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Fig. 1. A fast-flying shuriken moving at 500 m/s hits an armor breastplate. The shuriken is represented by
a triangle mesh, and the armor by an implicit function. Left: Discrete collision detection allows penetration
into the armor, resulting in a different trajectory after collision response. Right: Our method gives an
interpenetration-free simulation.

We introduce an efficient solution to the problem of continuous collision detection (CCD) between triangle
geometry and signed distance fields (SDFs).We formulate the triangle-SDF collision problem as a novel spatio-
temporal local optimization that solves for the first time of impact between a triangle and an SDF isosurface.
Our method offers improved robustness over point sampling methods, and outperforms recent triangle-
SDF discrete collision detection (DCD) algorithms. Furthermore, a novel method for adaptively refining the
potential collision points on large triangles is proposed for robust triangle-SDF collision detection with coarse
meshes. This enables the use of reduced geometry for efficient simulations. We demonstrate the benefits of
our approach by comparing to state-of-the-art algorithms for triangle-SDF collision detection, and showcase
its effectiveness through simulations involving complex collision scenarios.
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1 Introduction
Collision detection is the computational process of determining whether, where, and when objects
in a simulated environment are intersecting. It is a key technology for numerous applications in
computer graphics, robotics, and virtual reality. Continuous Collision Detection (CCD) is partic-
ularly interesting as it permits computing intersection-free trajectories of the simulated objects,
whereas discrete methods may miss collisions or require shape separation [Nie et al. 2020].

The accuracy, complexity and performance of collision detection methods are largely dependent
on shape representation. For instance, triangle meshes are popular shape representations in com-
puter graphics — due to their ability to model complex geometry — but intersection tests using
triangle meshes are expensive, especially as higher resolutions are required to capture fine de-
tails. Simulation performance can be drastically improved with simpler shape representations. For
example, efficient methods exist for distance, overlap and closest-point queries between spheres,
oriented or axis-aligned boxes, and convex hulls [Ericson 2004]. While such primitives cannot
accurately represent most objects, they are invaluable when real-time performance is required.
They can provide efficient approximate bounding volumes for use in broad-phase collision detec-
tion, drastically reducing the number of computationally expensive tests required by more accu-
rate narrow-phase collision detection. Likewise, Signed Distance Fields (SDFs) provide efficient
distance and inside-outside information, making them powerful tools for shape approximation
in collision detection. They can be stored compactly as analytical functions [Andrews et al. 2022],
discrete grids [Koschier et al. 2017a], or even deep neural networks [Park et al. 2019].They excel at
representing smooth or curved surfaces, and can efficiently represent complex geometry [Koschier
et al. 2017a]. Common drawbacks of SDFs, however, are that sharp features may be lost due to the
smooth nature of implicit surfaces, and they are not well suited to represent non-manifold or
self-intersecting surfaces where space cannot be properly partitioned into a well-defined interior,
exterior, and surface [Jones et al. 2006]. Triangle meshes, on the other hand, are unaffected by
these issues. It is thus of particular interest to combine shape representations and leverage their
respective advantages.

Discrete collision detection involving meshes and primitives is well explored already [Andrews
et al. 2022; Ericson 2004; Teschner et al. 2005]. Methods involving meshes and SDFs have tradi-
tionally been limited to point-based contacts over the mesh vertices or require dense point sam-
pling [McNeely et al. 2005; Xu and Barbič 2017]. The recently proposed method by Macklin et al.
[2020] specifically addresses the problem of discrete collision detection between SDFs and triangle
meshes. They improve the quality of contact generation compared to point-based approaches, but
they only support a single contact point per triangle. Larger triangles may intersect multiple fea-
tures of an SDF, and thus dense and high-resolution meshes are often required for reliable collision
detection. However, low-resolution coarse meshes are preferred by many applications for their
efficiency. The existing triangle-SDF methods are further limited to intersection tests performed
at discrete points in time. This can result in shapes with a high relative velocity passing through
each other (tunnelling). Similar problems occur for SDFs with thin features, where it is easy for
shapes to pass through regions where the SDF gradient is undefined or changes direction.This can
lead to inaccurate or unstable simulations. Triangle-SDF CCD is, to the best of our knowledge, an
unexplored problem.

We address the aforementioned problems by proposing a novel triangle-SDF collision detection
algorithm that reformulates the collision detection problem as a local spatio-temporal optimiza-
tion. Solving this optimization problem provides not only the time of impact, but also the closest
points between triangles and an SDF isosurface. Our CCD algorithm avoids tunnelling and of-
fers improved robustness over point sampling methods; it also outperforms recent triangle-SDF
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discrete collision detection (DCD) algorithms. Our technique does not assume a specific contact
model (constraint-based, barrier methods, penalty forces, impulse-based) and can be integrated
into existing simulators. Our technique can be used alongside other methods to handle different
collision shapes; it does not limit the simulation to triangles and SDFs. Additionally, we introduce
a technique to efficiently compute multiple contact points per triangle to support coarse triangle
meshes without globally refining the whole mesh. Rather, new contact points are generated only
when needed. We evaluate our method for speed, accuracy, and robustness, using a series of hand-
crafted extreme collision scenarios involving triangles and SDFs. We demonstrate our approach
using several complex rigid body and cloth simulations, with meshes up to hundreds of thousands
of triangles and SDFs hand-picked to challenge gradient methods with gradient discontinuities,
sharp features, and multiple boundaries along triangle trajectories. Our algorithm is suitable for
real-time applications, and interactive speeds are easily achieved, even on a single-threaded CPU-
based implementation.

2 Related Work
Collision detection is a key technology for many computer graphics applications, including ren-
dering, animation, 3D modeling, and computational design. It is the process of determining if two
or more geometric shapes are intersecting or will intersect. In this section, we provide a brief
overview of seminal work in computer graphics on collision detection, with a particular emphasis
on the CCD regime of methods, as well as collision algorithms involving geometry represented as
an SDF.

2.1 Collision detection
Previous works in computer graphics have provided overviews of the fundamentals of collision
detection and response for physics-based animation [Andrews et al. 2022; Ericson 2004; Teschner
et al. 2005]. However, numerous algorithms have been developed by the graphics community
over the years to address collision detection for specific phenomena and geometry pairs. For
instance, Fuhrmann et al. [2003] developed a method for rapid collision detection between rigid
and highly deformable objects using distance fields, and Zhang et al. [2023a] use Sum-of-Squares
programming to handle higher-order geometry. Alternatively, Guendelman et al. [2003] uses in-
terference detection through testing vertices to the inside/outside function of another model and
time step limitation.

Computational complexity and performance are often primary concerns where collision detec-
tion is concerned, since the process is often viewed as a bottleneck in the simulation pipeline.
Acceleration data structures such as spatial hash grids [Quinlan 1994], BSP trees [Naylor 1998], and
bounding volume hierarchies (BVH) [Ericson 2004] are common since they effectively prune the
search space of narrow-phase interaction tests, which can be costly. Such acceleration techniques
are compatible with our proposed methodology, and we show how a BVH of spheres can be used
to effectively reduce the number of triangle-SDF collision tests.

