
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2018)
F. Jaillet, G. Zachmann, K. Erleben, and S. Andrews (Editors)

Comparison of Mixed Linear Complementarity Problem Solvers for
Multibody Simulations with Contact

Andreas Enzenhöfer1,3, Sheldon Andrews2, Marek Teichmann3, and József Kövecses1

1Department of Mechanical Engineering, Centre for Intelligent Machines, McGill University, Canada
2Department of Software and IT Engineering, École de technologie supérieure, Canada

3CM Labs Simulations, Inc., Canada

Abstract
The trade-off between accuracy and computational performance is one of the central conflicts in real-time multibody simula-
tions, much of which can be attributed to the method used to solve the constrained multibody equations. This paper examines
four mixed linear complementarity problem (MLCP) algorithms when they are applied to physical problems involving frictional
contact. We consider several different, and challenging, test cases such as grasping, stability of static models, closed loops, and
long chains of bodies. The solver parameters are tuned for these simulations and the results are evaluated in terms of numerical
accuracy and computational performance. The objective of this paper is to determine the accuracy properties of each solver,
find the appropriate method for a defined task, and thus draw conclusions regarding the applicability of each method.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically Based Modeling—

1. Introduction

Physical simulations are an integral part of many interactive com-
puter graphics applications. Virtual environments can often be de-
scribed as multibody systems that are composed of rigid bodies.
These rigid bodies model the physical components whose deforma-
tion is negligible compared to their overall displacement, and inter-
actions between these components are represented by constraints
and forces. A typical system includes both bilateral and unilateral
constraints as well as friction at the contact interfaces. Bilateral
constraints usually model joints, articulations and actuators, while
unilateral constraints typically represent direct contact interactions
between rigid bodies.

The work in this paper focuses on simulations involving both
types of constraints, specifically where unilateral contact and fric-
tion between articulated rigid bodies is formulated as a mixed
linear complementarity problem (MLCP) [DF95]. These systems
present interesting numerical challenges due to non-smoothness in-
troduced in the formulation by contacts, particularly with friction.
The increasing complexity of physics-based virtual environments
demands numerical solution methods that are accurate, robust, and
efficient for a wide range of parameter settings such as mass, stiff-
ness, and friction. Our objective is therefore to evaluate algorithms
for solving constrained multibody problems formulated as MLCPs.

There are many off-the-shelf physics engines available for do-
ing real-time simulation of articulated rigid bodies. However, the
motion produced by these packages is dependent on the simula-
tion settings. For example, some physics engines do poorly when

the simulation involves large mass ratios or stiff joints. Such draw-
backs are related to the underlying algorithm used to solve the con-
strained multibody problem. However, it can be difficult to choose
an appropriate solver method for a specific physical problem.

Our motivation is not to help users pick an off-the-shelf sim-
ulation package, but rather to give an indication on what type of
solver is most suitable for a particular type of task. Specifically,
we consider four methods for solving constrained multibody prob-
lems. These are summarized in Section 3.2 and categorized into
three main groups: direct (pivoting), indirect (iterative), and hybrid
(combining the previous two approaches). We apply all methods
to the same MLCP formulation using a box friction model (Sec-
tion 3.1), and each algorithm is evaluated for its computational per-
formance and numerical accuracy when solving challenging phys-
ical problems involving grasping, multi-contact interaction, stack-
ing, and long kinematic chains such as cables.

2. Related Work

MLCPs are a generalization of the linear complementarity problem
(LCP) [CPS92, MY88] where the variables can be subject to upper
and lower bounds. Many authors review solution algorithms for the
linear and nonlinear complementarity problem (CP) and compare
the algorithm steps in theory [CPS92, Júd94, BDF97, Erl13, NE15,
BET14, Lac07]. However, algorithm comparison in theory is often
not sufficient to determine the resultant simulation accuracy and
performance for particular problems. We discuss some examples
of previous work comparing different open source and commercial

