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Figure 1: Multiple thin cuts can be made in a slab to create thin deformable sheets, where the mass and stiffness decreases with each cut. An
orthogonal cut across these sheets demonstrates the ability of our generalized method to handle intersecting cuts.

Abstract
Traditional mesh-based methods for cutting deformable bodies rely on modifying the simulation mesh by deleting, duplicating,
deforming or subdividing its elements. Unfortunately, such topological changes eventually lead to instability, reduced
accuracy, or computational efficiency challenges. Hence, state of the art algorithms favor the extended finite element method
(XFEM), which decouples the cut geometry from the simulation mesh, allowing for stable and accurate cuts at an additional
computational cost that is local to the cut region. However, in the 3-dimensional setting, current XFEM frameworks are limited
by the cutting configurations that they support. In particular, intersecting cuts are either prohibited or require sophisticated
special treatment. Our work presents a general XFEM formulation that is applicable to the 1-, 2-, and 3-dimensional setting
without sacrificing the desirable properties of the method. In particular, we propose a generalized enrichment which supports
multiple intersecting cuts of various degrees of non-linearity by leveraging recent advances in robust mesh-Boolean technology.
This novel strategy additionally enables analytic discontinuous integration schemes required to compute mass, force and elastic
energy. We highlight the simplicity, expressivity and accuracy of our XFEM implementation across various scenarios in which
intersecting cutting patterns are featured.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Cutting and fracturing of deformable solids is important for many
computer graphics applications, such as virtual surgery, visual

effects for fracture and tearing in film and games, and engineering
simulations. However, there are longstanding challenges related
to the robustness and computational performance of simulations
involving cutting. These mainly stem from the topological

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://orcid.org/0000-0002-0856-5562
https://orcid.org/0000-0003-4176-6857
https://orcid.org/0000-0001-9776-117X


2 of 13 Q. M. Ton-That, P. G. Kry, S. Andrews / Generalized eXtended Finite Element Method for Deformable Cutting via Boolean Operations

Target cut RefinementDeletion Snapping Face splitting Duplication

Figure 2: Traditional mesh-based cutting methods modify the
simulation mesh to approximate the cut’s geometry.

and geometrical changes of the underlying model that cutting
introduces.

Mesh-based approaches for elastic simulation are favored in
many interactive computer graphics applications due to their
efficiency, in particular the finite element method (FEM). Yet
cutting leads to numerous challenges for FEM. On the one hand,
remeshing operations allow accurate reconstruction of the cutting
geometry, however the simulation may become unstable due to
the resulting ill-shaped elements. Element deletion, splitting, and
duplication techniques can be used to avoid remeshing, but physical
fidelity is sacrificed due to imprecise simulation quantities ensuing
from these operations.

The extended finite element method (XFEM) was developed
specifically to alleviate the shortcomings of FEM when dealing
with cutting and fracturing. The approach enriches the model with
additional degrees of freedom that specifically handle disconti-
nuities introduced by cutting. State-of-the-art XFEM algorithms
demonstrate an impressive ability to generate conforming cuts
without remeshing or other geometric modifications. However,
a key challenge here is computing integrals associated with
simulation forces, masses and stiffness over discontinuous domains
introduced by cuts. Recent work by Koschier et al. [KBT17]
addresses this challenge by proposing a specialized discontinuous
quadrature rule. However, their approach does not support the case
of intersecting cuts, which is a requirement for many real-life
applications.

Our work proposes a novel cutting model based on mesh
Boolean operations, unlocking a new set of expressive XFEM
enrichments that support multiple intersecting cut geometries.
Furthermore, the method greatly simplifies the resulting discontin-
uous integrals by leveraging the divergence theorem for efficient,
analytic and accurate integration of mass and stiffness, leading to
high-fidelity simulations. Figure 1 shows a preview of our results.

2. Related Work

We begin with a brief survey of simulation methods for cutting
elastic solids, and highlight their strengths and weaknesses.
We refer readers wishing to dive deeper into the relevant
work on cutting simulation to the enlightening surveys on the
topic [BSM∗02, WWD15, WM18]. Early cutting approaches in
the field of computer graphics relied on directly modifying the
simulation mesh to account for the resulting discontinuities.
Figure 2 shows visual examples of the reviewed mesh modification
strategies for cutting.

Element deletion. One of the most straightforward approaches for
updating a mesh-based model due to cutting are element deletion

methods [DCA99, CDA00]. Elements intersected by the cutting
path are simply removed, resulting in increased computational
efficiency as the simulation progresses, at the cost of inaccurate
physical and visual outcomes.

Element refinement. On the other hand, element refinement
methods subdivide the simulation mesh in cut regions, conforming
to the discontinuity’s geometry, thus yielding accurate computation
of mass, force and elastic energy. Bielser et al. [BMG99] proposed
a tetrahedron subdivision scheme based on cut edges supporting
piece-wise linear cuts in elements, which was later improved
by Bielser and Gross [BG00] and Mor and Kanade [MK00]
to decrease the rate of creation of new elements. A state
machine algorithm was designed by Bielser et al. [BGTG03] to
account for general interactive cutting tool interactions with the
simulated models. Nienhuys and Frank van der Stappen [NFvdS01]
alternatively proposed to project vertices in the cut region to
the discontinuity. More recently, Paulus et al. [PUC∗15] targeted
element reducing refinement schemes by considering element
adjacencies in the subdivision process. Unfortunately, despite these
efforts, the quality of the mesh eventually decreases, leading to
slow and unstable simulations. These severe disadvantages led
to the development of face splitting approaches [NvdS00, MG04,
SHGS06], which restrict the cut path to lie on element facets, in an
attempt to better balance the trade off between accuracy, stability
and computational cost. While face splitting preserves mass and
volume properties correctly, it remains a poor approximation of the
desired discontinuities.