Animations involving fast-moving objects or thin geometry can produce tunnelling and severe
penetration artefacts, due mainly to the discrete collision detection used by many applications.
Continuous collision detection (CCD) avoids these artifacts by identifying intersections along the
entire path of motion, resulting in specialized algorithms for simulation of rigid bodies [Redon
et al. 2002], deformable solids [Govindaraju et al. 2006], and cloth [Bridson et al. 2002]. CCD is
also an essential component of robust contact simulation with non-interpenetration guarantees,
such as in incremental potential contact (IPC) [Li et al. 2020]. Xu and Barbič [2017] developed a
continuous algorithm for collisions between point clouds and implicit geometry representations,
such as distance functions. Such methods can often use properties like Bernstein basis or Bézier
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curves to reduce the problem [Tang et al. 2014]. This is useful to model the continuous nature of
curved regions. Alternatively, some approaches assume linear motions to reduce computational
complexity [Chen et al. 2024; Wang et al. 2022, 2021]. This assumption can significantly streamline
calculations, making it easier to predict and manage object trajectories. Similarly, it is possible
to use interval calculations to do SDF-SDF collision detection [Liu et al. 2024] and geometrically
exact CCD [Brochu et al. 2012], though at prohibitive costs for real-time CCD for multiple contact
points queries.

Our work focuses on collision detection combining an explicit mesh-based representation of
geometry with an implicit SDF. It can be integrated as part of a typical physical simulation pipeline
and does not prevent the use of other collision detection methods to handle different collision
shapes. Our proposed acceleration structure relies on this flexibility. It uses less accurate shapes
for which vastly more efficient SDF CCD methods can provide early approximations and collision
pair culling. Haptic simulation has similarly focused on using similar hybrid representations, with
collision between a point cloud and a voxelized distance field receiving particular attention [Mc-
Neely et al. 1999, 2005]. Robustness is improved by continuous collision detection versions of these
algorithms [Xu and Barbič 2017].
To the best of our knowledge, our method is unique in addressing CCD between triangles

and arbitrary SDFs. IPC implementations use triangle-triangle representations [Li et al. 2020],
and related methods e.g. [Xu and Barbič 2017], require dense point sampling or specific SDF
discretizations.

2.2 Geometry representation
The efficiency of SDF-based algorithms is directly impacted by the efficiency of their underlying
data structures and shape representations. Numerous adaptive methods have been proposed to re-
duce the storage overhead of sampled signed distance fields [Frisken et al. 2000]. Notably, Koschier
et al. [2017a] proposed a highly accurate grid-based SDF by fitting a polynomial approximation
of the local shape to each grid cell, and we use this representation for several of our experiments.
Deep neural models have also demonstrated effectiveness for learning implicit shape represen-
tations [Park et al. 2019]. SDF-based swept volumes have proven to be effective in computing
collision-free trajectories for animation [Wang et al. 2024] and robotics planning [Zhang et al.
2023b], albeit at computational costs that prohibit real-time applications. Our method treats the
SDF as a “black box”, so it is not tied to its representation. Thus, future development of efficient
shape representations will remain compatible.

3 Preliminaries
We first offer a brief overview of the concepts used in our paper and the technique introduced
in [Macklin et al. 2020] to make our paper self-contained. We note that our technique does not
require a specific contact model (constraint-based, barrier methods, penalty forces, impulse-based).
Contact handling and the resolution of subsequent potential contacts are out of scope for our
paper. For this, we refer the reader to related work on the topic [Andrews et al. 2022]. While our
work focuses on collision detection between triangles and SDFs, it does not prevent other methods
from handling different collision shapes in the same physics pipeline. Our proposed acceleration
structure, presented in Section 4.6, relies on this flexibility. It uses less accurate shapes for which
vastlymore efficient SDFCCDmethods can provide early approximations and collision pair culling.
Other efficient collision detection algorithms involving common primitives, and a primer on using
multiple specialized collision detection algorithms together can be found in [Ericson 2004].
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3.1 Signed Distance Fields
A signed distance field is a function 𝜙 (®x): R3 → R that gives the signed Euclidean distance from a
point ®x ∈ R3 to a shape boundary, where 𝜙 = 0, and with 𝜙 (®x) < 0 for all points inside the shape.
Its gradient ∇𝜙 ∈ R3 satisfies ‖∇𝜙 ‖ = 1 and gives the direction in which distance increases the
most, so the closest point from ®x on the boundary is ®x − ∇𝜙 (®x)𝜙 (®x). In the case of physics-based
animation, the SDF gradient conveniently provides a contact normal ®n = ∇𝜙 , which can otherwise
be challenging to compute in triangle-triangle collision scenarios [Erleben 2018].

Certain types of SDFs have limitations. When the SDF uses a discrete representation, its domain
may be limited, e.g., to the region covered by a grid. Furthermore, an SDF is not differentiable at
points along the medial axis of a shape, resulting in discontinuities of the gradient. However, we
find that such issues rarely occur in practice or can be easily circumvented. The impact of SDF
quality on our method is further discussed in Section 6.

3.2 Triangle-SDF Discrete Collision Detection
A technique for discrete collision detection (DCD) between triangle meshes and SDFs was intro-
duced in Macklin et al. [2020] using the closest point methodology [Erleben 2018]. Collision points
are generated by a minimization of the SDF over the barycentric coordinates 𝑢, 𝑣,𝑤 of a triangle
with vertices ®a, ®b, ®c ∈ R3:

min
𝑢,𝑣,𝑤

𝜙 ( 𝑢®a + 𝑣®b +𝑤®c ) (1)

s.t. 𝑢, 𝑣,𝑤 ≥ 0 (2)
𝑢 + 𝑣 +𝑤 = 1 . (3)

The resulting barycentric coordinates give the deepest penetrating point inside the triangle. Gra-
dient methods, such as projected gradient descent or the Frank-Wolfe algorithm [Frank and Wolfe
1956], can solve for local minima by using the derivative of the SDF with respect to the barycentric
coordinates:

®d =

[
𝜕𝜙

𝜕𝑢
,
𝜕𝜙

𝜕𝑣
,
𝜕𝜙

𝜕𝑤

]T
=


∇𝜙 (®x) · ®a

∇𝜙 (®x) · ®b
∇𝜙 (®x) · ®c

 . (4)

This approach improves the quality of contact generation compared to point-based methods, but
only supports a single contact point per triangle [Macklin et al. 2020]. Larger triangles may inter-
sect multiple features of an SDF, and thus dense and high-resolution meshes are often required
for reliable collision detection. Mesh subdivision can be applied ahead of time to provide better
coverage, but it increases the cost of the optimization accordingly. We later propose an efficient
method to solve these issues (see Section 4.5).

Since DCD only provides contact information if a contact is occurring at a given instant in
time, it cannot effectively prevent penetration. Larger time steps, fast movements, or thin SDFs
can cause discrete collision techniques to miss contacts. For instance, SDFs may fail to provide a
realistic separation direction for sufficiently deep points, or if they are inside sharp features. This
results in shapes being forced to penetrate or passing through one another instead of colliding as
expected. In such cases, continuous methods for collision detection are preferred.