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

A. Enzenhöfer et al. / Comparison of Mixed Linear Complementarity Problem Solvers for Multibody Simulations with Contact

dynamics simulation platforms such as Vortex Studio [CM 17b],
ODE [Smi17], Bullet [Cou17], PhysX [NVI17], Havok [Hav17],
and MuJoCo [Tod17]. Giovanni and Yin [GY11] evaluate and com-
pare the performance of locomotion control on different simulation
platforms via simulation results. Ivaldi et al. [IPPN14] conducted
an online survey about simulation platforms in robotics. The study
does not consider any simulation results but focuses on user feed-
back. Erez et al. [ETT15] compare the simulation results and de-
termine the speed-accuracy trade-off for multiple physics engines
starting with a small time step size and successively increasing the
step size which leads to faster but less accurate simulations. The
accuracy of the engine is measured by its level of self-consistency
which is defined to be high if the deviation of the system configura-
tion remains small for an increasing time step size. The comparison
of different physics engines is very useful if one wants to choose
an existing package. However, the dynamic formulations, i.e. the
model of the constrained multibody system, used by the investi-
gated platforms are likely to be substantially different from each
other. MLCP solvers can only be compared in a meaningful way if
the same dynamic formulation is used.

A benchmarking framework was developed specifically for rigid
body dynamics with contact formulated as CPs and reported
in [WLN∗13,LLWT13,LT15,LWTL14]. The hierarchical data for-
mat (HDF5) is used to exchange data between multiple simulation
platforms and load it into an analysis tool developed for the bench-
marking project. Multiple direct and iterative solution algorithms,
such as pivoting, matrix-splitting, and nonsmooth Newton meth-
ods, are tested on a variety of small and large-scale benchmark
problems. The solver results are compared in terms of performance
and accuracy. These comparisons eliminate the problem of differ-
ent underlying models, however, there may still be differences in
the dynamic formulations since the benchmarking framework al-
lows the usage of linear and nonlinear CP formulations [LWTL14,
LLWT13]. Furthermore, Lacoursière et al. [LLWT13] do not clar-
ify if the presented simulation results are generated with the same
CP formulation. The problem data is collected for each simulation
time step [LWTL14], and the CPs are constructed based on the
stored data so that every solution method receives the exact same
CP to solve. This is crucial for a meaningful comparison since each
solver can obtain a different solution due to numerical errors. For
a continuous simulation with two different solvers (i.e. the solver
result of the previous time step is used to formulate the CP for the
next time step), the trajectories of the system configuration could
start to deviate eventually. Then, we would not solve the same prob-
lem anymore. It can be seen as problematic that the number of iter-
ations is used to quantify the solver performance since, for exam-
ple, an iteration for an indirect method is usually much less expen-
sive than an iteration for a direct method. This makes it difficult to
compare performance results for these two types of methods. Fur-
thermore, previous comparisons use MATLAB as a programming
language, which introduces additional overhead thus making it dif-
ficult to obtain realistic timing information in the context of interac-
tive computer graphics applications. Instead, we prefer to compare
the computational time for solving a CP for each solution method
implemented in the same software tool using the C++ programming
language.

Drumwright and Shell [DS11] evaluate methods for model-

ing contact in multiple benchmark problems. The study quantifies
the accuracy, performance, robustness, and speed of the methods
which differ in dynamic formulation and solver. Drumwright and
Shell [DS12] also perform an extensive analysis of LCP solver
performance on randomly generated rigid body contact problems.
Here, the LCPs are generated based on given properties for the
mass matrix and constraint Jacobian so that each algorithm solves
exactly the same LCP. However, these LCPs were not collected
from the results of a continuous rigid body simulation. Therefore,
we cannot relate an LCP with a specific scenario and system config-
uration. Neither of the two studies [DS11, DS12] includes iterative
solvers based on matrix splitting schemes.

The solver comparison presented in this paper is inspired by mul-
tiple approaches [DS11,DS12,WLN∗13,LLWT13,LT15,LWTL14]
and follows the three principles:

• All solvers have to be applied to exactly the same MLCP.
• The MLCPs are obtained from the simulation of benchmark ex-

amples of physical problems.
• The solver performance is measured by the computational time

needed to solve the MLCP.

3. Preliminaries

3.1. Box Friction Model

A well-known dynamic formulation for rigid body problems with
unilateral contact and friction was introduced by Anitescu and Po-
tra [AP97] as well as Stewart and Trinkle [ST96]. This approach
uses a polygonal approximation of the friction cone and leads
to a time stepping scheme at the impulse-velocity level. Hence,
the nonlinear dynamic formulation is transformed into an MLCP
which is proven to always have a solution if Lemke’s algorithm is
used [AP97]. However, this comes at the cost of discretizing the
contact plane at each contact point with at least four tangent vec-
tors. The box friction model [Lac06] requires only one normal and
two tangent directions per contact point, thus three constraints. This
decreases the number of constraints, and therefore the size of the
MLCP, considerably in case of many contact points.