Element duplication. A popular choice for performing mesh-
based cutting are element duplication techniques, due to their
simplicity and reliability. However, this often comes at the
cost of reduced physical accuracy. Molino et al. [MBF04] first
proposed the virtual node algorithm (VNA) which creates copies
of original elements, resulting in non-manifold topologies which
capture the cut geometry at the simulation mesh’s resolution.
Although the resulting mass and stiffness properties increase
artificially, the visual representation is embedded in the simulation
mesh, conforming to the cut’s geometry. Improved VNA variants
have since been proposed that enable higher resolution visually
conforming cuts [SDF07, WJST15]. Perhaps the closest approach
to ours in this class of method is that of Sifakis et al. [SDF07],
since they also support arbitrary cutting configurations. However,
our work differs in two distinct ways. First, floating point precision
issues are mitigated through our use of a robust technique for
computing mesh arrangements [ZGZJ16]. Additionally, since our
method employs an exact spatial integration technique, rather
than element duplication, the physical properties computed for cut
regions using our approach are more precise.

Voxel representations. The reliability of duplication methods,
coupled with the convenience of voxel representations [FG99] led
to further advancements in mesh-based cutting by demonstrating
improved efficiency, simplicity and robustness [DGW11, JBB∗10,
SSSH11, WDW11]. Ultimately, accuracy remains the inevitable
major drawback of element duplication. Acceleration methods also
exist to complement mesh modification. Ganovelli et al. [GCMS00]
combined subdivision schemes with multi-resolution mesh rep-
resentations, while other work has proposed incremental matrix
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factorization updates when using approximate fast time integration
schemes [LLKC21, YCP16, YPC20].

eXtended Finite Element Method. The pioneering work of
Moës et al. [MDB99] in the engineering literature proposed
XFEM, which eliminates the pain points accompanying previous
mesh modification approaches. The fundamental principle behind
XFEM is to capture the discontinuity in the function space where
our FEM discretization lives using enrichment functions, rather
than in the geometry of the underlying mesh itself, allowing
for remeshing-free simulation of discontinuous phenomena. This
separation between simulation mesh and cut representations
allowed the work that followed to enhance the capabilities of
XFEM by focusing on these so-called enrichments functions.
Daux et al. [DMD∗00] proposed hierarchical junction enrichments
to accommodate intersecting cuts by treating them as branched
cracks, whereas Kaufmann et al. [KMB∗09] achieved sub-element
continuous cutting resolution by modeling enrichments as solutions
to the harmonic equation subject to boundary conditions imposed
by the cut’s path. Mousavi et al. [MGS11a, MGS11b] later
extended this work to intersecting branched cracks and higher
order basis functions. The aforementioned methodologies are
particularly well-suited to crack propagation simulations in 2D.
Other work has demonstrated the suitability of XFEM in large
deformation scenarios [JK09]. Although these qualities are quite
impressive, failure to integrate mass and stiffness accurately in
XFEM directly results in jarring simulation instability [KBT17,
JK09]. Later work proposed discontinuous quadrature rules to
address this issue [MKOW12,MKO13,KBT17]. More recent work
demonstrates the ongoing relevance of XFEM [HSK∗19,CMSK20]
in scenarios requiring high fidelity discontinuous behavior. Several
works in the mechanical engineering literature [RHS∗11, HH04,
SAB06, DSMB09] claim a similar feature set to ours, yet lack
demonstrations on 3D scenarios. In contrast, within the graphics
literature, mesh-based cutting algorithms either support accurate
cutting behavior, or intersecting cuts, but not both. Koschier et
al. [KBT17] show advantages over these existing techniques, yet
we extend their method to intersecting cuts as well as faster and
simpler spatial integration without loss of functionality.

Mesh-free methods. The numerous meshless methods developed
in the past decades demonstrate the continuing desire for
remeshing-free cutting methodologies. However, they are consid-
ered computationally costly compared to mesh-based approaches,
requiring much denser discretizations in order to accurately capture
simulation details. As our work does not address challenges in
meshless simulation, we only provide a cursory overview of
the many meshless simulation methods supporting discontinuities
that have been developed in both the engineering and computer
graphics literature [BLG94, BGL94, NRBD08, OFTB96, DG96,
JL12, SOG06, SOG08, SOG09, MKN∗04, HFG∗18, MO20].

Remeshing-free. Although XFEM aims to avoid modifying the
simulation mesh, the visual mesh inevitably requires remeshing
for visual fidelity. Similarly, remeshing a background integration
mesh is common [RHS∗11,JCD02,BCXZ03] to capture physically
accurate behavior, especially when the same regions can be cut
more than once. When simplifying assumptions on the simulation
can be made, fixed quadrature may be sufficient [SAB06,

DSMB09]. In this sense, Koschier et al. [KBT17] develop a "true"
remeshing-free XFEM approach. Reliance on mesh processing
can be decreased even further via implicit representations of the
discontinuity, but these do not support intersecting cuts [ZKBT17,
MMDH∗23, HSK∗19]. The benefits of avoiding remeshing the
simulation mesh are twofold. The quality of the original uncut
mesh’s shape functions is preserved during cutting [She02],
and the complexity of the simulation scales with the number of
discontinuities, rather than with their geometric discretization’s res-
olution. Likewise, meshless methods, although termed “meshless”,
may also use a background mesh for accurate spatial integration
[NRBD08,BKO∗96], which does not affect the displacement field’s
discretization.

3. Background

In this section, we provide a brief overview of the fundamentals of
dynamic simulation of elastic solids using the finite element and
extended finite element methods, thus laying the groundwork for
our proposed methodology.

