
Supplementary Notes: Inverse Kinematics Problems with Exact Hessian Matrices

Kenny Erleben
University of Copenhagen

kenny@di.ku.dk

Sheldon Andrews
École de technologie supérieure

sheldon.andrews@etsmtl.ca

1 Introduction

These supplementary notes are provided in an educa-
tional spirit. Section 2 shows how the cross-product
formula for computing columns of the Jacobian emerges
from direct calculus. Section 5 extends to arbitrary Eu-
ler angles. Our work is not limited to homogeneous
coordinates or Euler angles. However, these represen-
tations are well known and chosen merely to present
to a wider audience. In fact our supplementary im-
plementations use quaternions. We refrain from using
exponential maps as they in our opinion are less ac-
cessible for a general audience, although offer a nice
re-parameterization [1].

We outline how to compute the Jacobian in Sec-
tion 3.1 and in Section 3.2 we work on the Hessian. We
also address necessary changes to add a moving root
frame in Section 3.3. Our notes finalize by presenting
detailed pseudo code algorithms in Section 4. Please see
our paper and supplementary code for further informa-
tion.

2 Mathematical Preliminaries

Let us consider a single IK joint, to be general we label
this the kth joint. This joint is equivalent to a rigid
body transformation, which we for notational conve-
nience may write use a homogeneous coordinate nota-
tion, Tk,[

p
1

]
k−1

= Tk

[
p
1

]
k

, (1a)

=

[
R(αk, βk, γk) tk

0T 1

]
︸ ︷︷ ︸

≡Tk

[
p
1

]
k

. (1b)

That transforms a vector p from the kth joint frame into
the (k−1)th joint frame. The rigid body transformation

consist of a rotation R(αk, βk, γk) that we have parame-
terized using the joint angles αk, βk, and γk, and a joint
vector tk (also called the link vector). We consider the
link vector to be constant in this work, although one
can generalize this to be variable to model prismatic
joints. One may define the rotation part in many differ-
ent ways. To be specific in this work we adopt a ZY Z
Euler angle convention,

R(αk, βk, γk) ≡ RZ(αk)RY (βk)RZ(γk) (2)

where the individual rotation matrices RZ and RY are
defined as

RZ(θ) ≡

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

 , (3a)

RY (θ) ≡

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 (3b)

where θ is used as a generic placeholder in above defi-
nitions.

If we consider the derivative of the rotation matrices
with respect to their respective joint angle argument
then we find

∂RZ

∂θ
≡

 0 1 0
−1 0 0

0 0 0

 Rz = C(k)RZ , (4a)

∂Ry

∂θ
≡

0 0 −1
0 0 0
1 0 0

 Ry = C(j)Ry (4b)

where we defined the cross product matrix as follows

C(p) ≡

 0 z −y
−z 0 x
y −x 0

 (5)

where p =
[
x y z

]T
is just a generic placeholder vec-

tor used to make the definition. We also make use of

1



the unit-axis vectors

i ≡
[
1 0 0

]T
, (6a)

j ≡
[
0 1 0

]T
, (6b)

k ≡
[
0 0 1

]T
. (6c)

The cross product matrix simply allows us to rewrite a
cross product in terms of a matrix multiplication. One
may show algebraically that given two 3D vectors a and
b then

a× b = C(a)b = −C(b)a . (7)

If R denotes some arbitrary rotation then we recall that
the cross product obeys the rule

Ra×Rb = R (a× b) , (8a)

RC(a)b = C(Ra)Rb . (8b)

In particular, the last version will become important
when we work with simplifying our IK transformations.
We now have all the necessary components to derive the
derivatives of the bone transforms with respect to the
joint angles,

∂Tk

∂αk
=

[
C(k)RZ(αk)RY (βk)RZ(γk) 0

0T 0

]
, (9a)

∂Tk

∂βk
=

[
RZ(αk)C(j)RY (βk)RZ(γk) 0

0T 0

]
, (9b)

∂Tk

∂γk
=

[
RZ(αk)RY (βk)C(k)RZ(γk) 0

0T 0

]
. (9c)

Using the rule of working with rotation matrices in equa-
tion (8b) we rewrite this as

∂Tk

∂αk
=

[
C(k)R 0
0T 0

]
, (10a)

∂Tk

∂βk
=

[
C(j′)R 0
0T 0

]
, (10b)

∂Tk

∂γk
=

[
C(k′)R 0

0T 0

]
(10c)

where we omitted writing the explicit angle arguments
and we defined the instantaneous joint axis vectors wrt.
frame (k − 1) as

j′ = RZ(αk) j , (11a)

k′ = RZ(αk)RY (βk)k . (11b)

Now we may put our results together to compute the
derivative of a vector that is transformed by a IK bone.