3.3 Continuous Collision Detection
Continuous collision detection (CCD) is generally applied in order to provide accurate collision
detection in simulations where discrete time steps may cause fast-moving or thin objects to pass
through each other or interpenetrate in a way such that collisions cannot be handled accurately or
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Algorithm1:Golden Section Search algorithm forminimizing function 𝑓 (𝑙) over the interval
𝑙start 𝑙end. Returns the minimum value 𝑙min.
1 GSSMinimize(𝑙start, 𝑙end, 𝑓 )

2 𝑟 ← 𝜑−1, 𝑟 −1 ← 1 − 𝑟
3 𝛼0 ← 0, 𝛼1 ← 𝑟−1, 𝛼2 ← 𝑟, 𝛼3 ← 1
4 𝑙0 ← 𝑙start, 𝑙1 ← lerp(𝑙start, 𝑙end, 𝛼1), 𝑙2 ← lerp(𝑙start, 𝑙end, 𝛼2), 𝑙3 ← 𝑙end
5 𝑓0 ← 𝑓 (𝑙0), 𝑓1 ← 𝑓 (𝑙1), 𝑓2 ← 𝑓 (𝑙2), 𝑓3 ← 𝑓 (𝑙3)
6 while (𝑙3 − 𝑙0) ≤ tol (𝑙1 + 𝑙2) do
7 if min(𝑓0, 𝑓1) < min(𝑓2, 𝑓3) then
8 𝛼3 ← 𝛼2, 𝑙3 ← 𝑙2, 𝑓3 ← 𝑓2
9 𝛼2 ← 𝛼1, 𝑙2 ← 𝑙1, 𝑓2 ← 𝑓1

10 𝛼1 ← 𝑟 𝛼2 + 𝑟−1 𝛼0
11 𝑙1 ← lerp(𝑙start, 𝑙end, 𝛼1)
12 𝑓1 ← 𝑓 (𝑙1)
13 else
14 𝛼0 ← 𝛼1, 𝑙0 ← 𝑙1, 𝑓0 ← 𝑓1
15 𝛼1 ← 𝛼2, 𝑙1 ← 𝑙2, 𝑓1 ← 𝑓2
16 𝛼2 ← 𝑟 𝛼1 + 𝑟−1 𝛼3
17 𝑙2 ← lerp(𝑙start, 𝑙end, 𝛼2)
18 𝑓2 ← 𝑓 (𝑙2)
19 end if
20 end while
21 𝑙mid ← lerp

(
𝑙start, 𝑙end,

1
2 (𝛼0 + 𝛼3)

)
22 𝑓mid ← 𝑓 (𝑙mid)
23 if 𝑓0 < 𝑓mid and 𝑓0 < 𝑓3 then
24 𝑙min ← 𝑙0
25 else if 𝑓mid < 𝑓3 then
26 𝑙min ← 𝑙mid
27 else
28 𝑙min ← 𝑙3
29 end if
30 return 𝑙min

in a stable fashion. CCD gives the time of the first impact between objects in a given time interval
𝑡hit ∈ [𝑡start, 𝑡end], and guarantees that no collision occurs up to 𝑡hit.

3.4 Golden Section Search
Golden section search (GSS) is an iterativeminimization technique discovered byKiefer [1953], and
is well-suited to local minimization problems. We use it to solve single-dimension sub-problems
as part of our method in Section 4.3. Although GSS is a well-known algorithm and many public
domain implementations are available, we provide algorithmic details in Algorithm 1 for complete-
ness. The method seeks the minimizer for a function 𝑓 (𝑙) over some interval, such that

𝑙min = argmin
𝑙∈[𝑙start,𝑙end ]

𝑓 (𝑙) . (5)
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Fig. 2. A sphere moving rightward passes through the boundary of an SDF isosurface (torus) multiple times.
Local minima of the spatio-temporal problem are encountered each time the sphere touches the SDF. CCD
requires solving for a global minimum with regard to time (green), but gradient methods may converge
toward erroneous local minima (red).

The algorithmmaintains function values 𝑓0, 𝑓1, 𝑓2, and 𝑓4, for four points 𝑙0, 𝑙1, 𝑙2, and 𝑙4, respectively.
The points form three contiguous intervals with a width ratio of 𝜑 : 1 : 𝜑 , where 𝜑 is the golden
ratio:

𝜑 = (1 +
√
5)/2 , (6)

𝜑−1 = (
√
5 − 1)/2 . (7)

The algorithm operates by successively narrowing the range over which 𝑓 is evaluated. Note that
the points 𝑙𝑖 can be of any dimensions. In the context of CCD, we use them both as points in time
and as points in space, depending on the specific line search problem. Points are obtained by linear
interpolation over the interval [𝑙start, 𝑙end]. The complement 𝜑−1 to the golden ratio is used as part
of the interval refinement process. Each iteration, we compare the minimum of the left values, i.e.,
min(𝑓0, 𝑓1), to the minimum of the right values, i.e., min(𝑓2, 𝑓3). If the left values are smaller, the
boundaries of the two leftmost intervals are used to form a new set of three intervals with the same
width ratio; the boundaries of the two rightmost intervals are used otherwise. Only a single new
point and function value need to be computed when the interval is reduced. One point stays the
same, and the other two simply reuse previously computed points. Once the algorithm terminates,
the point with the smallest function evaluation from 𝑙0, 𝑙3, and midpoint 𝑙mid is returned.

4 Triangle-SDF CCD
In this section, we present an approach that extends triangle-SDF collision to the continuous
regime. Previous work on triangle-SDF collision by Macklin et al. [2020] uses iterative gradient-
based methods to solve the triangle-SDF discrete collision detection problem. Likewise, we are
interested in Frank–Wolfe methods, which are iterative first-order optimization algorithms for
constrained convex optimization [Braun et al. 2022; Frank and Wolfe 1956; Jaggi 2013]. However,
the landscape of CCD optimization is potentially non-convex, and this can result in tunnelling, as
shown in Figure 2. Hence, one of our central contributions is a novel Frank-Wolfe-based algorithm
that identifies and converges toward a spatio-temporal global minimum.