3.1. Elastodynamics

Simulations of mechanical systems obeying the principle of least
action satisfy the Euler-Lagrange equation

d
dt
∇q̇L−∇qL = 0 , (1)

where L(q, q̇, t), known as the Lagrangian, is a scalar function
describing the dynamic behavior of our system at any time t, and
q(t) are generalized coordinates describing its state.

We focus on the particular case of non-linear elastodynamic
systems in d embedding dimensions. Here, the central quantity
of interest is the displacement field u(X, t) : Ω → Rd that
parameterizes the deformed spatial configuration x(X, t) ∈ Rd of
X. The deformed configuration can be computed at any time t as

x(X, t) = X+u(X, t). (2)

In this setting, the Lagrangian measures the balance between
total kinetic and potential energies in a continuous, but bounded,
material domain Ω, whose behavior is characterized by a mass
density ρ, a strain energy density Ψ, and body forces b, such that

L(u, u̇, t) =
∫

Ω

1
2
ρu̇T u̇−Ψ(u)+uT b ∂Ω . (3)

3.2. Finite Element Method

The FEM expresses u(X, t) on a meshed domain Ω, with nodes
V and elements E, in the form of a linear combination of
time-varying coefficients ui(t) ∈ Rd and spatially varying basis
functions φi(X) ∈ R:

u(X, t) = ∑
i∈V

ui(t)φi(X) . (4)

Observe from Eq. 4 that each coefficient and basis function is
associated with a single node i ∈V .

While the coefficients ui(t) are obtained during the simulation by
time integration, the basis functions φi(X) are constructed prior to
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the simulation using local geometric interpolation functions Ne
i (X),

commonly referred to as shape functions, associated with node
i and supported in the domain Ω

e of element e. We can easily
construct these shape functions in each element e independently
by solving the interpolation problem

P(Xi)
T ae

j = δi j ∀ i, j ∈V e, (5)

where P(·) is a polynomial basis, ae
j its coefficients and δi j

is the Kronecker delta. The shape function is then computed
by the dot product Ne

i (X) = P(X)T ae
i for X ∈ Ω

e. A popular
choice of polynomial basis in graphics is the 3D linear monomial
P(X) = [1 X Y Z]T .

The meshing of Ω is assumed to satisfy
⋃

e∈E Ω
e = Ω and

Ω
e ∩Ω

ẽ = ∅ for e ̸= ẽ. In other words, the union of elements
covers the domain, and elements are non-overlapping except at
their interfacing boundaries. This allows basis functions to be
defined concisely by the union of shape functions over the mesh
one-ring neighborhood

φi(X) = ∑
e∈E i

Ne
i (X) ,

where E i denotes the elements incident on node i. Consequently,
Eq. 4 is continuous everywhere in Ω. By construction, the basis
functions satisfy the Kronecker delta property φi(X j) = δi j, such
that u(Xi, t) = ui(t) is interpolating at nodes, facilitating the
imposition of boundary and initial conditions.

3.3. Equations of Motion

We can inject Eq. 3 into Eq. 1 and let qi(t) = ui(t), to recover
Newton’s equations of motion

Mü =−∇U(u)+ f, (6)

where the mass matrix M ∈ R|V |d×|V |d has d× d blocked entries
Mi j , the force vector f ∈ R|V |d has d× 1 blocked entries fi, U is
the total elastic potential energy, and u is a vector collecting the
coefficients ui(t). We compute their values by integration over the
material domain:

Mi j =
∫

Ω

ρφi(X)φ j(X)dΩ⊗ Id×d , (7)

fi =
∫

Ω

bφi(X)dΩ⊗1d , (8)

U(u) =
∫

Ω

Ψ(u)dΩ . (9)

Although there are various choices of stable time integration
schemes for solving Eq. 6, our work assumes a first-order backward
Euler (BDF1) discretization with time step h, which yields the
following optimization problem:

ut+1← argmin
u

1
2
∥u− ũ∥2

M +h2U(u) . (10)

Here, ∥ · ∥2
M denotes the mass-weighted squared 2-norm, and ũ =

ut +hu̇t +h2M−1f.

3.4. eXtended Finite Element Method

The extended finite element method, as its name implies, extends
FEM by adapting the basis {φi} of u(X, t) with enrichments {ψc

i }
where discontinuities Γ

c exist, which we will often refer to as
cuts. In the elastodynamic setting, Γ

c is represented by spatially
continuous time-varying paths traced by a cutting tool, such as
a knife or a scalpel, and the enriched basis allows a meshed
deformable body Ω to separate across Γ

c.

The fundamental building block used to achieve such a feat is
the sign function sgnc(X) : Rd → {−1,1} associated with cut Γ

c,
which encodes the geometry of Γ

c implicitly, thus generalizing
to d dimensions. Traditionally, sgnc(X) need only form a binary
partitioning of space whose interface coincides with Γ

c. Such a
function is easily obtained by normalizing the common signed
distance function sdf c(X) to the cut Γ

c.

Basis function enrichments are subsequently constructed from
sgnc as d-dimensional signed Heaviside step functions, also known
as shifted sign enrichments (SSE),

ψ
c
i (X) =

1
2
(sgnc(X)− sgnc(Xi)). (11)

One can intuitively deduce that ψ
c
i (X) =±1 whenever X lies on the

side of the cut across from node i, while it vanishes when sharing
the same sidedness with node i. An important property of the SSE is
that it preserves the Kronecker delta property, thus keeping u(X, t)
interpolating.