That is

∂

∂αk

[
p
1

]
k−1

=
∂Tk

∂αk

[
p
1

]
k

=

[
k×∆p

0

]
, (12a)

∂

∂βk

[
p
1

]
k−1

=
∂Tk

∂βk

[
p
1

]
k

=

[
j′ ×∆p

0

]
, (12b)

∂

∂γk

[
p
1

]
k−1

=
∂Tk

∂γk

[
p
1

]
k

=

[
k′ ×∆p

0

]
(12c)

where we defined ∆p ≡ R
[
p
]
k
. These equations offer

us the general insight that we may compute the deriva-
tive of a single degree of freedom (DOF) rotation by
transforming the joint axis into the (k− 1)th frame and
take the cross product of this instantaneous axis with
the vector p rotated from the kth frame into the (k−1)th

frame.

3 Building the Matrices

Last section build up mathematical preliminaries and
made a mathematical derivation showing that “cross-
product” between the joint origin to end-effect arm and
angular velocity vectors gives the positional derivative
of the end-effector position with respect to the rotation
angle. The “cross-product” interpretation is quite well
known from rigid body physics, and quite independent
of whichever way one parameterizes the rotation axes.
With the mathematics in place we can know show how
to compute the Jacobian, the Hessian and extend to a
moving root frame too.

3.1 Computing the Jacobian

Now let us consider that the ith index of θ can be either
the α, β or γ angle of the kth joint. That is,

θi ∈ {αk, βk, γk} . (13)

Let us define the homogeneous matrix concatenation as
Xb
a ≡ Ta,Ta+1 · · ·Tb−1Tb for a ≤ b. Using this nota-

tion we can write compactly the Jacobian with respect
to the ith joint as

∂F(θ)

∂θi
=

Xk−1
0

∂Tk

∂θi
XN
k+1

[
t

1

]
N

if θi ∈ {αk, βk, γk}

0 otherwise

.

(14)
From this we realize that[

t
1

]
k

= XN
k+1

[
t
1

]
N

(15)

2



is simply the tool vector in the (k + 1)th joint frame.
Hence, when applying results from (10) we find

∂F(θ)

∂αk
= Xk−1

0

∂Tk

∂αk

[
t
1

]
k

= Xk−1
0

[
k×∆p

0

]
, (16a)

∂F(θ)

∂βk
= Xk−1

0

∂Tk

∂βk

[
t
1

]
k

= Xk−1
0

[
j′ ×∆p

0

]
, (16b)

∂F(θ)

∂γk
= Xk−1

0

∂Tk

∂γk

[
t
1

]
k

= Xk−1
0

[
k′ ×∆p

0

]
(16c)

where ∆p is the tool vector with respect to the kth joint
frame and k, k′ and j′ are the instantaneous joint axes
of our ZYZ Euler rotation expressed in the (k − 1)th

frame.
We notice that the homogeneous coordinates in all

above equations have become zero. Hence the effect
of Xk−1

0 is to rotate the directional cross-product vec-
tor from frame (k− 1) into the world coordinate frame.
This important observation allows us to make the short-
cut of simply computing the cross product using world
coordinate system quantities. This is application of the
rule from equation (8b). Using this observation, and
dropping homogeneous coordinates, we finally obtain

∂F(θ)

∂αk
=
[
k
]
WCS

×∆pWCS , (17a)

∂F(θ)

∂βk
=
[
RZ(αk)j

]
WCS

×∆pWCS , (17b)

∂F(θ)

∂γk
=
[
RZ(αk)RY (βk)k

]
WCS

×∆pWCS (17c)

where ∆pWCS =
(
e−

[
tk
]
WCS

)
is the vector difference

between the end-effector position and the position of the
joint origin in the world coordinate system.

