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Figure 1: Examples simulated using our efficient block pivoting method: mobile crane lifting a concrete pipe (top left); winch
spooling a chain (top center); light armored vehicle driving over obstacles (top right); knuckle boom crane on a ship lifting
a subsea module (bottom right); forklift lifting a crate and driving around cones (bottom center); forwarder picking up a log
(bottom right). Each one is modeled as a multibody system with hundreds of constraints, stiff contacts, and large mass ratios.

ABSTRACT
Simulating stiff physical systems is a requirement for numerous

computer graphics applications, such as VR training for heavy

equipment operation. However, iterative linear solvers often per-

form poorly in such cases, and direct methods involving a factor-

ization of the system matrix are typically preferred for accurate

and stable simulations. This can have a detrimental impact on

performance, since factorization of the system matrix is costly

for complex simulations. In this paper, we present a method for

efficiently solving linear systems of stiff physical systems involv-

ing contact, where the dynamics are modeled as a mixed linear

complementarity problem (MLCP). Our approach is based on a

block Bard-type algorithm that applies low-rank downdates to a

Cholesky factorization of the system matrix at each pivoting step.

Further performance improvements are realized by exploiting low
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bandwidth characteristics of the factorization. Our method gives up

to 3.5× speed-up versus recomputing the factorization based on the

index set. Various challenging scenarios are used to demonstrate

the advantages of our approach.
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1 INTRODUCTION
Physical simulation is a key aspect of many interactive computer

graphics applications, such as videos games, virtual reality (VR)

training, and hapto-visual simulations. Typically, the application

designer must make decisions regarding numerical methods and

physical models used for the simulation based on the required

fidelity and performance. The trade-off between accuracy and com-

putational performance is one of the central conflicts here, and

compromises can often be attributed to the method used to solve

equations for the underlying physical model.

In this paper, we are primarily motivated by constrained multi-

body simulations involving contact. Specifically, when the modeled

physical system contains large mass ratios between bodies and high

stiffness (low compliance) in the joints. Examples include heavy

vehicle simulation and robotics. These simulations often result in a

poorly conditioned linear systems, which in turn restricts the class

of algorithms that may be used to solve the constrained equations

of motion. Often, direct linear solvers involving a Cholesky or

LU decomposition of the system matrix must be used in order to

achieve reliable and stable simulations.

When a linear complementarity problem (LCP) is used to model

frictional contacts between bodies, as is the case in many rigid body

simulators, requirements are further complicated since thesemodels

call for a special class of solvers. Iterative fixed-point methods, such

as the Gauss-Seidel and Jacobi algorithms, are popular choices for

video game developers due to their ability to produce approximate

solutions quickly. Principal pivoting methods, such as Lemke’s

algorithm and Bard-type algorithms, are more popular when accu-

rate solutions are desired. These methods systematically estimate

which variables are known and unknown, and then compute the

LCP solution by solving a linear system based on a partitioning of

variables. If a direct method is being used to solve the linear system,

this means that the lead matrix must be formed and refactorized

for each change to variable partitioning, which is costly.

Our proposed method significantly reduces the time required

to solve constrained multibody dynamical simulations using a

pivoting-based direct solvers. We specifically target interactive

training simulations, such as the examples shown in the teaser

image, and based our approach on observations of the index sets

during typical scenarios. We identify the matrix factorization step

as a bottle neck in algorithms where direct linear solvers are re-

quired, and develop a modified version of the block principal pivot-

ing algorithm which makes efficient re-use of an initial Cholesky

factorization. Further performance improvements are realized by

using advanced data structures, specifically a skyline coding of the

factorized matrix.

2 RELATEDWORK
2.1 Constrained multibody dynamics
Simulation of multibody systems is commonplace for many modern

computer graphics applications. If the system consists only of

unilateral constraints, such as those used to model direct contact

interactions between bodies, this naturally leads to a linear com-
plementarity problem (LCP) formulation of the constrained dynam-

ics [Baraff 1994; Moreau 1988]. However, simulations typically

include both bilateral and unilateral constraints, as well as friction

at the contacts and in the joints. Bilateral constraints model artic-

ulations between bodies, such as hinge and prismatic joints. This

leads to the more general mixed linear complementarity problem

(MLCP) formulation [Stewart and Trinkle 1996]. Unfortunately,

the solution of an MCLP is more involved than solving a linear

system and does not permit a direct application of linear solvers,

and instead requires a special class of solvers.