We focus on FW algorithms since preliminary experiments revealed that Projected Gradient
Descent (PGD) often fails to converge due to a constant step size. Furthermore, backtracking
variations were costly due to the increased number of projections back to the problem space
required by PGD, whereas FW algorithms require none (as noted by Macklin et al. [2020]).
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4.1 Local Optimization
The goal of the CCD optimization is to provide the spatial coordinates and time of the earliest
contact over some time interval 𝑡hit ∈ [𝑡start, 𝑡end], such that no collision occurs before 𝑡hit. We seek,
for each triangle, a point of contact ®xc at some future time 𝑡 where 𝜙 (®xc) = 0. Since multiple
instances of the the time interval can yield 𝜙 (®x𝑡 ) = 0, solving for the unsigned distance |𝜙 (®x𝑡 ) |
could converge on the wrong side of the SDF (as shown in Figure 2). Therefore, we cannot directly
solve for 𝑡hit using the unsigned distance |𝜙 (®x𝑡 ) | if we intend to find a temporal global minimum.
Hence, we minimize the signed distance over the time variable 𝑡 and the barycentric coordinates
𝑢, 𝑣,𝑤 of a triangle with vertices ®a𝑡 , ®b𝑡 , ®c𝑡 ∈ R3:

min
𝑢,𝑣,𝑤,𝑡

𝜙 ( 𝑢®a𝑡 + 𝑣®b𝑡 +𝑤®c𝑡 ) , (8)

s.t. 𝜙 ( 𝑢®a𝑡 + 𝑣®b𝑡 +𝑤®c𝑡 ) ≥ 0 , (9)
𝑢, 𝑣,𝑤 ≥ 0 , (10)

𝑢 + 𝑣 +𝑤 = 1 , (11)
𝑡 ∈ [𝑡start, 𝑡end] . (12)

Here, ®x𝑡 = 𝑢®a𝑡 + 𝑣®b𝑡 + 𝑤®c𝑡 and the subscript ·𝑡 indicates that the vertex positions change over
the time interval, and that we seek the global minimum for 𝑡 . If no 𝑡 is found where the unsigned
distance is zero, then a collision does not occur over the time interval. Otherwise, the simulation
cannot advance past the time of collision and remain intersection-free. Violations of the constraint
in Equation 9 provide new upper bounds to the time interval; see Section 4.2 for more details.
We revise the derivative from Equation 4 to account for the added time dimension:

®d =


∇𝜙 (®x𝑡 ) · ®a𝑡
∇𝜙 (®x𝑡 ) · ®b𝑡
∇𝜙 (®x𝑡 ) · ®c𝑡
∇𝜙 (®x𝑡 ) · ®v𝑡


. (13)

Here, ®v𝑡 is the linear velocity of the potential solution ®x𝑡 at time 𝑡 . The velocity ®v𝑡 is obtained
differently depending on the type of simulation or required accuracy. For instance, velocities can
be extracted directly from the values stored at the nodal coordinates in cloth and elastic simulation.
For standard rigid-body scenarios, we project the angular and linear velocities ( ®𝜔𝑔 and ®v𝑔) from
the rigid-body’s centre of rotation ®g to the surface point ®x𝑡 , such that

®v𝑡 = ®v𝑔 + ®𝜔𝑔 × (®x𝑡 − ®g) . (14)
We note that SDFs are queried in their own local space, as it is more efficient and much easier to
transform points than it is to update SDFs at runtime [Andrews et al. 2022].Thus, if the SDF is used
as a collision shape for an object which also undergoes rigid motions, the position and velocities
should be further projected into the SDF space.

4.2 Frank-Wolfe for CCD
Although the standard Frank-Wolfe algorithm cannot guarantee convergence toward a global
minimum, it has excellent convergence properties when seeking a local minimum [Braun et al.
2022; Frank and Wolfe 1956; Jaggi 2013]. The algorithm thus provides an efficient approach to
detect if a point violates the lower bound on the SDF value (see Equation 9) for the CCD problem.
At any point, 𝜙 (®x𝑡 ) ≤ 0 automatically guarantees that 𝑡 ≥ 𝑡hit, which gives a new upper bound to
the time minimization problem. The time interval is reduced to 𝑡hit ∈ [𝑡start, 𝑡], thus culling later
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temporal minima from the problem space. Unfortunately, the gradient at the end of the newly
truncated time interval may cause the algorithm to get stuck trying to converge toward the same
local minimum as before. We address this issue by splitting the direction-finding sub-problem of
the Frank-Wolfe algorithm into two steps.

Our algorithm first proceeds much like Macklin et al. [2020], and at each iterate 𝑖 seeks a spatial
direction by selecting a support vertex from the triangle in its configuration at time 𝑡𝑖 :

min
®s𝑖

®s𝑖T∇𝜙 (®x𝑡𝑖 ) , (15)

s.t. ®s𝑖 ∈
{
®a𝑡𝑖 , ®b𝑡𝑖 , ®c𝑡𝑖

}
. (16)

Then, we introduce a new temporal direction

𝑑𝑖 =

{
−1, if 𝜙 (®x𝑡𝑖 ) ≤ 0

− sign(∇𝜙 (®x𝑡𝑖 ) · ®v𝑡𝑖 ), otherwise
(17)

that moves ®x𝑡𝑖 toward the zero isosurface of the SDF when outside , and otherwise moves the
solution backward in time. The solution is updated using the step 𝛼 = 2/(𝑖 + 2), standard to Frank-
Wolfe methods, such that

Δ𝑡 = 𝛼 (𝑡end − 𝑡start) 𝑑𝑖 , (18)
𝑡𝑖+1 ← max(𝑡start,min(𝑡end, 𝑡𝑖 + Δ𝑡)) , (19)
®x𝑡𝑖+1 ← proj

(
®x𝑡𝑖 + 𝛼 ( ®s𝑖 − ®x𝑡𝑖 )

)
. (20)

Note that in the last line, the position of the updated solution is projected into the triangle at
𝑡𝑖+1 to obtain ®x𝑡𝑖+1 . This can be achieved by barycentric interpolation or by applying the same
transformation used to produce the triangle at 𝑡𝑖+1.

Splitting the direction-finding sub-problem this way forces the algorithm to ignore the temporal
part of the gradient when 𝜙 (®x𝑡 ) ≤ 0. The spatial direction still follows the gradient, so it may find
deeper points, but the temporal directionwill be able to push them out of the shape bymoving back
in time to refine the current solution and avoid penetration at the local minimum. It also allows
the algorithm to find earlier local minima, in which case the boundary can be adjusted again until
the only remaining minimum is the one at the end of the adjusted time interval. The algorithm
terminates by detecting when 𝑡𝑖+1 ≈ 𝑡𝑖 and ®x𝑡𝑖+1 ≈ ®x𝑡𝑖 , up to a desired precision, or when a hard
limit on the number of iterations is reached.

This temporally modified version of the Franke-Wolfe algorithm usually reduces the problem
down to a simple convex problem with only a single global temporal minimum, yet offers no
guarantees. We found multiple scenarios where this method fails, such as configurations involving
repeated tunnelling over a single time step, as shown in Figure 2. We address these issues in the
following section.