3.2 Computing the Hessian

The K-tensor is defined as

Kij =
∂

∂θj

(
∂F

∂θi

)
, (18a)

= Xh−1
0

∂Th

∂θj
Xk−1
h+1

∂Tk

∂θi
XN
k+1

[
t
1

]
N

(18b)

where we assume θi ∈ {αk, βk, γk} and θj ∈
{αh, βh, γh}. We notice this is simply a recursive appli-
cation of the transformation rules we used for computing
the Jacobian in the first place. The first derivative will
change the position into a vector direction and apply
a cross-product with the instantaneous joint axis from

bone k. The second derivative will add a cross-product
with the instantaneous joint axis from bone h. Hence,
we may now immediately write up a world-coordinate
system equation for computing Kij .

Let the instantaneous joint axis of bone k be given by

v =


k if θi = αk

RZ(αk)j if θi = βk

RZ(αk)RY (βk)k if θi = γk

0 otherwise

(19)

and similarly for bone h by

w =


k if θj = αh

RZ(αh)j if θj = βh

RZ(αh)RY (βh)k if θj = γh

0 otherwise

. (20)

Finally, we have

Kij = wWCS × vWCS ×∆pWCS (21a)

= wWCS × Ji , (21b)

where vWCS = Rk
WCSv and wWCS = Rh

WCSw are the
instantaneous joint axes transformed in the coordinates
of the world coordinate system.

3.3 Moving Root Bone

For character animation it may be desirable to have
support for a moving root bone. In principle one can
make the character walk and jump simply by controlling
the end-effectors. Here we outline how to extend the
joint angle parameter vector to include the translational
parameters of the root bone. First we extend the joint

parameter vector θ with to =
[
tx ty tz

]T
to give us

the extended version θ′

θ′ ≡
[
tx ty tz θT

]T
. (22)

The root bone has the nice property that the bone vec-
tor lives in the world coordinate system and will be in-
dependent of any rotational degree of freedom in the
system. Hence, the first three columns of the IK Jaco-
bian will be

∂F(θ′)

∂tx
= i , (23a)

∂F(θ′)

∂ty
= j , (23b)

∂F(θ′)

∂tz
= k . (23c)

3



Further, we trivially have from above equations that

Kij = 0 if i ∈ {0, 1, 2} or j ∈ {0, 1, 2} . (24)

Hence, we can add the extension trivially to the unmod-
ified J and H to get the root-translation extensions J′

and H′, by letting I3×3 ≡
[
i j k

]
and define

J′ ≡
[
I3×3 J

]
, (25a)

H′ ≡
[
I3×3 0
0 H

]
. (25b)

4 Pseudo Code

In this section we provide pseudo code for initialization
and updating of the inverse kinematics (IK) data struc-
tures, as well as algorithms for building the Jacobian
and Hessian matrices.

Serial chains are easily created by traversal over the
bones as shown in Algorithm 1. This should be run once
at initialization, or whenever the tree-structure changes
its connectivity or becomes re-rooted.

A recursive traversal can be used to perform forward
kinematics and compute the world orientations and po-
sitions of all bones, as shown in Algorithm 2. It should
be invoked prior to any Jacobian or Hessian computa-
tion. The Jacobian computation is outlined in Algo-
rithm 3, and the Hessian computation in Algorithm 4.

Performance could be improved by realizing a paral-
lelized implementation of Algorithm 3 and Algorithm 4.

5 Other Euler Conventions

Although we used the ZYZ Euler convection in our
derivations our theory is general and supports any Eu-
ler angle convention. For instance imagine we used ZYX
then we make the modifications

Rk ← RZ(α)RY (β)RX(γ) (26)

to line 2 in Algorithm 2. Further the instantaneous
joint axes in lines 15-17 of Algorithm 3 and lines 12-14
in Algorithm 4 will be modified accordingly

u← Rpk , (27a)

v← RpRZ(α) j , (27b)

w← RpRZ(α)RY (β) i . (27c)

To make this even more general, we may denote any Eu-
ler convention by the ordered triplet ABC. Each letter

Data: S: All bones in a tree IK structure
Result: C: Set of all IK chains of the IK structure

1 L ← empty set of bones;
2 foreach B ∈ S do
3 if B has no children then
4 add B to L;
5 end

6 end
7 C ← empty set of chains;
8 foreach B ∈ L do
9 H ← empty chain;

10 while B exist do
11 add B to front of H;
12 B ← Parent bone of B;

13 end
14 add H to C;
15 end

Algorithm 1: MakeChains: Chains of a tree-
branched kinematic structure are generated by
iterating over all bones to identify end-effector
bones and then followed by back-traversal from
each end-effector to the single root bone of the
tree structure. Running time is O(N + LH)
where N is number of bones in structure, L� N
is the number of leaves/chains, and H < N is
the height of the tree-structure. Hence, we have
O(N).