The course material by Erleben [2013] provides an extensive

overview of the numerical methods used to solve LCPs (and its

variants) in the context of physical simulation. Recent work in

computer graphics has compared the performance of various MLCP

solvers [Enzenhöfer et al. 2018], including both iterative and pivot-

ing methods. There have been similar evaluations in the robotics

literature [Drumwright and Shell 2012]. We briefly present some of

the pertinent work in this area in the following sections.

2.2 Iterative methods
Off-the-shelf physics engines, such as Bullet [Coumans 2018] and

Box2D [Catto 2018], model the constrained dynamics as an MLCP.

These rely extensively on iterative fixed-point methods, such as

the Projected Gauss-Seidel (PGS) method [Erleben 2007] or Se-

quential impulses [Guendelman et al. 2003], due to their ability

to quickly produce approximate solutions that meet minimum

error requirements. However, previous work has noted that fixed-

point algorithms often converge slowly when the lead matrix is

ill-conditioned, as is the case for many of our target examples,

or the initial solution poorly initialized [Erleben 2004]. Poorly

conditioned linear systems are typically due to large mass ratios

between bodies coupled by constraints, but may also be caused by

numerical singularities when the regularization term used to model

compliance is very small.

Erleben [2007] developed a specialized PGS algorithm to specif-

ically treat large stacks. The projected Jacobi method is a related

algorithm and it has been popularized due to ease of parallelization,

but is infamously known for its poor convergence when compared

to PGS. Recent work has used Chebyshev polynomials [Wang

2015] and a Nesterov momentum term [Mazhar et al. 2015] to

accelerate the convergence of this class of algorithms. Whereas

Tonge et al. [2012] introduced a mass splitting scheme for large

scale simulations on the GPU. Fratarcangeli et al. [2016] use a graph

coloring scheme to not only improve convergence, but parallelize

the solve and thus dramatically improve performance.

2.3 Pivoting methods
Pivoting methods try to find a partitioning of the system into free
(basic) and tight (non-basic) variables. The free label indicates that
a variable is within bounds, and thus unknown, whereas the tight

label indicates the value of the variable is equal to the bound, and

is therefore assumed to be known. We refer to the labeling for all

variables as the index set. If the index set changes between iterations
(or pivoting steps), the system matrix needs to be updated and its

factorization must be recomputed if a direct linear solver is being

used. Therefore, complex simulations requiring a large number of

pivoting steps may be intractable for interactive applications.

One of the most popular pivoting methods is Lemke’s algo-

rithm [Cottle et al. 1993], which is a simplex algorithmwherein a sin-
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gle variable is treated at each iteration. The algorithm is guaranteed

to converge if a solution exists to the LCP, but requires many steps

for complex problems. An efficient version of Lemke’s algorithm

was developed by Lloyd [2005] and the algorithm achieves nearly

linear complexity under the assumption of a fixed size problem,

although typically a complexity of O(n3) is expected. Dantzig’s

algorithm [Cottle and Dantzig 1968] has been previously used by

interactive computer graphics work [Baraff 1994], and the algorithm

is offered as an alternative solver in the Open Dynamics Engine

(ODE) toolkit [Smith et al. 2005].

Baraff [1994] notes that an incremental factorization can be used

for the inner pivoting loop, and thus an overall complexity close

to O(n3) is achievable. They hint that low-rank modifications of

the LU factorization of the lead matrix are possible, but provide

few details or analysis. However, in our work, we perform an in-

depth analysis regarding performance and accuracy for a variety of

complex 3D simulations, andmotivate our approach using empirical

evidence. Furthermore, our approach applies only a series of low-

rank downdates to the Cholesky factorizaton (rather than both

updating and downdating), which we found improves numerical

stability.

Murty and Yu [1988] proposed a Bard-type pivoting method

that preserves complementarity between variables at all times and

changes the index sets for a single pair of complementary variables

at each step (single pivoting). This algorithm is proven to converge

for LCPs with positive definite lead matrices, although convergence

is slow. Keller’s method [Keller 1973] preserves complementarity

and nonnegativity of the LCP solution variables and is said to

be more efficient for LCPs with large positive semi-definite lead

matrices [Júdice 1994]. Júdice and Pires [1994] introduced a block

version of Murty’s method which is much more efficient for large

problems since it allows changing many index sets in a single

algorithm iteration. This block version is proven to converge as

it switches to single pivoting (Murty’s method) if the number

of variables out of bounds does not decrease in a user-defined

number of iterations. However, in practice the algorithm mostly

performs block pivots and switches to single pivoting only for ill-

conditioned problems. An extensive survey of the most common

pivoting methods can be found in Júdice [1994].

