemplary frames ofmotion data used in our comparison: slowwalking (left), punching (middle), and kicking (right).

10 20 30 40 50 60 70 80 90 100

Iterations

10-25

10-20

10-15

10-10

10-5

100

f(
)

10 20 30 40 50 60 70 80 90 100

Iterations

10-25

10-20

10-15

10-10

10-5

100

f(
)

10 20 30 40 50 60 70 80 90 100

Iterations

10-25

10-20

10-15

10-10

10-5

100

f(
)

Figure 3: Convergence of the unconstrained optimization in (3) for frames selected from the dg_03-02_01motion in theHDM05
database. Three types of motion are used: walking (left), punching (middle), and kicking (right).

10 20 30 40 50 60 70 80 90 100

Iterations

10-25

10-20

10-15

10-10

10-5

100

f(
)

10 20 30 40 50 60 70 80 90 100

Iterations

10-25

10-20

10-15

10-10

10-5

100

f(
)

10 20 30 40 50 60 70 80 90 100

Iterations

10-25

10-20

10-15

10-10

10-5

100

f(
)

Figure 4: Convergence of the constrained optimization in (4) for frames selected from the dg_03-02_01 motion in the HDM05
database. Three types of motion are used: walking (left), punching (middle), and kicking (right).

10 20 30 40 50 60 70 80 90 100

Iterations

10-25

10-20

10-15

10-10

10-5

100

f(
)

20 40 60 80 100 120 140 160 180 200

Iterations

10-25

10-20

10-15

10-10

10-5

100

f(
)

20 40 60 80 100 120 140 160 180 200

Iterations

10-25

10-20

10-15

10-10

10-5

100

f(
)

Figure 5: Convergence of the unconstrained optimization when initialized with θ = 0. Both methods demonstrate slower
convergence compared to initializing with the joint angles from the previous frames. In particular, the exact Newton method
demonstrates linear convergence early on. Note that kmax = 200was used to generate some of these plots sincemore iterations
were required to observe convergence behavior.

10 20 30 40 50 60 70 80 90 100
Iterations

10-25

10-20

10-15

10-10

10-5

100

f(
)

Figure 6: Evaluating PCG stopping tolerance ϵPCG and pre-
conditioner bandwidth bPCG .

The default Jacobi, or diagonal, preconditioner is simple and
e�cient to compute. However, it assumes that the Hessian is diago-

nally dominant, which is not guaranteed in our case. We found that
using a larger bandwidth for the preconditioning matrix helped
convergence in some instance Furthermore, we found that a lower
stopping tolerance for the PCG iterations could sometimes lead to
needless exploration of regions of the solution space, especially
when the Hessian matrix was ill conditioned or inde�nite. This
occurred most often when the residual was large (e.g. ‖r (θ)‖ > 1).
This is not unexpected since our objective function is essentially
a sum of squared errors function, and the Hessian will only be
positive de�nite near the �nal solution. In such cases, setting a low
function tolerance was detrimental and gave linear or sub-linear
rate of convergence, similar to what we observed in Figure 5.

We tune these parameters empirically by sweeping the function
tolerance ϵPCG ∈ [0.01, 0.1, 0.2] and preconditioner bandwidth
bPCG ∈ [0, 2, 4, 8, 16, 24]. Figure 6 shows the convergence when

MiG ’17, November 8–10, 2017, Barcelona,Spain K. Erleben and S. Andrews

running this sweep for a selected frame of motion. We found that
ϵPCG = 10−1 and bPCG = 24 give overall the best performance,
and therefore we use these values in all of our experiments.

We also observed that the sub-solver sometimes required many
iterations to converge. This is not unexpected, since there is no
guarantee that the Hessian matrix is well-conditioned. In fact, some-
times the condition number of the Hessian can become quite large
(larger than 105). We therefore give the PCG solver adequate oppor-
tunity to solve the sub-problem by setting the maximum iterations
to M2, where M is the number of skeletal degrees of freedom.

Finally, in cases where the Hessian matrix is inde�nite, we found
that applying the technique described in Higham [1988] to compute
a “nearby” semi-positive de�nite Hessian matrix was useful. For
the results in Figure 5, this helped to improve convergence when
the initial solution was not close to the true solution.

5 DISCUSSION AND CONCLUSION
The computation of exact Hessians for solving IK problems is often
dismissed based on conventional pragmatism, but rarely examined
in detail. In this paper and the accompanying supplementary mate-
rial, we have presented a mathematical framework for computing
exact Hessians which is useful for computer graphics researchers.
We have also evaluated the bene�ts of including exact Hessians
based on experimentation with real-world motion capture data.

We observe from our convergence plots in Figure 3 and Fig-
ure 4 that with fewer than 10 iterations, the exact method usu-
ally achieves several orders of magnitude better accuracy than the
quasi-Newton method. For Newton’s method class of algorithms,
the added information from the exact Hessian results in very few
required iterations to achieve a speci�ed accuracy, and in many
cases the low number of iterations outweighs the per iteration cost
of computing the exact Hessian. Hence, one gets a faster overall
numerical method.

However, the LM algorithm achieves comparable convergence
at much less computational cost, but as Figure 5 illustrates con-
vergence to a low error solution is dependent on having a good
initial solution. All methods bene�t when temporal coherence can
be exploited (i.e. using joint angles from the previous frame of mo-
tion), but only the exact Hessian method consistently give good
accuracy when a poor initial solution was provided. In our experi-
ments, the Hessian approximation methods could often not reach
the same level of accuracy in these instances, even after more than
200 iterations.