4.3 Frank-Wolfe with Line Search
The domain of the spatial minimization sub-problem changes as the modified Frank-Wolfe method
described in Section 4.2 steps through time. The triangle at the new time point is effectively a dif-
ferent 3D slice of the four-dimensional spatio-temporal domain, which introduces discontinuities.
In addition, sudden modifications of the time domain occur when an evaluated point violates the
lower bound constraint 𝜙 (®x𝑡𝑖 ) ≥ 0. This may cause multiple local minima to be pushed out of
bound, and force the spatial minimization to keep seeking new ones. This is made difficult by the
ever-decreasing step size 𝛼 = 2/(𝑖 + 2), as the step size can become too small to find other minima.
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Algorithm 2: Frank-Wolfe with GSS
1 FWGSS(𝑡start, 𝑡end)

2 𝑡1 ← 𝑡start
3 Compute the barycentric coordinates 𝑢, 𝑣,𝑤 of the starting iterate. ⊲ Section 4.4

4 for 𝑖 ∈ 1 . . . max iterations do
// Solve temporal sub-problem

5 ®x𝑡𝑖 ← BarycentricInterpolate(𝑢, 𝑣,𝑤, 𝑡𝑖 )
6 Compute ®v𝑡𝑖 ⊲ Equation 14

7 Query 𝜙 (®x𝑡𝑖 ) and ∇𝜙 (®x𝑡𝑖 )
8 if 𝜙 (®x𝑡𝑖 ) ≤ 0 then
9 𝑡end ← min(𝑡𝑖 , 𝑡end) // Update interval

10 def UnsignedDistanceAtTime(𝑡):
11 ®x← BarycentricInterpolate(𝑢, 𝑣,𝑤, 𝑡)
12 return |𝜙 (®x) |
13 𝑡𝑖+1 ← GSSMinimize(𝑡start, 𝑡𝑖 , UnsignedDistanceAtTime) ⊲ Algorithm 1

14 else
15 Compute time direction 𝑑𝑖 ⊲ Equation 17

16 def SignedDistanceAtTime(𝑡):
17 ®x← BarycentricInterpolate(𝑢, 𝑣,𝑤, 𝑡)
18 return 𝜙 (®x)
19 if 𝑑𝑖 < 0 then 𝑡𝑖+1 ← GSSMinimize(𝑡start, 𝑡𝑖 , SignedDistanceAtTime)

20 else 𝑡𝑖+1 ← GSSMinimize(𝑡𝑖 , 𝑡end, SignedDistanceAtTime)

21 end if

// Solve spatial sub-problem

22 ®x𝑡𝑖+1 ← BarycentricInterpolate(𝑢, 𝑣,𝑤, 𝑡𝑖+1)
23 Compute ®v𝑡𝑖+1 ⊲ Equation 14

24 Query 𝜙 (®x𝑡𝑖+1 ) and ∇𝜙 (®x𝑡𝑖+1 )
25 if 𝜙 (®x𝑡𝑖+1 ) ≤ 0 then 𝑡end ← min(𝑡𝑖+1, 𝑡end) // Update interval

26

27 Compute support vertex ®s1 ⊲ Equation 15

28 def SignedDistanceAtPoint(®x):
29 return 𝜙 (®x)
30 ®x𝑡𝑖+1 ← GSSMinimize(®x𝑡𝑖+1 , ®s𝑖 , SignedDistanceAtPoint)
31 Update barycentric coordinates 𝑢, 𝑣,𝑤 using ®x𝑡𝑖+1
32 if 𝑡𝑖+1 ≈ 𝑡𝑖 and ®x𝑡𝑖+1 ≈ ®x𝑡𝑖 then break
33 end for

It is possible to avoid this issue by restarting the minimization whenever we reach sufficient
precision to ensure no penetration at a local minimum, but this quickly becomes costly. The
candidate contact point ®x𝑡𝑖 will often “wiggle” around a solution, getting continually closer, but
may never quite reach its target. We show an example of this behaviour in the supplemental
video. This behaviour is expected from Frank-Wolfe methods, however repeating this behaviour
for multiple local minima slows down the algorithm drastically. Furthermore, because we ignore
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the direction of one of the gradient components while in contact with the SDF, the new modified
direction does not have to be the descent direction, so theoretically the method can oscillate. We
address the aforementioned issues with two more modifications over the temporally modified
Frank-Wolfe method presented in Section 4.2.

First, 𝛼 from Equations 18 - 20 is replaced by two line searches: one to solve for the optimal
spatial step toward ®s𝑖 , and another for the optimal temporal step in the direction obtained from
Equation 17. Each line search is its own minimization of the SDF over a one-dimensional slice of
the problem space – one in time, and the other in space. Solving for the step size with a line search
maintains the convergence guarantees of the Frank-Wolfe algorithm [Braun et al. 2022; Jaggi
2013], but allows the spatial minimization to better adjust to the discontinuities and reductions
of the domain. For this, we use the GSS method from Section 3.4. Our choice is based on the
robustness and efficiency of the method, demonstrated by Macklin et al. [2020], when minimizing
SDFs over single-dimension problems. The second modification is to use the result of the temporal
sub-problem minimization to improve the spatial minimization. Each iteration, we find the time
direction, solve for the temporal step size, and compute 𝑡𝑖+1 as before. However, we additionally
project ®x𝑡 to 𝑡𝑖+1 and reevaluate the SDF and gradient before we proceed with Equation 15, solve
for the spatial step size, and update ®x𝑖+1. We found this to increase the efficiency of our technique
in solving the spatiotemporal problem.

To summarize, our Frank-Wolfe with line search (FWGSS) converges toward the first time of
impact by solving different problems depending on the situation. First, it minimizes the current
solution by finding barycentric coordinates and time that maximize penetration.When the current
solution is inside the SDF, i.e., 𝜙 (®x𝑡𝑖 ) < 0, the temporal line search seeks to minimize the unsigned
distance, while the spatial line search continues minimizing the SDF. Additionally, 𝜙 (®x𝑡𝑖 ) ≤ 0
provides a new temporal upper bound, and forces the temporal line search to ignore the gradient
and seek solutions backward in time. This effectively causes triangles to exit the SDF, culls local
minima past the temporal upper bound, and avoids searching for solutions near the local minimum
at the end of the time interval. By repeating until no further local minima are found, we obtain a
simpler problem with a single temporal (global) minimum at the first time of impact.

Visualizations of the convergence in our supplemental video compare versions of the modified
Frank-Wolfe method alongside projected gradient descent and shows that FWGSS (ours) is a clear
winner. Our proposed algorithm is further summarized as pseudocode in Algorithm 2.

4.4 Starting Iterate
Picking a good starting iterate can also improve the convergence of gradient-based algorithms. In
[Macklin et al. 2020], the triangle vertex ®s𝑖 ∈ {®a, ®b, ®c} closest to the SDF is selected. We found this
heuristic to hinder convergence in our method, as the closest point to the SDF at the start of the
time interval might not necessarily be moving toward the SDF. Instead, the vertex that is most
likely to collide with the SDF is selected as the one that minimizes ®v𝑖 · ∇𝜙 ( ®s𝑖 ), where ®v𝑖 is the
linear velocity of ®s𝑖 .

4.5 Adaptive Triangle Subdivision
Algorithm 2 and the algorithm described by Macklin et al. [2020] are triangle-local. That is, they
provide a single contact point per triangle. As shown in Figure 11 and Figure 10, this is not
sufficient when large triangles or edges collide with the SDF at many simultaneous contact points.
Subdividing the mesh reduces the risk of encountering this situation by splitting contact planes
into smaller coplanar triangles. Unfortunately, this drastically increases the number of triangles
on the mesh, all of which must be tested for contacts at every step of the simulation. We address
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Fig. 3. A typical example of the subdivision process and recursive search for supplemental contacts. Left: a
triangle can be subdivided in three sub-triangles at its centroid ®g. Centre: based on the position of a first
contact point ®xc, two (green) sub-triangles are searched for new contact points. A new contact ®x2 is found
in sub-triangle 𝐶 . Right: The sub-triangles are further subdivided to search for a third contact point. Sub-
triangle 𝐴 is ignored, because a previous search found no contact in it. Based on the existing contacts, four
new (green) sub-triangles are searched, and a third point of contact ®x3 is found. The three points satisfy the
conditions of being coplanar and not collinear, the algorithm is done.

this issue by providing an adaptive domain subdivision scheme to generate more contact points,
when needed, without the cost of subdividing the whole mesh or modifying the geometry.