2.4 Hybrid methods
Direct linear solvers, involving a Cholesky or LU decomposition of

the system matrix, are heavily utilized by pivoting methods when

exact solutions are required. However, direct solvers have received

much less attention from the computer graphics community. This is

due mainly to the higher computational overhead associated with

these solvers compared to iterative techniques. Lacoursière [2007]

proposed a splitting method that iterates between a direct block

pivoting solve for the combined sub-set of articulation and non-

interpenetration constraints, followed by an iterative solve for non-

interpenetration and friction constraints. This method guarantees

accurate solutions for stiff joint and contact normal forces while

compromising the accuracy of the friction forces in order to reach

better performance than direct solvers. However, Enzenhöfer et al.

[2018] noted problems with this approach for problems where

accurate friction forces are required.

2.5 Low-rank matrix updates
Our work relies on efficient low-rank modifications of a Cholesky

factorization, specifically a row deletion corresponding to a rank-1

downdate. Davis and Hager [2005] provide a throughout treatment

of low-rank modifications for both dense and sparse Cholesky

factorizations, and indeed we used theirs as a starting point for our

work. Seeger [2004] also demonstrated that low-rank modifications

to a Cholesky factorization can improve stability versus modifica-

tions to the system matrix using the Sherman-Morrison-Woodbury

formula.

A method for low-rank modifications of the Cholesky factor-

ization of a 3D mesh has recently been proposed Herholz and

Alexa [2018]. They re-use the factorization of the full mesh to

efficiently perform operations on sub-meshes. Similar to their work,

we use the so-called left-looking algorithm to compute our Cholesky

factorizations, although in our case the domain is the constraints

of a multibody system rather than a mesh.

3 SOLVING CONSTRAINED DYNAMICS
Here we briefly present the constrained multibody dynamics for-

mulation used in our work, and describe how the resulting MLCP

is solved using a block principal pivoting method. This then leads

to the modified version of the algorithm that we propose in this

paper.

Physical simulations for computer graphics are typically per-

formed using a discrete numerical integration scheme with time

step h. Using the velocity-level constrained dynamical equations

and adopting a single-step implicit Euler integration scheme [Baraff

andWitkin 1998], for ann-body systemwithm constraint equations

this gives the linear system[
M −JT

J 1

h2
C

] [
v+

λ+

]
=

[
Mv + hf
− 1

hϕ

]
, (1)

with mass matrixM ∈ R6n×6n
, momentumMv, constraint Jacobian

J ∈ Rm×6n
, constraint impulses λ ∈ Rm , generalized velocities

v ∈ R6n
, applied forces f ∈ R6n

, constraint violations ϕ ∈ Rm ,

and diagonal constraint compliance matrix C ∈ Rm×m . All vari-

ables carrying the superscript □+ are implicit quantities, meaning

they are computed at the end of the time step. Forming the Schur

complement of the upper left block gives the reduced system[
1

h2
C + JM−1JT

]
︸                ︷︷                ︸

A

λ+ = −
1

h
ϕ − JM−1(Mv + hf)︸                        ︷︷                        ︸

b

, (2)

which is the form used by many open source and commercial rigid

body physics engines. Note that the block diagonal form of M
makes it trivial to invert, and since C is a diagonal matrix with only

positive values, the matrix A is positive definite and symmetric.

Since our simulations involve MLCPs with limits on the con-

straint impulses λ, we introduce feasibility and complementarity

conditions such that

Aλ+ − b = w = w+ +w− (3a){
0 ≤ w+ ⊥ λ+ − λ

lo
≥ 0

0 ≤ w− ⊥ λ
hi
− λ+ ≥ 0

, (3b)



I3D ’19, May 21–23, 2019, Montreal, QC, Canada Enzenhöfer, Lefebvre, and Andrews

where λ
hi
and λ

lo
are upper and lower bounds on the constraint

impulses, respectively. For example, the lower and upper impulse

limits of a Coulomb friction cone are often computed asλ
lo
= −µλN

and λ
hi
= µλN, where µ is the static coefficient of friction and λN

is the normal impulse which perpendicular to the collision surface.