We note that our MATLAB implementation is unoptimized, and
variables shared during computation of the Jacobian and Hessian
are recomputed. Computing these just once and reusing their value
would certainly improve computational performance. Performance
could also be improved by realizing a parallelized implementation
of the Jacobi and Hessian computations. Currently, a single thread
is used to compute matrices and minimize the objective function.
We note that although computing the Hessian has quadratic time
complexity, the for-loops in this algorithm are straightforward to
parallelize. Hence, a parallel numerical method with exact Hessians
will have low computational time constants. In fact, the speedup
factor of computing the Hessian is likely to be in favor of a GPU
as the �ll-in of the Hessian is one order of magnitude larger than

the data on which its computation depends on. Hessian free and
approximate methods do not have this potential for speed-up.

As noted in Section 4.1.5, the exact Newton method regularly
encounters solutions where the Hessian matrix is inde�nite and
we proposed using a technique to enforce semi-positive de�nite-
ness. Future work will investigate the conditions under which this
happens and how to avoid them. A hybrid approach that switches
between exact and approximate modes would also be an interesting
research trajectory to explore. For instance, choosing a gradient-
based, quasi-Newton, or exact Newton method based-on perfor-
mance expectations given the current solution and residual.

ACKNOWLEDGMENTS
Thanks to Jernej Barbič and Yili Zhao for releasing their ASF/AMC
viewer, which we use to visualize some of our results.

REFERENCES
Charles George Broyden. 1970. The convergence of a class of double-rank minimization

algorithms 1. general considerations. IMA Journal of Applied Mathematics 6, 1 (1970),
76–90.

S.R. Buss. 2004. Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoin-
verse and Damped Least Squares methods. Technical Report.

B. Le Callennec. 2006. Interactive Techniques for Motion Deformation of Articulated Fig-
ures Using Prioritized Constraints. Ph.D. Dissertation. École Polytechnique Fédérale
de Lausanne (EPFL).

Thomas F Coleman and Yuying Li. 1996. An interior trust region approach for nonlinear
minimization subject to bounds. SIAM Journal on optimization 6, 2 (1996), 418–445.

John J. Craig. 1989. Introduction to Robotics: Mechanics and Control. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Morten Engell-Nørregård and Kenny Erleben. 2009. A Projected Non-linear Conjugate
Gradient Method for Interactive Inverse Kinematics.. In MATHMOD 2009 - 6th
Vienna International Conference on Mathematical Modelling.

Morten Engell-Nørregård and Kenny Erleben. 2011. Technical Section: A Projected
Back-tracking Line-search for Constrained Interactive Inverse Kinematics. Comput.
Graph. 35, 2 (April 2011), 288–298. https://doi.org/10.1016/j.cag.2010.12.011

Martin Fedor. 2003. Application of inverse kinematics for skeleton manipulation
in real-time. In SCCG ’03: Proceedings of the 19th spring conference on Computer
graphics. ACM Press, New York, NY, USA, 203–212.

Roger Fletcher. 1970. A new approach to variable metric algorithms. The computer
journal 13, 3 (1970), 317–322.

Michael Girard and A. A. Maciejewski. 1985. Computational Modeling for the Computer
Animation of Legged Figures. SIGGRAPH Comput. Graph. 19, 3 (July 1985), 263–270.
https://doi.org/10.1145/325165.325244

Pawan Harish, Mentar Mahmudi, Benoît Le Callennec, and Ronan Boulic. 2016. Parallel
Inverse Kinematics for Multithreaded Architectures. ACM Trans. Graph. 35, 2,
Article 19 (Feb. 2016), 13 pages. https://doi.org/10.1145/2887740

Nicholas J Higham. 1988. Computing a nearest symmetric positive semide�nite matrix.
Linear algebra and its applications 103 (1988), 103–118.

Edmond S. L. Ho, Taku Komura, and Rynson W. H. Lau. 2005. Computing inverse kine-
matics with linear programming. In VRST ’05: Proceedings of the ACM symposium
on Virtual reality software and technology. ACM, New York, NY, USA, 163–166.

T. C. Hsia and Z. Y. Guo. 1991. New inverse kinematic algorithms for redundant robots.
Journal of Robotic Systems 8, 1 (1991), 117–132.

Sung-Hee Lee, Junggon Kim, F. C. Park, Munsang Kim, and J. E. Bobrow. 2005. Newton-
Type Algorithms for Dynamics-Based Robot Movement Optimization. IEEE Transac-
tions on Robotics 21, 4 (Aug 2005), 657–667. https://doi.org/10.1109/TRO.2004.842336

M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, and A. Weber. 2007. Docu-
mentation Mocap Database HDM05. Technical Report. Universität Bonn.

Jorge Nocedal and Stephen J. Wright. 1999. Numerical optimization. Springer-Verlag,
New York. xxii+636 pages.

Chris Wellman. 1993. Inverse Kinematics and Geometric Constraints for Articulated
Figure Manipulation. Master’s thesis. Simon Fraser University.

Jianmin Zhao and Norman I. Badler. 1994. Inverse kinematics positioning using
nonlinear programming for highly articulated �gures. ACM Trans. Graph. 13, 4
(1994), 313–336.

Victor B Zordan. 2002. Solving computer animation problems with numeric optimization.
Technical Report. Georgia Institute of Technology.

https://doi.org/10.1016/j.cag.2010.12.011
https://doi.org/10.1145/325165.325244
https://doi.org/10.1145/2887740
https://doi.org/10.1109/TRO.2004.842336

	Abstract
	1 Introduction
	2 Numerical Methods for IK
	3 Theory
	3.1 Non-linear optimization
	3.2 Computing the Jacobian
	3.3 Computing the Hessian
	3.4 Other implementation details

	4 Results
	4.1 Motion capture data

	5 Discussion and Conclusion
	References