In the dynamic formulation used for the solver comparison in
this paper, the constraints are regularized leading to the diagonal
regularization matrices C and D dependent on the simulation time
step size h as well as the user-specified stiffness and damping pa-
rameters ki, bi for each constraint i [Lac06]. The dynamic formula-
tion for a rigid body system with regularized bilateral and unilateral
constraint as well as friction can be written as[

M −JT

J C

][
v+

hλλλ
+

]
+

[
−p−hfa

Dφφφ

]
=

[
0
w

]
(1)

with mass matrix M, momentum p = Mv, constraint Jacobian J,
constraint forces λλλ, generalized velocities v, applied forces fa, con-
straint violations φφφ, and constraint space velocities w. All variables
carrying the superscript + are evaluated at the next time step, all
others at the current time step. The Schur complement of block M
can be formed to remove the velocities from the MLCP [Erl07]
which reduces the MLCP size further. This results in an MLCP

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

A. Enzenhöfer et al. / Comparison of Mixed Linear Complementarity Problem Solvers for Multibody Simulations with Contact

with box bounds

Ax+b = w++w− = w, (2a){
0≤ w+ ⊥ x− lll ≥ 0,
0≤ w− ⊥ u−x≥ 0,

(2b)

where A = (JM−1JT +C) ∈ Rn×n is the MLCP lead matrix,
b = JM−1(p+hfa)+Dφφφ ∈ Rn is given, x = hλλλ ∈ Rn are the con-
straint impulses, and u and lll are upper and lower bounds on the
constraint impulses, respectively. We subdivide w into nonnegative,
complementary components, i.e. 0≤ w+ ⊥ w− ≥ 0.

3.2. Mixed Linear Complementarity Problem Solvers

We implement four algorithms for solving the MLCP arising from
the box friction model: the Block Principal Pivoting (BPP) al-
gorithm [JP94], Projected Gauss-Seidel (PGS) [Erl07], Projected
Gauss-Seidel with Subspace Minimization (PGS-SM) [SNE10],
and the Spook Stepper (SPOOK) [LL11]. We briefly summarize
these methods and our minor modifications in the following section
and refer the reader to the above papers for more detailed informa-
tion.

3.2.1. Block Principal Pivoting

BPP is the only purely direct method amongst the ones presented
above. It computes an accurate solution by systematically deter-
mining the index sets. These are two sets providing a label for each
variable as basic or non-basic. Non-basic variables are assumed to
be known, basic variables are unknown. The algorithm convergence
rate is varying and is only guaranteed in exponential time when
BPP switches to single pivoting [JP94], i.e. the method can find a
solution to the MLCP after only a few or many pivoting steps de-
pending on the problem. There is no guarantee for closeness of any
temporary solution of an iteration to the final one. Each pivoting
step has complexity O(n3) using dense lead matrix factorizations
and could be sped up to O(n2) for band matrices with a small up-
per and lower envelops. In each pivoting step, the values of the set
of basic variables is solved using a direct approach. Any variables
outside the bounds are pivoted to the non-basic set. BPP terminates
if there are no more changes in the index sets, i.e. none of the vari-
ables are out of bounds.

3.2.2. Projected Gauss-Seidel

PGS is an iterative algorithm that breaks up Eq. (2a) into n sin-
gle equations using a matrix splitting technique and setting w to
zero. The solution is approximated by performing fixed-point it-
erations and projecting the solution onto the bounds. An itera-
tion is computationally far less expensive than a pivoting step:
O(n) when exploiting sparsity of the lead matrix by perform-
ing floating point operations only on non-zero matrix elements.
This holds if the number of non-zero matrix elements is in the
same order as the matrix size n which is the case for large-scale
multibody dynamics systems. However, convergence is reported
to be linear at best [Erl05, Lac07]. Convergence is guaranteed for
ρ(A) < 1, where ρ is the spectral radius. In contrast to Erleben’s
PGS solver [Erl07], we do not update the friction bounds after solv-
ing for the normal row of a contact point so that the same MLCP

is solved and the algorithm results are comparable. We check for
convergence by computing the residual of each constraint. The al-
gorithm stops if the maximum error of all variables drops below a
user-defined tolerance threshold.