Enriched basis functions φi(X)ψc
i (X) are thus understood as

original basis functions φi whose domains Ω
i are restricted to the

opposite side of Γ
c from node i. If Ω

i is not intersected by Γ
c, then

ψ
c
i (X) = 0 everywhere. Consequently, it is unnecessary for Γ

c to
enrich such a node i, allowing for purely local modifications to the
displacement field , which can therefore be conveniently written as

u(X, t) = ∑
i∈V

ui(t)φi(X)+
|Γ|

∑
c=1

∑
i∈Vc

uc
i (t)φi(X)ψc

i (X), (12)

where Γ = {Γc} is the set of all discontinuities at time t, Vc is
the set of nodes enriched by Γ

c, and uc
i (t) are node i’s coefficients

associated with Γ
c.

We discover from Eq. 12 two of XFEM’s major advantages over
traditional mesh-based cutting algorithms:

1. Topological changes to mesh Ω are never required, i.e., XFEM
is remeshing free, because the original basis functions φi(X) are
always reused. Thus, mesh quality is preserved during the whole
simulation.

2. Cut geometries Γ
c are fully decoupled from the mesh Ω, being

entirely captured by sgnc(X) which appears in the enrichments
ψ

c
i (X), allowing Γ

c to represent a large class of complex
discontinuities accurately.

3.5. Discontinuous Integration

Naturally, a redefinition of the displacement field u(X, t) also
redefines the mass, force and elastic energy from Eqs. 7, 8 and 9.
In the enriched basis, we obtain mass block matrices Mcl

i j ∈ Rd×d
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Figure 3: A 2D visualization showing the 1-ring neighborhood Ω
i of a node i controlled by degree of freedom (DOF) u1

i . (a) The original
1-ring neighborhood for node i. (b) A cutting volume is generated by extruding the polygonal cutting surface by thickness ϵ. (c) A mesh
Boolean operation adjusts Ω

i,1 and creates a new subdomain Ω
i,2 with its associated DOF u2

i . (d) A subsequent intersecting cut Γ
2 results

in (e) 2 new subdomains Ω
i,3 and Ω

i,4 and DOFs u3
i and u4

i .

and force block vectors fc
i ∈ Rd for nodes i, j enriched by cuts c, l

respectively, written as

Mcl
i j =

∫
Ω

ρφiψ
c
i φ jψ

l
jdΩ⊗ Id×d , (13)

fc
i =

∫
Ω

bφiψ
c
i dΩ⊗1d . (14)

The mass matrix and force vector may then be constructed by
flattening Eq. 13 and Eq. 14 in the cut indices c and l’s dimensions.
While the total elastic potential U(u) now also takes into account
enriched basis functions φi(X)ψc

i (X) and their coefficients uc
i (t),

its specific definition depends on the selected material model. In all
three cases, specialized integration techniques must be adopted to
account for the discontinuous integrands.

4. Methodology

We now depart from previous work by proposing a generalized
XFEM framework that allows mesh-based simulations to accu-
rately simulate cutting scenarios. Our approach aims to eliminate
limitations imposed by many of the aforementioned approaches,
specifically their inability to handle arbitrary intersecting cuts while
also accurately and robustly simulating physical behavior.

4.1. Cut Modeling

Our method assumes the discontinuities Γ
c represent time-varying

trajectories of a cutting tool’s sharp edge passing through the
simulated domain Ω. Approximating the tool’s sharp edge by
a curve in 3-dimensional space, Γ

c becomes a swept surface,
an inherently 2D entity. Koschier et al. [KBT17] highlight the
advantages of triangle mesh representations of Γ

c in XFEM.
Expanding on this, we introduce a simple modification –
solidification of the swept surface – which lays the groundwork
for our generalized XFEM. The swept surfaces Γ

c are lifted to 3D
by injecting a thickness ϵ> 0 along their normal direction, making
Γ

c a thin, closed solid with boundary ∂Γ
j .

We represent the solid Γ
c by a triangle meshing of its

boundary ∂Γ
c, enabling the use of recent state-of-the-art robust

mesh Boolean operations [ZGZJ16] as intuitive, yet powerful

geometry processing tools for surface mesh manipulation. Such
tools will prove fundamental to unlocking a new set of expressive
enrichment functions and integration schemes, which we present in
Sections 4.2 and 4.3.

4.2. Generalized Enrichments

The need for a new set of enrichment functions is motivated by
examining existing ones. In the 1D setting, discontinuities are
points on the real line R, which can only partition space into two
regions. Consequently, it is sufficient to capture each discontinuity
by a single sign function sgnc(X), and each node need only yield a
single enrichment per cut Γ

c.

Raising the embedding space to R2 transforms discontinuities
from points to curves, revealing two important limitations of the
previous approach. First, a single cut Γ

c may not pass through the
same nodal support Ω

i twice, since it would require the model to
allow multiple nodal enrichments associated with the same cut.
Second, assuming the previous scenario can be avoided, if k ≥ 2
cuts pass through and intersect within nodal neighborhood Ω

i,
then Ω

i will separate into S > k independent subsets of Ω
i. In

other words, the resulting k enriched degrees of freedom will be
insufficient to capture the motion of S distinct pieces of material.

Daux et al. [DMD∗00] and later Mousavi et al. [MGS11a]
recognized limitations related to intersecting cuts and proposed
branched enrichments located at intersections between the
discontinuities. Discontinuities Γ

c in R2 intersect at points, such
that a branching structure emerges, unambiguously separating
Γ

c into a hierarchical structure. Temporal coherence of the cuts
then allows so-called main cracks, i.e., discontinuities Γ

c, to
separate and branch out into secondary cracks. In R3, however, this
branching structure is ambiguous. Discontinuities Γ

c evolve from
curves to surfaces, and the intersections between them, from points
to curves. Unfortunately, intersecting surfaces do not unequivocally
separate into distinct geometries. For these reasons, we propose
a generalized enrichment that is effective for 1D, 2D, and 3D
embeddings.