Data: Bk: Current bone
1 (α, β, γ)← current Euler angles of Bk;
2 Rk ← RZ(α)RY (β)RZ(γ);
3 tk ← local position of Bp;
4 Rp ← identity;
5 tp ← 0;
6 if Parent bone of Bk exist then
7 Bp ← Parent bone of Bk;
8 Rp ← world orientation of Bp;
9 tp ← world position of Bp;

10 end
11 world orientation of Bk ← Rp Rk;
12 world position of Bk ← tp + Rp tk;
13 foreach Bc ∈ children of Bk do
14 update(Bc);
15 end

Algorithm 2: ForwardKinematicsUpdate:
Recursive forward sweep through a hierarchical
kinematics structure quickly updates all bones
with their current orientation R and position t of
joint frames in the WCS. Running time is O(N),
where N is number of bones in the structure.

4



Data: C: set of chains, S: All bones in a tree IK
structure

Result: J: The IK Jacobian
1 ForwardKinematicsUpdate(root bone of S);
2 C ← MakeChains(S);
3 E ← number of chains;
4 N ← number of bones;
5 J← zero matrix of 3E × 3N ;
6 foreach Hi ∈ C do
7 e← world position of end-effector bone in Hi;
8 foreach Bk ∈ H do
9 Rp ← identity;

10 if Parent bone of Bk exist then
11 Rp ←

world orientation of parent bone of Bk;

12 end
13 (α, β, γ)← current Euler angles of Bk;
14 ∆p← e− world position of Bk;
15 u← Rp k;
16 v← Rp RZ(α) j;
17 w← Rp RZ(α)RY (β)k;
18 Ji,3 k ← u×∆p;
19 Ji,3 k+1 ← v ×∆p;
20 Ji,3 k+3 ← w ×∆p;

21 end

22 end

Algorithm 3: ComputeJacobian: Building
the IK Jacobian uses blocked indexing into J,
which consists of R3 blocks. The running time
is O(N L), where L < N is the number of chains
in the structure. Tool-vectors are ignored in this
algorithm, but line 7 can be modified to include
non-zero tool-vectors if needed.

Data: C: set of chains, J: Jacobian matrix
Result: H: The IK Hessian matrix

1 H← symmetric matrix JTJ;
2 foreach Hc ∈ C do
3 e← world position of end-effector bone in Hc;
4 r← goal of Hc - e ;
5 foreach Bk ∈ H do
6 foreach Bh ∈ H with h ≤ k do
7 Rp ← identity;
8 if Parent bone of Bh exist then
9 Rp ←

world orientation of parent of Bh;

10 end
11 (α, β, γ)← current Euler angles of Bh;
12 u← Rp k;
13 v← Rp RZ(α) j;
14 w← Rp RZ(α)RY (β)k;
15 foreach i ∈ (3 k, 3 k + 2) do

16 Hi,3h ← Hi,3h − (u× Ji)
T r;

17 Hi,3h+1 ← Hi,3h+1 − (v × Ji)
T r;

18 Hi,3h+2 ← Hi,3h+2 − (w × Ji)
T r;

19 end

20 end

21 end

22 end

Algorithm 4: ComputeHessian: The numer-
ical method for computing the Hessian only fills
in the upper triangular part of the Hessian H-
matrix. Notice that the tool vectors are assumed
to be the zero vectors in line 3. The running time
is O(N2L+ L2), or O(N2) overall.

5



referes to a rotation around some coordinate axis. We
label the respective axes a, b, c. Now we have,

Rk ← RA(α)RB(β)RC(γ) (28)

and

u← Rpa , (29a)

v← RpRA(α)b , (29b)

w← RpRA(α)RB(β) c . (29c)

References

[1] F. Sebastin Grassia. Practical parameterization of
rotations using the exponential map. J. Graph.
Tools, 3(3):29–48, March 1998.

6