3.2.3. Hybrid Methods

The final two solvers, SPOOK and PGS-SM, are hybrid approaches
combining direct and iterative methods. PGS-SM uses an iterative
PGS phase to estimate the index sets, and then proceeds to a sub-
space minimization phase to solve the basic set. Our implemen-
tation uses a Cholesky factorization to solve the basic set, which
may then be further reduced by pivoting variables that are out of
bounds before returning to the PGS phase to re-estimate the index
sets. This cycle continues until convergence is reached, i.e. for our
implementation that there are no more changes in the index sets.

Similarly, SPOOK uses a splitting approach by applying a direct
solver to compute the constraint forces of bilateral and normal con-
tact constraints, together. Then, an iterative method is used to solve
for contact normal constraints and friction forces together. In our
implementation, the direct phase uses the previously described BPP
solver, and the iterative phase consists of a blocked Gauss-Seidel
method [BET14], i.e. we solve for the normal and friction forces
together using the 3x3 diagonal blocks corresponding to each con-
tact and iterate over all blocks. Direct and iterative phases alternate,
and we terminate with a direct solve if there are no more changes
in the index sets.

4. Test Setup

A major problem comparing the simulation results of different
solvers is the divergence from the true solution in case of simu-
lation error. If two solvers obtain two different results, the system
configuration and motion are not the same in the beginning of the
next time step nor is the resultant MLCP. It can happen that the
MLCP for one of the solvers is much less complex, e.g. when con-
tact points detach, which can lead to comparisons of limited mean-
ing. This issue can be prevented by creating a reference MLCP for
each time step and solving this reference MLCP using all solution
algorithms to be compared. First, the reference MLCPs are created
by solving all test cases in Section 5 using BPP without enforc-
ing any time or iteration limit, called reference solver. The use of
a convergent direct solver guarantees that the solution is always an
accurate result of the MLCP and that there is no simulation error
caused by the solver, i.e. no divergence from the true solution of
the MLCP. Note that there may still be an error introduced by the
friction model or the time discretization, however, we do not intend
to measure nor analyze these types of error in this paper. Second,
the reference MLCPs are solved by each of the four solvers in this
comparison. This guarantees that we have the same starting point
for each solver in the same time step. The accuracy of the solution
obtained by the solver is then measured using the solver error de-
scribed in the following paragraph, not the solution computed by
the reference solver. We focus on two essential measures: numer-
ical accuracy and computational speed. We often cannot achieve
both at the same time. Hence, a substantial part of choosing a solver
and its parameters for a particular type of problem is to quantify the
trade-off between these two properties.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

A. Enzenhöfer et al. / Comparison of Mixed Linear Complementarity Problem Solvers for Multibody Simulations with Contact

Type of constraint Stiffness ki Damping bi

Bilateral 1010 N
m 108 kg

s

Unilateral 105 N
m 104 kg

s

Table 1: Constraint stiffness and damping parameters for all test
cases

Problem size Grasping Brick wall Winch Closed loop

n ∼ 400 ∼ 550 ∼ 400 ∼ 350

Table 2: Average number of constraints, variations due to contact
detachment

Solver accuracy: The accuracy of the solver is inversely propor-
tional to the solver error. We measure the solver error by comput-
ing the natural residual [Pan86,MS86]. We determine for each pair
of components whether the constraint impulse xi or the related con-
straint space velocity wi violate the constraint conditions in Eq. (2b)
and compute the natural residual for each row to form the residual
component vector δψψψres = [δψres,1 . . .δψres,n]

T. Then, the `1-norm
of δψψψres can be used to define the error of the system as

δψres,i = max
{
|min

(
xi− li,wi,+

)
|, |min

(
ui− xi,wi,−

)
|
}
, (3a)

δψres = ||δψψψres||1 =
n

∑
i=1
|δψres,i|. (3b)

In principle, any type of vector norm could be used to obtain the
system error. We choose the `1-norm because it is simply the sum
of all components given all components are positive.

Solver performance: The performance of the solver is inversely
proportional to the computational time the solver needs to find a so-
lution, here also called solver time. We measure the solver time for
each method using a high-resolution timer for the CPU time, ex-
cluding collision detection. Furthermore, we solve the exact same
MLCP multiple times and compute the average solver time of all
executions.