We derive our enrichments from the realization that delineating
the sidedness of space with respect to a discontinuity does not
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align with our objective, which is to simulate material separation.
Instead, enrichments should aim to identify the distinct pieces
of material resulting from said discontinuities, allowing the
displacement field u(X, t) to treat each piece independently. We
thus discard the traditional sign-based enrichments in favor of a
material indicator function. Because the spatial behavior of u(X, t)
is entirely defined by its basis functions φi(X, t), it is sufficient to
restrict our attention to the role of indicator functions associated
with nodal domain Ω

i.

Separating Ω
i into its distinct pieces, or nodal subdomains Ω

i,s,
due to cuts Γ is trivially achieved in the continuous setting by the
Boolean difference operator {Ωi,s}= Ω

i \
⋃|Γ|

c=1 Γ
c. In the discrete

setting, although Boolean operations are straightforwardly applied
to implicit representations, it is generally non-trivial to identify
the resulting connected components. Fortunately, mesh Booleans
benefit from the best of both worlds. Given an explicit polygon
mesh representation of the boundaries ∂Ω

i and ∂Γ
c of the solids Ω

i

and Γ
c respectively, mesh Booleans yield the desired subdomains

Ω
i,s in the form of their meshed boundaries ∂Ω

i,s. The key
additional benefit here is that identification of the subdomains S i =
{Ωi,s}, i.e., the connected components, is trivial via breadth/depth
first search over the graph of adjacent triangles of S i.

Building upon this, we make use of an unsigned distance
measure

dist(X,∂Ω
i,s) = min

Y∈∂Ωi,s
∥X−Y∥2

2 (15)

between a point X ∈ Rd and the meshed nodal subdomain
boundary ∂Ω

i,s. We use this distance to define our generalized
XFEM enrichment function ψ

s
i (X) as the aforementioned material

indicator function

ψ
s
i (X) =

{
1 dist(X,Ωi,s)< dist(X,Ωi,s′) ∀ s′ ̸= s
0 otherwise

, (16)

where the subscripts s and s′ identify the nodal subdomains of
node i. Intuitively, ψ

s
i (X) identifies its assigned independent piece

of material by a positive sign inside of it, while it vanishes outside.
Hence, enriched basis functions φi(X)ψs

i (X) are restricted to Ω
i,s,

which we control using enriched degrees of freedom us
i (t). Figure 3

shows an illustration of this. Due to our cuts’ thickness parameter
ϵ, the unsigned distance between two separate nodal subdomains
Ω

i,s and Ω
i,s′ is guaranteed to be greater than or equal to ϵ, i.e.,

X ∈Ω
i,s→ dist(X,Ωi,s′)−dist(X,Ωi,s)≥ ϵ ∀ s′ ̸= s , (17)

freeing ψ
s
i (X) of ambiguity at material points X∈Ω\

⋃|Γ|
c=1 Γ

c. Our
displacement field is then easily described as

u(X, t) = ∑
i∈V

∑
s∈S(i)

us
i (t)φi(X)ψs

i (X) , (18)

where S(i) is the index set of subdomains Ω
i,s of node i.

Kaufmann et al. [KMB∗09] briefly discussed similar gener-
alized enrichments, although they ultimately propose harmonic
enrichments, which only support intersecting cuts by adhering
to the branched crack assumption [MGS11a]. Our approach is
also reminiscent of virtual node algorithms (VNA), which rely on
assigning new degrees of freedom to "scoops" of material severed

Γc

Ωe Ωe,1

Ωe,2

∂Ωe,1

∂Ωe,2

Figure 4: Two element sub-domains Ω
e,1 and Ω

e,2 are created
by cut Γ

c. Mesh Booleans provide us with boundary tessellations
∂Ω

e,1 and ∂Ω
e,2.

from nodal 1-rings. In contrast to VNA, our approach places no
restriction on the configuration of the cuts, offers adaptivity out
of the box thanks to the composability of Boolean operations, and
integrates physical quantities accurately for simulation.

4.3. Spatial Integration

The benefits of mesh Booleans also carries over to the problem
of accurate spatial integration. We briefly remind the reader that
separability of the integrals allows element-wise integration, such
that ∫

Ω

F ′(X)dΩ = ∑
e∈E

∫
Ωe

F ′(X)dΩ
e , (19)

and Eqs. 9, 13, and 14 are computed by substituting F ′(X) with
the appropriate integrand. Thus, as usual in the FEM literature, we
focus on element-wise quantities. From this perspective, we can
apply the Boolean difference operator once more to yield element
subdomains {Ωe,s} = Ω

e \
⋃|Γc|

c=1 Γ
c in which the enriched basis is

piecewise continuous. We denote the restriction of Ω
e to the cuts

Γ
c as E− = Ω

e∩
⋃|Γc|

c=1 Γ
c, allowing us to further split Eq. 19 into

element subdomain integrals:∫
Ωe

F ′(X)dΩ
e =

|Se|

∑
s=1

∫
Ωe,s

F ′(X)dΩ
e,s +

∫
E−

F ′(X)dE− . (20)

Examining Eq. 20 reveals that the second term on the right-hand
side vanishes as the cut solids’ thickness ϵ vanishes due to Γ

c

having zero volume, such that E− = ∅.