Note that we introduce the residual vector w and divide it into

non-negative complementary components, i.e. 0 ≤ w+ ⊥ w− ≥ 0.
The solution of the constraint impulses λ+ is then substituted into

the first line of Eq. 1 to compute the generalized velocities.

3.1 Block Principal Pivoting
We use a Bard-type pivoting method to find a solution to the

MLCP in Eq. 3. Specifically, the block principal pivoting (BPP)

method proposed by Júdice and Pires [1994]. It combines a fast block

strategy with Murty’s single principal pivoting algorithm, with

the main difference being that BPP exchanges multiple variables

simultaneously during changes to the index set.

At each iteration in the algorithm, the constraint variables are

labeled as belonging to either the free (F) or tight (T) index set. Tight
variables have reached a lower or upper bound, and therefore their

value is defined by the feasibility conditions, whereas free variables

have not exceeded these bounds, and therefore wi = 0,∀ i ∈ F.
For instance, when a frictional contact is "sticking", the constraint

impulse is within bounds, and thus free. However, once the contact

begins sliding, the constraint impulse is determined by the limits

of the friction model, and thus the index set changes to tight.

A pivoting step is the process of proposing a candidate solution

and determining if the index set is correct. Based on an assumption

of the index set, a candidate solution of the linear system in Eq. 3

is computed. We then verify if the assumption is correct, i.e. all

variables satisfy feasibility and complementarity conditions. If not,

the index set of all variables i which do not satisfy the conditions

are changed such that

i ∈


F , if λ

lo
< λi < λ

hi
and wi = 0

T
lo
, if λi ≤ λ

lo
and wi > 0

T
hi
, if λi ≥ λ

hi
and wi < 0

. (4)

The algorithm terminates with success if the index sets between

two consecutive pivoting steps do not change.

Note that in Eq. 4 the tight set is decomposed into both lower

(T
lo
) and upper (T

hi
) bounded variables, and together these form

the complete tight set, such that T = T
lo
∪ T

hi
. The system matrix

and right-hand side vector in Eq. 3 can be regrouped according to

the index set, such that[
AFF AFT
ATF ATT

] [
λF
λT

]
−

[
bF
bT

]
=

[
wF
wT

]
. (5)

We observe that for tight variables the value of λT is known,

and that for free variables the residual velocity wF = 0. This means

that we only need to solve for λF at each step in the algorithm

AFFλF = bF − AFTλT. (6)

A Cholesky factorization may be used to solve the linear system

in Eq. 6 where AFF = LFFLFF⊺ and LFF is a lower triangle matrix.

Pseudo-code for the BPP algorithm using a Cholesky factorization is

given in Alg. 1. We observe that the matrix AFF must be refactored

Algorithm 1 Block principal pivoting

1: procedure BPP(A, b,λ
hi
,λ

lo
)

2: initialize F and T
3: k = 0

4: do
5: LFF ← Cholesky(AFF)
6: ∀ i ∈ T

lo
, λi ← λ

lo,i
7: ∀ i ∈ T

hi
, λi ← λ

hi,i
8: solve LFFLFF⊺λF = bF − AFTλT
9: w = Aλ − b
10: update F,T according to Eq. 4

11: k = k + 1

12: while (k < max steps) and (index sets F,T changed)
13: end procedure

whenever the index sets change (i.e., at each step of the algorithm).

This can be costly, since the Cholesky factorization can have a

worst-case complexity of O(m3).

However, if the tight set is small, a more efficient approach would

be to modify the factorization A = LL⊺ using a series of low-rank

updates to obtain LFF. This is precisely the approach we take. The

subsequent subsections justify our approach and demonstrate how

the BPP algorithm can be modified to support low-rank downdates.

3.2 Downdating the Cholesky factorization

෨𝐿

𝐿

𝜎𝑖

𝑖

Figure 2: A change to the ith col-
umn of the factorization will
only affect the entries of L̃

In a left-looking Cholesky

factorization, a change

to the ith column of the

factorization affects only

the sub-block L̃, formed

by the rows and columns

with indices in the range

i + 1 . . .m (see Fig. 2).