5. Test Cases

In this section, we describe the examples used to evaluate each
solver: grasping with a claw, simulating a winch, a closed-loop
structure, and a brick wall. Table 1 shows the constraint relaxation
parameters used for all test cases. The friction coefficient is set to
µ = 1.0 and gravity g = 9.81 N/kg, which acts in a direction per-
pendicular to the ground plane. The integration time step is chosen
to be h = 1/60 s and 500 simulation steps are executed for each
example. All problems require solving large-scale MLCPs. The ap-
proximate problem size n, which equals the number of constraints,
is given in Table 2. Note that n fluctuates for different time steps
due to newly arising or detaching contacts.

5.1. Log Grasping

This example, which is illustrated in Figure 1, contains a claw
gripper attached to an overconstrained forwarder arm consisting
of 12 revolute, 2 prismatic, and 2 cylindrical joints that connect

Figure 1: Test case (a) - log grasping

Figure 2: Test case (b) - winch

13 bodies. The claw grasps a log at its center of mass, and the grip-
per arm lifts the trunk and rotates it around the vertical direction.
This scenario combines some of the challenging parts of grasping:
First, a stable grasp around the log needs to be established. Sec-
ond, the log is lifted without sliding through the claw. Third, a non-
negligible friction force is acting between log and claw due to the
arm rotation, and an incorrect solve of the friction forces may lead
to dropping the log. Note that the vehicle, which the gripper arm
is attached to, is not considered in the performance and accuracy
measurements.

5.2. Winch

A chain, with links modeled using capsules and connected by
spherical joints, is resting on the ground. One of its ends is at-
tached to an articulated winch, which is located slightly above the
ground. The winch rotates at a constant velocity of 160 revolutions
per minute, in order to wind the chain of 50 segments (Figure 2).
The chain is initially in fully horizontal position connected to the
winch and falls to the ground when the simulation is started. Fur-
thermore, the chain is dragged along the ground before reaching
the winch. This system is of interest as it contains large constraint

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

A. Enzenhöfer et al. / Comparison of Mixed Linear Complementarity Problem Solvers for Multibody Simulations with Contact

Figure 3: Test case (c) - closed loop

Figure 4: Test case (d) - brick wall

forces along the chain that would pull segments apart, which can
lead to instability.

5.3. Closed Loop

Shown in Figure 3, 20 cubes are arranged in a circle on the ground
and connected by revolute joints, which forms a closed loop of
bodies. This example is highly redundant due to having multiple
contacts between the ground and each cube and due to the revo-
lute joints which are kinematically aligned. The loop is dropped
on the ground from an initial height equal to the box dimensions.
Additionally, we apply tangential forces of 100 N to each of the
bodies in every step before the loop reaches the ground in order
to make the loop spin fast around its symmetry axis perpendicu-
lar to the ground. Once the loop impacts with the ground, friction
forces counteract the spinning motion and the loop comes to rest
eventually.

5.4. Brick Wall

This example consists of a stack of 30 boxes laid out in a brick
wall pattern (Figure 4). The brick wall is 12 bricks tall, and we al-
ternate between rows of two or three bricks in width. Furthermore,

there are small horizontal and vertical gaps between two bricks in
the initial configuration so that there is no contact in the beginning
of the simulation. This example is meant to investigate how each
algorithm preserves stability for a static problem, and deals with
simulating environments where contact rich interactions may oc-
cur.

6. Results

All MLCP solvers are implemented in C++ using the Vortex Dy-
namics engine for collision detection [CM 17b, CM 17a] . The
simulations are executed using an Intel Core i7-6700HQ processor
with 3.50 GHz and 6MB cache. A single threaded implementation
in double precision is used for each algorithm, and the physical
problem is solved without partitioning. Iterative solvers exploit the
sparsity of the lead matrix by performing floating point operations
only on non-zero matrix elements leading to a complexity of O(n)
per iteration for large sparse systems. Direct solvers use dense ma-
trix representations and a Cholesky factorization operating on the
MLCP matrix leading to a complexity of O(n3) per iteration.