Consequently, the discontinuous element integral is fully
captured by the sum of subdomain integrals in the limit. While
this statement is only useful to motivate the validity of the
approximation in the continuous setting, limitations in the discrete
setting are inevitable. To the best of our knowledge, any scalar
number representation has limited precision in practice, due to
finite computational resources. Our implementation uses a 64-
bit floating point representation, thus disallowing thickness values
that approach machine epsilon. Fortunately, real-world thickness
values for knives and scalpels range in the tenths of millimeters,
a range of values that is easily represented by the floating point
precision of our simulations. However, relative thickness of the cut
geometry with respect to element size also needs to be considered.
Geometrically small domains with high resolution are necessarily
discretized by proportionally small elements. This forces a need to
reduce the cut solids’ thickness to maintain integral approximation
error under an acceptable threshold.
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A mesh Boolean difference operation produces an explicit
representation of the boundary ∂Ω

e,s of the subdomain Ω
e,s (see

Figure 4) in the form of triangle meshes. As such, integrals
over closed subdomains can be computed trivially by using the
divergence theorem:∫

Ωe,s
F ′(X)dΩ

e,s =
∫

∂Ωe,s
F(x) ·ndS . (21)

The right-hand side of Eq. 21 can be computed by integrating F(X)
on each triangle of ∂Ω

e,s, given that our integrands of interest
are continuous everywhere in Ω

e,s ⊇ ∂Ω
e,s. Fortunately, in the

case of linear shape functions, F ′(X) is an order two polynomial
within Ω

e,s for mass matrix entries of Eq. 13, decreasing to order
one in Eq. 14 for force vector entries, resulting in antiderivatives
F(X) of orders three and two, respectively, in Eq. 21. Integration
of elastic energy is even easier, as hyper-elastic energies Ψ are
piecewise constant per region Ω

e,s, leading to
∫

Ωe,s Ψ(X)dΩ
e,s =

Ψ(Xg)|Ωe,s|, where Ψ need only be evaluated at a single arbitrary
point Xg ∈Ω

e,s and |Ωe,s| is the volume of the element subdomain.

Integrating such polynomials accurately on triangular domains
is a straightforward exercise by analytic integration using
symbolic calculation, or precomputed polynomial quadrature rules,
simplifying implementation in 3D. Our XFEM framework thus
accurately approximates Eq. 20 by ignoring its vanishing rightmost
term and strictly computing Eq. 21, yielding physically precise
mass, force, and elastic energy using only the boundary description
∂Ω

e,s corresponding to element subdomain Ω
e,s. We also point out

that this is much simpler than other spatial integration approaches
that are typically used in this setting, since they generally rely on
either mesh refinement [KMB∗09, MGS11a, MGS11b, RHS∗11]
or hierarchical polynomial quadrature construction [MKOW12,
MKO13, KBT17]. Such a simplification is revealed by leveraging
mesh Boolean technology to obtain explicit polygons on which
exact computation of polynomial contour integrals required by the
divergence theorem is trivial and cheap.

4.4. Algorithm

We provide pseudocode for a single time step of our cutting
simulation in Algorithm 1. The remainder of this section
is dedicated to providing additional practical implementation
considerations about our method.

Mesh data structures. The implementation of our cutting
algorithm uses three independent geometric data structures:

• Tetrahedral mesh: The mesh used for elastic simulation. Since
we use an XFEM framework, it is never modified.

• Per node triangle meshes: Each node i of the input tetrahedral
mesh maintains a list of triangle meshes describing the bound-
aries {∂Ω

i,s} of its (sub)domains {Ωi,s}, i.e., the connected
components resulting from repeated cutting of its original 1-ring,
which are modified by mesh Boolean operations. Initially, a node
stores only the 1-ring boundary triangulation of the tetrahedral
mesh.

• Per element triangle meshes: Each element e of the input
tetrahedral mesh similarly maintains a triangle mesh list,
starting with its initial boundary and developing a list of
connected component meshes as it is cut. Such triangle meshes

Algorithm 1 Per time-step algorithm of our cutting method.
1: for node i ∈V do
2: for subdomain s of node i do
3: Ω

i,s
old,u

i,s
old←Ω

i,s,ui,s

4: Bi← connected components of Ω
i,s
old \Γ

5: if |Bi|> 1 then ▷ Nodal subdomain cut
6: {Ωi,s}← {Ωi,s}\Ω

i,s
old∪B

i ▷ Update subdomains
7: ui,s← ui,s

old ∀Ω
i,s ∈ Bi ▷ Duplicate DOFs

8: end if
9: end for

10: end for
11: for element e ∈ E do
12: for subdomain s of element e do
13: Ω

e,s
old←Ω

e,s

14: Be← connected components of Ω
e,s
old \Γ

15: if |Be|> 1 then ▷ Element subdomain cut
16: {Ωe,s}← {Ωe,s}\Ω

e,s
old∪B

e ▷ Update subdomains
17: end if
18: end for
19: end for
20: for element e ∈ E do
21: if e was enriched or e was cut then
22: recompute mass matrix Me and forces fe by Eq. 21
23: end if
24: end for
25: assemble global mass M← ∑e∈E Me and forces f← ∑e∈E fe

26: ut+1← solve Eq. 10

{∂Ω
e,s} represent element sub-domains {Ωe,s} with continuous

integrands, and they are also modified by mesh Boolean
operations.

Collision culling. Geometric overlap queries are used to avoid
unnecessary mesh Boolean computations on nodal and element
subdomains. The loops at lines 1-2 and 11-12 of Algorithm 1 are
accelerated by spatial data structures for efficiently querying nodal
and element subdomain intersections with cuts Γ. Specifically, a
primary culling phase determines the set of elements intersected
by a cut using a precomputed axis-aligned bounding box (AABB)
hierarchy over tetrahedra, from which we derive the set of
intersected nodal 1-rings. This first culling phase is carried out
by overlap tests between triangles, tetrahedra and AABBs. A
secondary culling phase may then be carried out using triangle-
triangle overlap tests between the cutting mesh and subdomain
meshes to determine which of the aforementioned elements and
nodes are intersected by the cut. In our implementation, we find the
first culling phase to be sufficient.

Connected components. We can efficiently determine the values
of the predicates on lines 5 and 15 by computing the intersection
curves between triangle meshes of the subdomains and the
volumetric cut. If the intersection curves contain loops, then
there must be multiple connected components resulting from
the Boolean difference operation. The connected components
are then computed by a traversal over the graph of adjacent
triangles resulting from the mesh Boolean difference operation.
The updates on lines 7 and 16 are then straightforward, requiring
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Table 1: Cut thickness parameter prescribed for each mesh model.