Collision detection provides a contact point ®xc with barycentric coordinates𝑢, 𝑣, 𝑤 on a triangle
with vertices ®a, ®b, ®c. The triangle’s centroid ®g = (®a + ®b + ®c)/3 is cheap to compute and allows us
to define the three barycentric regions 𝐴, 𝐵, 𝐶 shown in Figure 3. These regions each form a
sub-triangle with the following vertices:

𝐴← ®b, ®c, ®g, 𝐵 ← ®a, ®g, ®c, 𝐶 ← ®a, ®b, ®g. (21)

The barycentric coordinates can be used to find inwhich region ®xc resides. It is within𝐴 if𝑢 ≤ 𝑣 and
𝑢 ≤ 𝑤 , within𝐵 if 𝑣 ≤ 𝑢 and 𝑣 ≤ 𝑤 , or within𝐶 if𝑤 ≤ 𝑢 and𝑤 ≤ 𝑣 .The discrete collision detection
algorithm described in Section 3.2 can then search for supplemental simultaneous contact points
in sub-triangles which do not include ®xc. DCD is sufficient here, even in a CCD pipeline, because
®xc is already obtained at the earliest time of impact, and we seek simultaneous contacts.
However, it is not guaranteed that contacts exist in sub-regions, or that only a single contact

should be generated in the sub-triangle where ®xc resides. The subdivision process is therefore
applied iteratively to each of the sub-triangles. We show a typical example of one such case in
Figure 3. It is possible to balance accuracy and performance by using a threshold, based on a
minimum sub-triangle area, to limit iterative subdivisions to bigger triangles or sub-triangles. Only
two additional non-collinear points are required for rigid face-face contact stability, so iterative
subdivision may be interrupted early upon finding two valid points. In practice, we found that
testing the two original sub-regions without iterative subdivision is generally sufficient even for
extremely coarse meshes, as shown in the supplemental video and Figure 10.

4.6 Acceleration Structure
Narrow-phase intersection tests can effectively be reduced by using bounding volumes around
each triangle, or a hierarchy thereof, and evaluating their distance to the SDF zero isosurface.
Broad-phase collision tests between a bounding sphere and an SDF are particularly efficient,
because a single distance query is enough to determine if collision is possible. If the distance from
a sphere’s centre is bigger than its radius, nothing within the sphere can collide with the SDF.
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However, using bound spheres is more difficult with CCD, especially when simulating complex
motions. For instance, a swept-sphere test can help cull entire rigid bodies in some scenarios, but
cannot capture rotational motions of individual triangles, leading to missed collisions [Ericson
2004].

Fig. 4. A triangle undergoes non-linear motion. Linear
sphere tracing, using the triangle’s bounding sphere
(blue), cannot capture the difficult motion. The max-
imum distance (red) between the trajectory and its
linear approximation is added to the radius of the
bounding sphere. The augmented bounding sphere
(green) covers non-linear motions, even along the lin-
ear approximation of the trajectory.

We found that a sphere tracing method cov-
ers complex motions, including rotations, over
time well enough to efficiently cull triangles,
as long as a sufficient collision margin is added
around each sphere, and that the shapes do
not rotate more than 180 degrees around their
centre of rotation. This is easily ensured by
splitting the sphere tests into multiple inter-
vals based on the rotation threshold. Note that
we seek the earliest potential contact. There is
no need to test later parts of the full interval
if a potential contact is found in an earlier
segment. Then, our iterative optimization al-
gorithm moves the “padded” spheres linearly,
between their position at the start and at the
end of the time interval. A visualization of
the bounding sphere and padding is shown
in Figure 4. The movement at each iteration is
defined by the difference between the padded
sphere’s radius and the distance to the SDF. If
the padded sphere intersects the SDF anywhere along this trajectory, the corresponding triangle is
considered for further collision testing. For time integration methods assuming constant velocities
over a time step, we found that a good heuristic for the proper padding is to compute the distance
between the position of the bounding sphere, on the real trajectory in the middle of the time
interval, and the midpoint of the line between the start and end position, as shown in Figure 4.

5 Results
We evaluate our proposed method for speed, accuracy and robustness using a series of challeng-
ing scenarios involving triangles-SDF collision that requires CCD for success. The scenarios use
meshes with up to hundreds of thousands of triangles and SDFs that challenge gradient methods
with gradient discontinuities, sharp features, and multiple boundaries along triangles trajectories.
All scenarios use the meter and second as base units, and no normalization is applied. A measure
of 1 cm is 0.01 m in our simulators. We compare our method against the discrete collision detection
method proposed by Macklin et al. [2020], which gives a baseline for comparing performance and
robustness.

A custom rigid body and cloth simulator, written in C++, are used for all experiments. We use
Discregrid by Koschier et al. [2017b], modified to support both single and double floating point
precision, to generate and discretize SDFs from meshes. All examples were run on a consumer-
grade laptop computer with an Intel i9 processor and an RTX 4070 laptop GPU, on a single CPU
thread. Unless specified otherwise, we run our simulations at 60 time steps per simulated second.

We refer to the Frank-Wolfe with Golden Section Search (FWGSS) as our approach, but we
also developed the Frank-Wolfe (FW) method for triangle-SDF CCD, which is included in relevant
comparisons.
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Macklin et al. FW FWGSS

Fig. 5. A skateboard slides down a ramp using the Macklin et al. [2020], FW, and FWGSS methods. The
FWGSS method allows the skateboard to settle at the tip of the rail, while the others are unstable.

Fig. 6. Two coarse pyramids fall onto an analytical SDF box. The simulation with discrete collision detection
(left) shows clear interpenetration, while our method on the right detects sharp contacts in time.

5.1 Contact detection
We first compare the quality of the collision detection to other approaches. In all the examples, our
method cheaply offers robust collision detection.

As seen in Figure 5, a poorly chosen first time of impact can have drastic influences on the scene,
making the discrete collision skateboard in red fall from the ramp.

In Figure 6 and Figure 7, we compare Macklin et al. [2020] and our method. On first impact,
discrete collision detection fails to detect sharp contacts like the ears of the bunny, while our
approach accurately captures the fine details of the collision. In Figure 8, we present a hoop
made with Boolean operators to have exactly a one by one hole matching the radius of one for
the analytical SDF sphere. Our algorithms successfully capture this challenging contact, while
the previous state-of-the-art completely misses the collision. This is because the opportunity for
contacts is small and can easily be traversed in a single time step.
In Figure 9, we compare the effects with and without adaptive triangle subdivision using a cloth

simulation, where any interpenetration is instantly apparent due to the 2D nature of the mesh. We
simulate two versions of the scene, one with a time step of 1 ms and one with a large step of 10 ms.
The subdivision method already significantly reduces the interpenetration using discrete collision
detection.