6.1. Tuning for Convergence

We begin by tuning the iteration limit for each solution algorithm.
To find the optimal values, we gradually increase the parameter
until convergence is achieved, or the algorithm stagnates, i.e. no
progress is being made to reduce the error. The solver error for
each iteration is stored, and this information helps to determine the
convergence of iterative solvers and to find an appropriate tolerance
threshold. The histograms illustrating the number of iterations re-
quired to reach convergence, i.e. stagnation in the index sets, are
shown in Figure 5. Time steps for which the solver is not able
to find a solution in the given iteration limit are collected in the
hatched red bars.

In most examples, the BPP solver terminates within a small num-
ber of steps, which is less than 10 pivoting steps for the majority of
investigated time steps (shown for grasping in Figure 5 (a)). Since
SPOOK uses a pivoting method to compute only bilateral constraint
and contact normal forces, the system to be solved during the di-
rect phase is considerably smaller. This avoids pivoting the upper
and lower bounded friction rows, which seem to be the most prob-
lematic, and explains why the direct phase of SPOOK takes less
than 5 pivoting steps in most cases (visualized for grasping in Fig-
ure 5 (d)). Likewise, the direct phase of PGS-SM tries to reduce the
size of the basic set at each step, and never increases it [SNE10].
PGS-SM finishes reducing the size of the basic set after at most 5
direct iterations, as shown for grasping in Figure 5 (b). Coupling
between the iterative and direct phase is necessary to add new vari-
ables to the basic set. Convergence is reached in 6 iterations or less
for about 90% of all tested time steps illustrated in Figure 5 (c) for
grasping.

For iterative methods, it is difficult to obtain an accurate solution
within a reasonable number of iterations due to the linear conver-
gence of the PGS algorithm. This can be observed by looking at
Figure 6 and noting that PGS diverges for the grasping example,
regardless of the maximum iteration count (Figure 6 (a)); it con-
verges for the other test cases. However, it is not possible to reduce

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

A. Enzenhöfer et al. / Comparison of Mixed Linear Complementarity Problem Solvers for Multibody Simulations with Contact

0 5 10 15 20 25
0

50

100

150

200

250

300

N
um

be
r

of
 o

cc
ur

re
nc

es

Iteration count

(a) BPP

0 1 2 3 4 5 6
0

50

100

150

200

250

300

Iteration count

N
um

be
r

of
 o

cc
ur

re
nc

es

(b) PGS-SM, direct

0 2 4 6 8 10
0

50

100

150

200

250

Iteration count

N
um

be
r

of
 o

cc
ur

re
nc

es

(c) PGS-SM, coupling

0 2 4 6 8
0

50

100

150

200

250

300
(d) SPOOK, direct

Iteration count

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure 5: Iteration count for grasping using BPP ((a): direct), PGS-SM ((b): direct, (c): coupling), SPOOK ((d): direct); number of occur-
rences of the corresponding iteration counts in 500 tested time steps; the hatched red bars illustrate cases for which no solution was found
within the iteration limit

101

102

103
(a) Grasping, PGS

0 500 1000 1500 2000
Iteration count

0 500 1000 1500 2000
10-2

10-1

100

101

102
(b) Brick wall, PGS

Iteration count

Figure 6: Development of the solver error δψres in a single time
step executed with PGS for (a) grasping (divergent solver) and (b)
the brick wall (convergent solver)

the solver error below 10−2 without significantly exceeding real
time (Figure 6 (b)). In SPOOK, friction forces are only updated
in the iterative phase. Thus, it has difficulties to obtain an accu-
rate friction solution whereas the bilateral and unilateral constraint
forces show the same precision as BPP and PGS-SM if they do not
change substantially for variations in the friction forces.

6.2. Default Solver Parameters

Table 3 shows the default solver parameters concluded from the
above analysis. We chose the log grasping example to determine
the default parameters since it is most sensitive to simulation insta-
bilities in case of large errors and was most difficult to tune. Two
parameters are given for the iteration count limit: kdir for direct and
kiter for iterative solvers. We choose different convergence crite-
ria for direct and iterative algorithms independent of the measured
solver error. Direct methods keep track of the index sets of all com-
ponents. Changes in the solution can only occur if the index sets
change. Thus, the algorithms terminate if the index sets stagnate.
Iterative methods gradually converge to the solution by updating
the constraint reaction forces in every iteration. The iterative solver
stops if the maximum change per force component with respect to
the previous iteration drops below the tolerance ε. Thus, Table 3
lists a tolerance value for all solvers but BPP. We choose compara-
bly small value for ε to guarantee that the algorithm does not stop
before a solution with a reasonably small error is obtained or the
iteration limit is reached.