When a constraint vari-

able pivots to the tight set

T, a downdate of the orig-
inal factorization L can

be performed by modify-

ing only the entries in L̃.
In order to remove the row and the column corresponding to the

ith variable, we downdate using the vector σi , and this process

is repeated for each variable i ∈ T sequentially. The cost of

recomputing the Cholesky factorization can therefore be reduced

by copying the original factorization L and updating in-place the

sub-matrix L̃, eventually giving LFF for indices in F .

3.2.1 Preliminary analysis of index sets. We inspected the behavior

of the index sets across many time steps for the six scenarios shown

in the teaser. The results (see Fig. 3) suggest that the size of T is

often small compared to the total number of variables, even for

complex scenarios. This indicates that, beginning from an initial

factorization, only a small number of low-rank modifications may

be used to obtain LFF. As a next step, we performed a number of

experiments on randomly generated symmetric positive-definite

matrices of various sizes using a dense matrix storage in order to

determine the threshold for which the downdating scheme becomes
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Figure 3: Variation of the percentage of variables in matrix
A which pivot into the tight set T
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Figure 4: Speed-up using low-rank downdates instead of
recomputing the Cholesky factorization of AFF with respect
to the size of A. Each curve corresponds to a different per-
centage of tight variables.

inefficient. We computed the Cholesky factorization L for the full

matrix and randomly select variables to be pivoted into the tight

set according to a pre-defined percentage of tight variables with

respect to all variables. We then compared the time required to

downdate L versus the time spent to recompute the factorization

AFF = LFFLFF⊺. Fig. 4 illustrates that a speed-up can be realized

when the percentage of tight variables is < 15%. Revisiting Fig. 3,

we observe that this is the case for most of the simulation frames in

our target examples. We also note that the speed-up factor remains

nearly constant for a fixed percentage of tight variable even if the

overall matrix size increases or decreases. Encouraged by these

results, we proceeded to develop a modified version of the BPP

algorithm incorporating low-rank downdates.

3.3 Modified BPP algorithm
Pseudo-code for our proposed modification to the BPP algorithm is

provided in Alg. 2. Our primary contribution is that the Cholesky

factorization is computed only once per simulation step, rather

than once per iteration of the pivoting algorithm. Instead, at each

pivoting step, we copy the initial factorization and apply a sequence

Algorithm 2 Our efficient block principal pivoting

1: procedure BPP_downdate(A, b,λ
lo
,λ

lo
)

2: L0 ← Cholesky(A)
3: s← Skyline(L0)

4: initialize index sets F and T
5: k = 0

6: do
7: L = L0

8: for each i ∈ T do
9: σ = Li+1...m,i
10: L← DownDate(i, L,σ , s)
11: end for
12: ∀ i ∈ T

lo
, λi ← λ

lo,i
13: ∀ i ∈ T

hi
, λi ← λ

hi,i
14: λF ← CholSolve(L, bF − AFTλT,F, s)
15: w = Aλ − b
16: update F,T according to Eq. 4

17: k = k + 1

18: while (k < max steps) and (index sets F,T changed)
19: end procedure

of low-rank downdates to the matrix L, one for each tight variable

in the system. Constraint impulses λT are known and may be

transferred to the right-hand side of Eq. 6. We therefore need to

remove the rows and columns in L associated with these variables.

3.3.1 Downdating. The computation of the downdate vector is

based on the dense row deletion algorithm given by Davis and

Hager [2005], where vector σ i = Li+1...m,i consists of the rows

below the diagonal of the ith column. Vector σ i is then used to

perform a rank-1 downdate of the lower right sub-block of the

Cholesky factorization. Note that L is not resized during this pro-

cess. Matrix elements are modified in place when the downdate

is performed, and during the Cholesky solve in line 14 in Alg. 2;

rows and columns corresponding to tight variables are skipped.

The DownDate routine in Alg. 3 gives pseudo-code to downdate

L for a single variable at index i . This routine is similar to low-rank

modification routines which are commonplace in linear algebra

frameworks, e.g. Eigen [2018]. However, here we modify only the

sub-matrix. Furthermore, we optimize the routine to take advantage

of matrix sparsity using a skyline coding of the factorization, which
we describe in the next section.