Mesh ϵ (m) Average edge length (m)
Accordion 1e−4 0.17
Cube 1e−4 1.14
Octopus 1e−4 2.39
Tetrahedron 1e−3 1.77
Thin 1e−4 0.14

only simple insertion and deletion operations of the per node and
per element triangles meshes. Compared to element duplication
methods [MBF04, WJST15, SDF07], our approach avoids the need
to recompute material connectivity between connected components
of adjacent mesh elements by instead independently modifying
each node’s original 1-ring.

Spatial integration. Line 22 of Algorithm 1 leverages the triangle
mesh representation of our element subdomains to recompute the
element integrals as described in Section 4.3. Only elements whose
nodes have gained new enrichments or whose domain has been split
will have different mass and force dimensions and/or values. We
thus limit integral computations to those particular elements.

Degree of freedom duplication. A requirement for enriched
degrees of freedom is that they preserve the same displacement
field before and after a cut. In other words, introducing a
discontinuity in the model should not instantaneously change its
momentum or displacement. The traditional XFEM formulation is
purely extrinsic, i.e., enrichment functions remain fixed once they
have been created, such that their associated degrees of freedom
are always initialized to zero. In our case, previous enrichment
functions can be modified due to cuts intersecting. However,
thanks to our simple indicator-based generalized enrichments,
preserving the displacement field during cuts is achieved by simply
duplicating the degrees of freedom associated with a cut subdomain
to its resulting child subdomains (see line 7 of Algorithm 1).
Mathematically, it is easy to see that the values of the nodal terms
us

i (t)φi(X)ψs
i (X) of Equation 18 are preserved by replacing them

by a sum over newly enriched basis functions of child subdomains,
all multiplied by the parent’s previous coefficients us

i (t).

5. Results

In this section, we describe our results on various example cutting
simulations that help distinguish our method from prior state of the
art work. Specifically, we show that our approach allows multiple
intersecting cuts in challenging scenarios, yet maintains stability
and accuracy throughout. Our experiments were performed on
an Intel i9-13900K CPU with 64 GB of memory using the
Eigen [GJ∗10] for linear algebra and libigl [JP∗18] mesh Boolean
implementation described in the work by Zhou et al. [ZGZJ16]. For
simulation, we use the stable neo-Hookean model [SGK18], a mass
density ρ = 103, Young’s modulus 106, Poisson’s ratio ν = 0.4,
time step ∆t = 0.033 s and the solver uses 1 Newton iteration by
default. Specific choices of cut thickness ϵ compared to model size
are given in Table 1. Animations of the experiments in this section
can also be found in the supplementary video.

Figure 5: A coarse 5-tetrahedron cube is cut into 36 sticks via 10
intersecting cuts.

Figure 6: A single tetrahedron is cut multiple times with varying
curved and flat geometries, resulting in a Swiss cheese pattern.

5.1. Examples

Thinly cut slab. Figure 1 showcases the accuracy of our spatial
integration by cutting a slab into thin deformable sheets. In our
experiment, the first thin sheet is cut into even thinner sheets, which
reveals the expected separation between them, due to the correct
mass and stiffness decreasing periodically at each slice, similar to
the experiments presented in Koschier et al. [KBT17]. However, we
go one step further and throw a final intersecting cut perpendicular
to all previous sheets, which is a limitation of the previous work.
This final cut once again reduces the mass and stiffness of the cut
sheets, allowing them to rise closer to their rest configuration.

Diced cube. The experiment shown in Figure 5 aims to challenge
our method’s support for intersecting cuts. Specifically, we cut
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Figure 7: An elastic hanging cube is cut horizontally multiple times, resulting in an accordion structure. The last cut rips apart the top layers.

Figure 8: An octopus happily smiles thanks to a sinusoidal cut
carving out its mouth, and a second intersecting cut allowing its
jaw to drop.

a horizontally stretched coarse cube model composed of only 5
tetrahedra into 36 sticks by slicing it progressively with a grid
of 5 cuts in the vertical direction that intersect with 5 cuts in the
horizontal direction.

Swiss cheese tetrahedron. Figure 6 shows that our method also
supports higher-order non-linear cutting geometries independent of
the mesh resolution. In this example, a single tetrahedron is cut
by intersecting wavy and flat cuts in different directions, which
generate multiple enrichments per node at the same time step due
to their complex intersection configurations. The result is a swiss
cheese pattern being carved out of a single element.

Elastic accordion. Figure 7 shows an example where accurate
stiffness properties are particularly highlighted. We partially cut a
hanging cube a large number of times at different levels, reducing
the total stiffness in the large object due to the appearing holes
disconnecting material at the cut, thus allowing the cube to stretch
down closer to the ground. Finally, we disconnect one part of this

accordion by a vertical intersecting cut on one side, resulting in the
cube accelerating significantly towards the ground.

Smiling octopus. The last example validates our algorithm on
more complex shapes, such as the octopus in Figure 8, by first
carving its mouth, and intersecting this cut with a second cut,
producing a jaw drop which resembles a laughing behavior. This
particular example uses a Young’s modulus of 107.

5.2. Comparisons

We summarize our timing results compared to our implementation
of Koschier et al. [KBT17]’s robust XFEM algorithm, which
we refer to as RXFEM in Table 2. Our comparison focuses on
statistics related to time steps in which cutting occurs, but also
collects total simulation time. In addition, we encourage fairness
by only measuring time in frames where no intersecting cut occurs,
which their method does not support. Because the swiss cheese
tetrahedron example only has a single non-intersecting cut during
the simulation, we do not deem its comparison with RXFEM to be
relevant.