Likewise, our method without subdivision features some small level of interpenetration at a
triangle level because only a single contact point is generated, while the subdivision adds key
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Fig. 7. A bunny simulated with Macklin et al. [2020] and one with FWGSS fall onto an SDF shape. The
discrete collision detection bunny clips through the SDF while our method shows no interpenetration.

Fig. 8. A triangle mesh hoop falls over an analytical SDF sphere. The hole width exactly matches the sphere
diameter. Discrete collision detection [Macklin et al. 2020] (left) misses the collision event, while our method
(right) detects it.

contact points. In Figure 10, we show the impact of subdivision over time, where both discrete
and continuous collision detection sink into the SDF without it. Subdivision allows the low-poly
box to remain stable on top of the spikes, leading to more realistic simulations when used in more
complex scenes. Figure 11 shows the first frame after a triangle falls flat against a box SDF.Without
subdivision, a single contact constraint is generated, which is not sufficient to avoid penetration.
With adaptive subdivision, three contact constraints are generated, allowing the triangle to remain
stable.

As for large time steps, like the one frame 360◦ spin of Figure 12, our method catches them,
while discrete collision detection has no way of detecting the contact, staying endlessly in the
same position. The collision for a full 360◦ rotation in a single step is accurately captured with our
method at the right time of impact, while discrete collision detection fails to detect the collision
entirely, doing a full degree rotation in a time step, and for every time step.
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   Macklin et al. [2020]
+ adaptive subdivision

           Ours
without subdivision

OursMacklin et al. [2020]

Fig. 9. A mass-spring cloth with triangle mesh geometry falls on a bunny with SDF geometry. Only our
method using adaptive triangle subdivision produces a penetration-free simulation.

Ours OursMacklin et al.Macklin et al.

No Subdivision Subdivision

Fig. 10. A box modeled using a coarse triangle mesh falls on a spiky SDF. Without adaptive triangle
subdivision, simulations using discrete and continuous collision both exhibit jitter and severe penetration.

Fig. 11. Left: a single contact point cannot prevent the triangle to pass through the box. Right: we use
adaptive subdivision to generate additional contact points, which provide stable face-face contact.

5.2 Ground truth comparisons
To further validate the robustness of our method, we generated a data set containing 2048 ran-
domized starting configurations (position and velocity) along with ground truth (GT) collision
solutions. The data set comprises the torus SDF from Figure 2, and two meshes, each with 1024
random configurations. The first mesh consists of a single triangle, and the second is the shuriken
with 888 triangles from Figure 1. The torus SDF is 30 cm wide, and the triangle and shuriken are
roughly 10 cm wide. We note that no normalization is applied. The meter and second are always
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Fig. 12. A triangle mesh pyramid rotates 360◦ in a single time step. Our CCD method detects the collision
on the analytical SDF box, preventing intersection.

Table 1. The time of impact (TOI) for our FWGSS method versus the ground truth. Statistics are shown with
BSH acceleration. The last row shows the combined statistics over all 2048 tests. Negative and positive values
indicate FWGSS found earlier or later TOI, respectively.

ΔTOI (s)
Min Max Avg Median STD

Triangle -1.88E-05 +1.18E-04 +6.87E-07 -1.00E-12 +7.25E-06
Shuriken -6.47E-06 +7.78E-04 +7.29E-07 -3.00E-12 +2.43E-05
All -1.88E-05 +7.78E-04 +6.09E-07 -1.00E-12 +1.50E-05

Table 2. The distance travelled by the mesh before impact for our FWGSS method vs ground-truth (GT).
Negative and positive values indicate the mesh is closer or further, respectively.

Δ®x (m)
Min Max Avg Median STD

Triangle -3.64E-04 +1.76E-03 +1.26E-05 -1.79E-11 +1.23E-04
Shuriken -2.08E-04 +1.90E-03 +1.22E-06 -5.04E-11 +6.23E-05
All -3.64E-04 +1.90E-03 +6.98E-06 -3.27E-11 +9.25E-05

the base units. The GT solutions are obtained from a brute force approach by advancing through
the collision time interval in steps of 1E-06 s. Each step tests each triangle for collision using a
thousand iterations of the DCD method by Macklin et al. [2020]. The method backtracks using a
thousand iterations of GSS every time a collision is detected, and repeats the brute force DCD over
each triangle until the first time of impact is found.

Our FWGSS method uses the BSH acceleration structure, but the GT method doesn’t. The tests
are generated from a combination of random mesh positions, speed, and angular velocity, but we
ensure that the mesh is on a collision course with the SDF.

Statistical results of the tests are presented in Table 1 and Table 2. They show that our FWGSS
method finds the correct time of impact with an average precision of roughly 0.5 𝜇s. As multiple
points on the same triangle may be valid contact points, we cannot directly compare the distance
between those found by the two methods. Instead, we compare the distance between the stopping
point of the mesh between the FWGSS and GT results. We see that FWGSS gives a distance of
< 0.5 mm compared to GT, with an average in the order of 𝜇m. Of the 2048 tests, FWGSS gave
approximately 0.98% false positives for at least one triangle. The false positives are likely due to a
slight penetration when FWGSS finds a time of impact a bit later than GT. FWGSS missed at least
one triangle in contact for approximately 0.94% of tests. However, all tests for which FWGSS gave
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Table 3. We evaluate scalability with regard to triangle count of an armadillo falling on an SDF spike grid
by repeating the same scenario with different mesh resolutions. The first column shows the total physics
computation time up to the time of impact, and the others show statistics per triangle tested. The results
are averaged over 10 repeated executions.

Triangles Method Total (ms) Tri. mean (𝜇s) Tri. median (𝜇s) Tri. 𝜎 (𝜇s)
1K DCD 10.41 25.99 25.37 3.69
10K DCD 63.94 28.57 28.59 2.52
100K DCD 306.66 27.34 27.10 3.52
1K FWGSS 6.47 6.29 0.89 25.25
10K FWGSS 24.18 3.31 0.86 5.91
100K FWGSS 86.85 0.96 0.65 3.39

Table 4. Performance timings. All examples are simulated until the first contact, and the total time is reported
as the sum of ms to compute the triangle-SDF collision detection over all frames. The percentage of runtime
compares the collision detection to the full simulation time including time integration, constraint solve, etc.
The other columns give the time statistic in 𝜇s of the algorithm (based on each triangle tested). Our FWGSS
method outperforms the DCD algorithm ([Macklin et al. 2020]) in both accuracy and performance. Timing
information for the less robust FW algorithm is also provided on examples where it successfully converged.

Scene Method Total (ms) Runtime % Tri. Tested Mean (𝜇s) Min (𝜇s) Max (𝜇s) SD (𝜇s)
Skate DCD 2.33 94.72 76 30.69 24.99 80.17 13.94
Skate FW 1.35 32.22 153 8.85 1.71 42.35 3.7
Skate FWGSS 3.91 57.42 153 25.57 7.14 94.7 24.72
Bunny DCD 5.09 98.64 89 57.18 26.29 113.5 29.06
Bunny FW 0.52 27.81 134 3.9 0.39 25.01 4.7
Bunny FWGSS 1.06 52.74 134 7.93 0.40 36.29 4.94
Shuriken DCD 1.43 97.28 21 67.97 28.05 86.74 16.79
Shuriken FWGSS 0.4 74.07 36 11.13 0.57 39.95 7.71

false negatives still found a time of impact very close to the GT method. False positive and false
negative collisions occurred only for the shuriken, not the single triangle tests.