3.4 Skyline coding
As a pre-process, we reorder constraint variables according to a

traversal of the constraint graph using the Cuthill-McKee (CM)

algorithm [Cuthill and McKee 1969]. This reduces the envelope of

the system matrix and, thus, reduces fill-in for L giving an overall

reduced bandwidth (see Fig. 5). Furthermore, we note that since

we only remove, but never add rows and columns, the bandwidth

of AFF never increases relative to A. The bandwidth of the matrix

may therefore be efficiently encoded using a skyline data structure

s, which stores the bandwidth at each column of L relative to the

diagonal. In other words, each si stores the row index of the last

non-zero entry of column Li (see Fig. 6).
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Figure 5: Reordering constraint variables of the system matrices creates a fill-in pattern with smaller bandwidth. The plots
show the system matrices for the largest connected island in each simulation.
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Figure 6: The skyline
vector is composed of the
last non-zero entry of
each column

We use the skyline to limit

the amount of work done in

the DownDate routine, since

it helps to avoid unnecessary

updates on zero sub-blocks of

the Cholesky factorization. We

also use the skyline to reduce

the amount of work during

the forward/backward substi-

tution of the Cholesky solve

(see CholSolve in Alg. 3).

4 RESULTS
Our implementation uses the Vortex physics engine [CM Labs

Simulations 2018] for collision detection, computing constraint

information, and dynamics integration. The solver is implemented

in C++ using double precision and the Eigen linear algebra li-

brary [Eigen 2018] for matrix multiplications and storage. We

choose a column-wise dense matrix storage format to have full

control over the matrix traversal and skyline coding in our modified

BPP algorithm. The memory for them ×m matrix is allocated, but

for the skyline version of our downdating algorithm we only iterate

over elements within the envelope. We initialize all index sets as

free when starting all versions of the BPP algorithm.

4.1 Examples
Fig. 1 shows the six examples we use to evaluate our modified BPP

algorithm. We summarize the simulation and modeling parameters

for these examples in Table 1. Table 2 contains additional informa-

tion, such as the maxima for mass ratio, number of constraints and

condition number for each example. Note that unconnected systems

are split intomultiple islands, and anMLCP is formulated and solved

for each such island. The supplementary video also shows a side-

by-side comparison of our modified BPP algorithm versus using the

full Cholesky decomposition. The results are qualitatively identical.

Below, we highlight characteristics of each example.

4.1.1 Forklift. A 3,000 kg warehouse forklift picks up a 100 kg

crate, accelerates then makes a 360 degree turn around a traffic

cone while frictional contact ensures that the crate remains stable

on the fork. The wheels start skidding during the turn which leads

to a increase of variables in the tight set to up to 5 % of all variables.

4.1.2 Mobile crane. A 30,000 kg mobile crane hoists a 2,000 kg

concrete pipe segment with a 70 kg steel cable attached to a 70 kg

Table 1: Simulation parameters

Friction coefficient µ = 1.0

Gravity [m/s2
] д = 9.81

Constraint compliance [N/m] 10
−6

to 10
−10

Step size [s] h = 1/60

Simulation duration [s] t = 20

Max solver iterations k = 35

hook. Contacts are created when the hook touches the pipe, which

causes the solve time to momentarily spike.

4.1.3 Vehicle parkour. A simulation involving a 15,000 kg light

armored vehicle (LAV) traversing various obstacles (stairs, small

rectangular bumps, hills). The power train of the vehicle is modeled

using multiple unilateral constraints connecting the vehicle shafts,

wheels, differentials, and engine, which creates a highly coupled

mechanical system (see sparsity pattern in Fig. 5).

4.1.4 Offshore. A 50,000 kg offshore knuckle boom crane is rigidly

attached to a 5,500,000 kg ship hoisting a 15,000 kg subsea module

with lightweight steel cable. Sliding friction (tight) occurs between

the ship hull and the subsea module, as well as cable bodies.

4.1.5 Forwarder. A forwarder with a 16-link 1,900 kg gripper

arm is used to grasp a 400 kg wooden log and lift it in the air by

raising its boom. This scenario is challenging since a stable grasp

without sliding is required, and a non-negligible friction impulse is

acting between log and claw due to arm rotation. The hydraulics,

hydraulics cables, and the vehicle are solved independently from

the main mechanical components of the gripper arm.