The results show that the computational overhead due to mesh
Boolean operations used by our approach is typically less than
1% on larger models such as the accordion and octopus, but
is significantly larger on smaller models, where the locality
of cut processing cannot be leveraged. In terms of aggregate
computational cost, our approach is comparable to RXFEM, as
highlighted by average time step duration and total simulation
time considering both cut and uncut frames. However, we must
note the fact that our approach exhibits non-negligible peaks in
frames where cutting occurs, as reported by the maximum time
step duration data. It is important to recognize that this local,
yet high overhead is mostly tied to the use of exact adaptive
floating point arithmetic in the mesh Boolean implementation
we use [ZGZJ16]. More recent algorithms relying on alternative
representations without sacrificing exactness could be leveraged to
accelerate our method [CLSA20,CPAL22,TNWK22]. Fortunately,
our method does not leak the cost of cut processing into subsequent
frames in which cutting does not occur. Specifically, RXFEM
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Table 2: Timing results comparing our method and RXFEM. Columns refer to average times by default and their abbreviations used in
column headings are EI for recomputing an element’s integrals, MB for mesh Booleans applied per element and node subdomain, ∂Ψ for
elastic energy derivatives, CG for the Newton-CG solve, and ∆t avg for time step execution time. Special cases include # DOFs, i.e., total
number of degrees of freedom, ∆t max for maximum time step execution time, Total for total simulation time, where C refers to frames
involving cutting, and C+U refers to both cut and uncut frames. Timings are in seconds unless otherwise indicated.

# DOFs EI (ms) MB (ms) ∂Ψ (ms) CG ∆t max ∆t avg Total (C) Total (C+U)
Sticks (RXFEM) 144 2.48 5.6 0.001 0.032 0.011 0.097 1.664
Sticks (Ours) 144 0.36 26.9 0.0 0.001 0.278 0.009 0.898 1.307
Thin (RXFEM) 7.2k 1.98 84.8 0.306 1.789 0.6 61.5 270.0
Thin (Ours) 7.2k 0.289 9.59 3.875 0.293 3.355 0.627 123.3 282.4
Accordion (RXFEM) 22.8k 0.755 153.2 4.909 9.14 5.764 1036 3112
Accordion (Ours) 22.8k 0.061 6.437 8.796 4.811 9.203 5.785 1088 3124
Octopus (RXFEM) 20.8k 0.683 120.96 2.26 12.241 2.092 122.2 1255
Octopus (Ours) 20.8k 0.048 9.332 7.18 2.382 17.3 2.05 137.7 1230

incurs overhead due to their 24-point quadrature rule per element
subdomain which they use to compute elastic energy and its
derivatives in all time steps. Average time step timings show
that our approach is generally slightly faster in frames where
cutting does not occur, since our element subdomain elasticity
computations require a single evaluation, seen in Table 2, where an
order of magnitude speedup can be observed compared to RXFEM.
Nevertheless, it is obvious that the linear solve required by time
integration remains the main bottleneck.

Restricting our attention now to intersecting cut scenarios, one
should also consider the nature of the simulated example as a
predictor of overhead. For instance, our cube sticks, swiss cheese
tetrahedron and thinly cut slab examples are subject to multiple
cuts re-entering the same elements multiple times, which inevitably
leads to an increase in mesh Boolean operation complexity. That
being said, it is important to note that our work does not focus on
computational efficiently.

6. Conclusion

In this paper, we present an innovative approach for cutting, based
on the extended finite element method, that addresses shortcomings
inherent in conventional techniques. Our method employs mesh
Boolean operations to identify distinct components of cut element
and nodal domains that are subsequently enriched using a
generalized enrichment function. Our approach is demonstrated
to be effective for simulating complex intersecting cutting
configurations that were previously not possible.

6.1. Limitations and Future Work

The utilization of mesh Boolean operations in our prototype incurs
some performance drawbacks. However, the off-the-shelf mesh
Boolean implementation used by our prototype is not tailored
for our specific application, and we believe that optimizing these
routines would yield considerable performance enhancements.
Furthermore, our current work does not handle cut surfaces
introduced in world space, nor self collision detection and handling.
In those scenarios, resolving the discontinuity’s geometry robustly

would consider the relative motion between the cut path and the
elastic model’s path in time using continuous collision detection.

Similar to previous works, our XFEM implementation is not
robust to degenerate cuts, such as those aligning with mesh element
facets (triangles, edges and vertices for tetrahedral meshes). In
such occurrences, the consistency of one-ring subdomains with
neighboring nodes may be compromised, and manifests as artificial
“sticking” in the simulation. Unfortunately, the solidification of
the cut path by a thickness parameter increases the risk of such
degeneracies. In contrast, the cut thickness is robust to rounding
issues when converting the mesh Boolean output of Zhou et
al. [ZGZJ16] to floating point representation due to ϵ remaining far
from the machine epsilon. We found that employing a strategy to
gently perturb the cutting surface upon detecting such cases helps
alleviate the issue, but is not foolproof.

Our approach is not limited to linear tetrahedral meshes.
Extending it to higher order meshes should only require increasing
the order of the divergence integral quadrature, and explicitly
constructing the boundary of the supports of additional FEM nodes.
Such nodes may lie on the interior of elements, in which case their
support is the element itself, or on element facets, in which case
their support is the union of their incident elements.

As future work, we intend to explore the use of non-
linear local iterative solvers to enhance the performance of our
simulation pipeline. These approaches show promise in efficiently
managing structural changes prevalent in cutting and fracture.
Additionally, investigating partial cutting of tetrahedral models
is an intriguing avenue for research, although extending existing
techniques [KMB∗09] to 3D simulations is non-trivial.
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