5.3 Performance
We evaluate the wall clock time of our method against other approaches by monitoring the compu-
tation time of the collision detection and adaptive subdivision. We only compare each technique
up to the first time of impact and ignore subsequent simulation frames, as they are influenced
by previous results and the different techniques quickly lose a common comparison basis. Other
factors unrelated to the compared techniques, like constraint solve or collision response, would
also otherwise begin to influence the results.

In Table 3, we evaluate the scalability of the algorithms as the number of triangle increases. This
scenario uses the SDF spike grid from Figure 10, and the armadillomesh at different resolutions.We
note that, normally, it would make a lot more sense for the spike grid to be a triangle mesh (coarse
and sharp), and for the armadillo to be an SDF (dense and relatively smooth). We deliberately
chose this configuration because the spike grid SDF is extremely challenging for gradient methods.
Both methods are accelerated using a bounding sphere hierarchy to cull narrow-phase tests. Our
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method of choice (FWGSS) scales better than the DCD method by Macklin et al. [2020]. The
total run time is drastically improved with CCD preventing penetration, whereas DCD runs for
a full extra simulation frame before having to handle a lot more intersections. Furthermore, the
time interval for CCD shrinks whenever an earlier contact is found by our method. This makes
subsequent triangle tests more efficient, and explains the larger standard deviation of our method.
Per-triangle statistics demonstrate that our method becomes more efficient as the number of
triangle increases.This is also due to the shrinking time interval, which provides a simpler problem
space for subsequent narrow-phase triangle tests. We note that the average time per triangle is
measured in microseconds.

In Table 4, we compare the time in milliseconds taken by the triangle-SDF collision detection
algorithms and triangle subdivision, aggregated over the simulation frames for each scene. We
include per-triangle timing statistics in microseconds to provide better insight about the efficiency
of each algorithm. In all scenarios, our method of choice (FWGSS) is more accurate, and it outper-
forms the Macklin et al. [2020] DCDmethod.This holds true, even if the number of triangles tested
over multiple time steps is higher with our methods, because false positives provided by the broad-
phase tests are quickly resolved by the narrow-phase tests. The increased number of tests is due
to the relative inaccuracy of our acceleration structure (see Section 4.6) compared to structures
suited for DCD.

6 Discussion and Limitations
Knowing the lower bound of theminimized functionmay allow ourmethod to outperformMacklin
et al. [2020] while enabling CCD by providing the time of impact, but contact handling can be
(very) expensive. Our collision detection method is fast, and compatible with efficient coarse
meshes thanks to the adaptive triangle subdivision. It is also time-integration agnostic, and can be
used with any type of contact handling. In real-time interactive simulations, where performance
is prioritized over accuracy, our method may only be called once per frame for each potential
collision pair requiring CCD. In this case, performance and robustness will be improved by our
technique, and real time performance is easily maintained. If higher accuracy is required, and
interpenetrationmust absolutely not happen, then ourmethodmay need to be called a lotmore due
to the collision response itself causingmore contacts to happenwithin the time step. Our technique
may still improve performance and robustness in these simulations but cannot guarantee real-time
performance.

While our method can accurately find the first time and point of impact, it cannot guarantee an
absolutely interpenetration-free simulation and maintain its real-time performance capacity with-
out at least a small collision margin. We found that in practice, a margin of about one millimetre
is sufficient, but accuracy is otherwise limited by floating point precision in the numerical solver
and by limiting the number of iterations to maintain real-time performance.
In the discrete case, we get a cheap, relatively tight bound on the solution space, a static bound-

ing sphere around the triangle. In the CCD case, we cannot accurately and cheaply estimate the full
volume a triangle would pass through. Our ray-marching approach is cheap and avoids missing
contacts, but requires a wide padding. Therefore, more triangles can pass the filter of the broad
phase, even if they do not end up colliding.

Our method depends on the quality of the SDF, but inexact or approximate SDFs are common.
We even use approximate polynomial forms in multiple of our scenarios. Imperfect SDFs affect
the efficiency and guarantees our method can offer. For example, the more discontinuities there
are, the harder it is for gradient methods to converge. Floating point error is also a concern for
numerical methods, and may be exacerbated by SDFs with low precision or gradients with non-
unit norms. High relative velocities and longer time steps also contribute to this issue. In practice,
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though, we found that our method still fares well on difficult scenarios with discontinuities, high
velocities and rotations, and even difficult SDFs for shapes which would normally be represented
by triangle meshes (like the spike grid in Figure 10).

Existing benchmarks for collision detection, such as [Wang et al. 2020], compare continuous
triangle-triangle collision detection methods against ground truth solution. Although it is techni-
cally possible to generate a triangle mesh from an SDF using methods such as marching cubes
[Lorensen and Cline 1987], the resulting geometry only provides a rough discrete approximation
of the SDF. Standard triangle-triangle CCD would thus only be able to provide results relative to
this approximation, so we exclude them as a baseline for ground-truth comparison. Not to mention
that triangle-triangle collision detection brings additional challenges [Erleben 2018]. We therefore
opt to compare our results to the ground-truth obtained using the brute force approach described
in Section 5.2.

7 Conclusion
Our method addresses challenges in collision detection by reformulating the problem as a spatio-
temporal local optimization. Through the introduction of adaptive triangle subdivision and the
development of an enhanced problem-specific Frank-Wolfe method with line search, our method
leads to robust and accurate collision detection for both coarse and complex geometries. This
reduces issues such as tunnelling and missed collisions. Our method offers improved robustness
over point sampling methods and outperforms recent triangle-SDF discrete collision detection
(DCD) algorithms.

The golden section search is used for the various line searches required by our method. This
approach is relatively efficient, and can often find minima more quickly than the version of our
algorithmwithout it. In the future, we would like to study how different line search methods affect
the efficiency and accuracy of our method. For instance, it is possible that a simpler bisection
method could provide better efficiency.

The current acceleration structure has large bounds for detection. In the future, we would like
to improve its efficiency by reusing spatial acceleration structures often used for the discretization
of SDFs. Likewise, we could potentially improve the convergence of Frank-Wolfe methods using
momentum-based approaches similar to Montaut et al. [2024]. No benchmark exists for triangle-
SDF collisions. We evaluated our method with a series of extreme hand-crafted scenarios and ran-
dom variations. However, it would be beneficial for the research community to develop standard
benchmarks to provide rigorous and varied tests for triangle-SDF collisions and related edge cases.
We note that our method could potentially be compatible with the incremental potential contacts
(IPC) framework [Li et al. 2020], which would completely rid the simulations of the possibility
of interpenetration past the first contact. We are excited to see the adoption of fast continuous
collision detection in industry applications, and hope that efficient methods using SDFs will enable
penetration-free simulations and further advance the field of real-time physics-based animations.
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