4.1.6 Winch. A chain, consisting of 50×1 kg links modeled using

capsules and connected by spherical joints, is attached to a 400 kg

winch and wound at a constant angular velocity. As the chain

is dragged along the ground, many of the frictional constraints

transition to a sliding mode (tight).

4.2 Performance comparison
Table 3 shows the average solve time per frame for the original BPP

algorithm performing a full Cholesky factorization of AFF, along-
side ourmodified BPP algorithm performing low-rank downdates to

Lwith and without taking into account the skyline. Fig. 7 shows the

CPU time required to solve Eq. 3 at each time step for the examples

used in our experiments. All simulations were performed on an

Intel Core i7-5820K (3.3 GHz) with 16 GB of RAM. Our modified

BPP algorithm with low-rank downdates and skyline gives the best
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Algorithm 3 Downdating and solve with skyline coding

1: procedure Downdate(i, L,σ , s)
2: β = 1

3: for j ← 1 to (m − i − 1) do
4: k = i + j + 1

5: x = σ j
6: y = Lk,k
7: z = y2 + x 2

β
8: γ = β y2 + x2

9: Lk,k =
√
z

10: β = β + x 2

y2

11: if (sk − k − 1) > 0 then ▷ skyline check

12: j1 = j + 1 and j2 = j1 + (sk − k − 1)

13: k1 = k + 1 and k2 = k1 + (sk − k − 1)

14: σ j1 ...j2 = σ j1 ...j2 −
x
y Lk1 ...k2,k

15: Lk1 ...k2,k = Lk1 ...k2,k +
√
z x
γ σ j1 ...j2

16: end if
17: j = j + 1

18: end for
19: return L
20: end procedure
21:

22: procedure CholSolve(L, bF,F, s)
23: λF = bF
24: for each i ∈ F do ▷ forward substitution Ly = bF
25: λi ←

λi
Li,i

26: j ← NextInSet(F, i) ▷ next index in F following i
27: while j < si do
28: λj ← λj − Lj,iλi
29: j ← NextInSet(F, j)
30: end while
31: end for
32: for each i ∈ F do ▷ backward substitution L⊺λF = y
33: j ← NextInSet(F, i)
34: while j < si do
35: λi ← λi − Lj,iλj
36: j ← NextInSet(F, j)
37: end while
38: λi ←

λi
Li,i

39: end for
40: return λF
41: end procedure

performance for all test cases, followed by the algorithm using low-

rank downdates without skyline information (except for the winch

simulation). For simplicity, we do not parallelize the computations

of multiple unconnected islands, i.e. the presented solve times are

the sum of the dynamics solve times of all islands. Note that Table 3

and Table 4 exclude frames for which there are no tight variables,

i.e. no pivoting, since the BPP algorithms using full Cholesky or

downdating are equivalent in this case.

The highest speed-up is experienced for the mobile crane, in

particular when the crane hook is in contact with the pipe in the

Table 2: Maxima of mass ratio, number of constraints per
contiguously solved system and condition number of A

Scenario Mass Number of Condition
ratio constraints number

Crane 6,300:1 430 10
9

Winch 400:1 370 10
8

Vehicle parkour 20,000:1 260 10
19

Offshore 4,400,000:1 350 10
9

Forklift 2,700:1 300 10
8

Forwarder 6,500:1 250 10
11

Table 3: Average dynamics solve time and speed-up for each
scenario and algorithm.

Scenario Full Downdating Downdating
Cholesky Skyline
Crane 12.4 ms 4.7 ms (2.7 ×) 3.4 ms (3.6 ×)

Winch 2.0 ms 2.4 ms (0.9 ×) 1.6 ms (1.3 ×)

Vehicle parkour 3.0 ms 2.2 ms (1.4 ×) 2.1 ms (1.4 ×)

Offshore 6.7 ms 4.0 ms (1.7 ×) 2.9 ms (2.3 ×)

Forklift 1.2 ms 1.0 ms (1.3 ×) 0.8 ms (1.5 ×)

Forwarder 3.1 ms 2.5 ms (1.2 ×) 2.0 ms (1.6 ×)

Table 4: Numerical error introduced by downdating L versus
computing LFF. The two rows show the error when downdat-
ing is performed without (first row) and with (second row)
skyline information.