The solver accuracy and performance depend on multiple factors
such as the dynamic formulation, friction model and regulariza-
tion parameters. Hence, it is recommended tuning these parameters
specifically for one’s simulation environment. The tolerance thresh-
old is decisive to determine the convergence of an iterative method
or the iterative phase of a hybrid algorithm. If it is set too small, a
solver may be prevented from terminating and keep iterating with-
out significantly improving the solution in terms of the solver error.
On the other hand, a large threshold leads to a relatively large solver
error which increases the risk of divergence from reality in the next
time steps.

The number of iterations is limited for each solver and algorithm
phase in order to perform real-time or close to real-time simula-
tions. Especially for direct solvers, this can lead to large errors in
the solution if the solver does not terminate. The upper and lower
friction bounds are updated when the solver reaches the iteration
limit or finds the solution for the current bounds. After each up-
date, the algorithm iteration count is reset, e.g. PGS performs a
maximum of kcpl · kiter = 75 overall iterations for kcpl = 3 coupling
iterations and kiter = 25 solver iterations. The coupling iterations
are necessary to alternate between the direct and iterative phases of
PGS-SM and SPOOK as well as to update the friction bounds for
BPP and PGS. All methods are warm-started after a bound update.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

A. Enzenhöfer et al. / Comparison of Mixed Linear Complementarity Problem Solvers for Multibody Simulations with Contact

BPP PGS PGS-SM SPOOK
Coupling iterations kcpl = 3 kcpl = 3 kcpl = 5 kcpl = 5

Iteration
limits

kdir = 30 kiter = 25
kiter = 15
kdir = 5

kiter = 15
kdir = 10

Termination
criteria

Change in
index sets

Change in
forces

Change in
index sets
& forces

Change in
index sets
& forces

Tolerance - ε = 10−5
ε = 10−5

ε = 10−5

Table 3: Solver parameters: number of coupling iterations, itera-
tion limit for each solver phase, termination criteria, tolerance

6.3. Test Case Results

The plots in Figure 7 show the simulation results for all test cases
in Section 5. We choose a logarithmic scale for the measured av-
erage solver time on the x-axis and the energy error on the y-axis.
Every data point represents one of the time steps. The simulation re-
sults are visualized in the supplementary video accompanying this
paper. All solvers are displayed in parallel for every test case. In
addition, the performance differences are outlined in a simulation
of the winch example recorded at interactive frame rates where the
CPU time for some solvers is greater than the frame rate so that the
simulation slows down.

6.3.1. Log Grasping

The log grasping results in Figure 7 (a) show the largest errors for
all solvers compared to the other test cases as well as comparably
high solver times. The error for PGS is so high that the bilateral
constraints are not satisfied anymore so that the gripper arm and
the vehicle visually collapse as shown in the video. This behavior
can be explained by the large mass ratios and stiff constraints of the
system, typically a shortcoming of PGS. SPOOK cannot maintain
a stable grasp so that the log starts sliding through the gripper and
is nearly dropped due to large errors in the friction forces. BPP
and PGS-SM are able to perform the grasping operation but do not
achieve real time. Except for a few time steps when no convergence
can be reached within the iteration limit, BPP reaches consistently
low errors with solver times fluctuating between 10−2 s and 100 s.
PGS-SM shows less fluctuations in solver time but larger solver
errors which cannot be visually perceived. A direct solve of the
MLCP representing the entire system, such as in BPP and PGS-
SM, is needed to obtain the required accuracy for this grasping task.
Note that the measured solver time contains only the computational
time for the gripper and gripper arm but not the vehicle.

6.3.2. Winch

For the winch examples in Figure 7 (b), we can observe multi-
ple steps showing low computational times and solver error for all
solvers. In the beginning of the simulation, the MLCP size is sig-
nificantly smaller and there are no unilateral constraints or friction
if the chain does not touch the ground. The performance drops be-
tween one or two orders of magnitude when the chain then reaches
the ground. Solver errors are similar for PGS and SPOOK with bet-
ter performance values for PGS. BPP and PGS-SM lead to similar
error magnitudes while PGS-SM is faster on average. For BPP and
PGS-SM, there are a few data points showing solver errors around

100 which occurred in cases where the solvers did not converge for
the given iteration limit. The interactively captured video clearly
shows the solver performance in descending order: PGS, SPOOK,
PGS-SM, BPP. We recommend using PGS for fast, less accurate
solutions and PGS-SM for accurate solutions when more computa-
tional time is available.