Scenario Min Max Mean Median
Crane 6.74e-12 3.00e-10 4.77e-11 3.80e-11

6.76e-12 2.50e-10 4.84e-11 3.88e-11

Winch 0.00e+00 7.29e-11 6.60e-13 1.31e-13

0.00e+00 7.34e-11 6.07e-13 1.28e-13

Vehicle parkour 3.17e-13 1.81e-09 4.93e-12 7.18e-13

2.71e-13 7.99e-10 1.85e-12 7.36e-13

Offshore 0.00e+00 2.00e-08 1.50e-09 6.55e-11

0.00e+00 1.00e-08 1.30e-09 5.55e-11

Forklift 0.00e+00 5.74e-11 1.50e-12 1.46e-12

0.00e+00 1.17e-11 1.35e-12 1.36e-12

Forwarder 1.11e-10 7.00e-08 4.04e-09 3.22e-09

1.11e-10 7.00e-08 4.04e-09 3.22e-09

beginning of the simulation (0-5 s). The offshore simulation, which

resembles the mobile crane example, also achieves a significant

performance improvement. In practice, one would only perform

low-rank downdates if the number of tight variables is sufficiently

small in order to guarantee to be always at least as fast as the

original algorithm applying the full Cholesky factorization. In our

tests, we obtain a slow-down for the winch example since we always

use the downdating strategy.

4.3 Discussion
Table 4 shows the numerical error introduced by downdating L
versus recomputing the full Cholesky factorization. This error

is determined by the Frobenius matrix norm between the lower

triangular matrix obtained with and without low-rank downdates.
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Figure 7: Time to solve the constrained dynamics equations for the examples shown in the teaser. From left to right, top row:
mobile crane, chain and winch, vehicle parkour. Bottom row: offshore, forklift, logging forwarder.

The first line for each example represents downdating without

considering the skyline, whereas for the second line the skyline

information is used. We observe that the errors remain reasonably

low for all scenarios (10
−8

at worst) and that the fluctuations

between minimum and maximum errors are low (difference of

10
−4

at worst). The skyline does not significantly impact the error.

We have evaluated an alternate version of our algorithm inwhich

both low-rank updates and downdates are used to incrementally

modify the factorization at each pivoting step. Updates correspond

to variables pivoting from the T→ F, and downdates F→ T. How-
ever, we find that after just a few pivoting steps, numerical errors

quickly accumulate and result in unstable simulations, specifically

for ill-conditioned system. Instead, we find it much more stable to

simply copy the initial factorization of A at each pivoting step and

apply downdates only.

A skyline encoding is used to keep track of the envelope of A
for which we typically get fill-ins in the lower triangular matrix L.
This information is used by our proposed method to iterate only

over nonzero element and reduce computational effort during the

low-rank downdates and the solve of the linear system. We allocate

enough memory to store the entirem ×m matrix in dense format

even if the skyline information is considered. It is likely that further

performance improvements could be realized by allocating only

enough memory space to store elements in the non-zero envelope.

This would also allow larger matrices to be stored in cache.

5 CONCLUSIONS AND FUTUREWORK
We have proposed a modification to the BPP algorithm that im-

proves efficiency by using low-rank modifications to form the lead

matrix. We further improve performance by using a skyline data

structure that encodes the bandwidth of the Cholesky factorization,

which is used by both the Cholesky solve and downdating processes.

Our work is mainly motivated by the simulation of stiff physical

systems which typically requires direct linear solvers. We have

demonstrated that our method gives a significant speed-up over

the standard algorithm for challenging scenarios.

Updates to a factorization using sparse storage are not considered

by our approach, but this would be an interesting avenue of future

work. However, it is unclear that for the size of problems targeted in

the context of our work would benefit from a sparse storage since

there is additional effort required to manage sparse data structures.

We find a skyline encoding of the matrices to be much better trade-

off in performance versus initialization overhead.

We intend to explore other strategies to further improve perfor-

mance. One technique often utilized to improve the convergence of

iterative solvers is to exploit temporal coherence by using the solu-

tion at the previous timestep as an initial estimate of the solution for

the current time step (warmstarting). Similarly, we could assume

variables in the tight set at the previous time step will continue

to be tight at the current time step, and the constraint variable

ordering could be permuted such that ß ∈ T are moved to the end

of the ordering, and thus affect mainly the lower-right block of the

factorization. This would mean few computations are required to

downdate these variables, but it may also diminish the benefits of

the low-bandwidth achieved through CM reordering.
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