6.3.3. Closed Loop

Similar to the winch, there are multiple time steps showing much
lower solver times and errors than average for the closed loop in
Figure 7 (c). These time steps occur before the loop reaches the
ground. BPP has the lowest error in this test but also the worst per-
formance for the time steps during which the loop is in contact
with the ground. The error for PGS-SM increases several orders of
magnitude but the method leads to simulations slightly faster then
BPP. The video shows no visual differences in the motion of the
loop. PGS and SPOOK obtain similar solver times but less error for
SPOOK. The BPP method is recommended if the solution needs to
be accurate and SPOOK if performance has priority.

6.3.4. Brick Wall

The brick wall is the only motionless example among the test cases.
Therefore, solver times and errors should be very similar for all
steps as the system configuration should not change much through-
out the simulation. This appears to be true for most of the simula-
tion, however, there are some time steps requiring less CPU time.
This can be explained by monitoring the number of constraints per
time step, i.e. the MLCP size. Initially, the bricks are not in con-
tact so that they simply fall due to gravity and we do not need to
solve an MLCP. When the first row of bricks reaches the ground,
contact is detected leading to an MLCP and contact forces are ap-
plied to the bricks. Then, the number of contacts as well as the
MLCP size increases when the next row of bricks impacts with the
previous one leading to an increase in solver time. Eventually, all
contacts are closed so that the solver time reaches its maximum.
The video illustrates that the bricks are slightly misplaced for PGS-
SM which also shows in the relatively large solver errors for some
time steps (Figure 7 (d)). PGS and SPOOK both run in real time but
SPOOK is able to keep the brick wall stable beyond 1000 time steps
whereas the wall collapses eventually using PGS. We recommend
using SPOOK for high performance and BPP for high accuracy.

6.4. Median Results

Table 4 contains the median of the solver error and solver time
regarding all 500 time steps given for each test case and MLCP
solver. We choose to compute the median error and time rather
than the mean to find the “typically expected” solver error. The
median leads to the disregard of of high and low peaks. BPP ob-
tains similar computational solver time for all examples and solver
errors below 10−10 except for grasping. The high median solver er-
ror of 102 for PGS indicates the simulation failure for the grasping
task. PGS obtains the lowest median error for the closed loop and
leads to the lowest solver time for all examples but the brick wall.
PGS-SM computes accurate results for all examples, the error is
higher for grasping which does not show if we visually observe the
simulation. SPOOK suffers from inaccurate friction forces which
increases the overall error in all test cases.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

A. Enzenhöfer et al. / Comparison of Mixed Linear Complementarity Problem Solvers for Multibody Simulations with Contact

10-4 10-3 10-2 10-1 100

10-10

100

(a) Grasping

BPP
PGS
PGS-SM
SPOOK

10-4 10-3 10-2 10-1 100

10-10

100

(b) Winch

BPP
PGS
PGS-SM
SPOOK

10-4 10-3 10-2 10-1 100

10-10

100

(c) Closed loop
BPP
PGS
PGS-SM
SPOOK

10-4 10-3 10-2 10-1 100

10-10

100

(d) Brick wall

BPP
PGS
PGS-SM
SPOOK

Figure 7: Solver error defined by the natural residual δψres in Eq. (3); solver time tsol defined by the CPU time required to solve the MLCP;
500 time steps for each scenario: (a) log grasping, (b) winch, (c) closed loop, (d) brick wall

Grasping Winch Closed loop Brick wall

Solver δψres tsol [s] δψres tsol [s] δψres tsol [s] δψres tsol [s]

BPP 10−6 8.46 ·10−2 10−11 5.42 ·10−2 10−11 2.38 ·10−2 10−10 1.46 ·10−1

PGS 102 1.43 ·10−2 101 2.66 ·10−3 10−1 3.88 ·10−3 101 1.45 ·10−2

PGS-SM 10−2 8.68 ·10−2 10−11 5.12 ·10−2 10−5 8.52 ·10−3 10−8 2.26 ·10−1

SPOOK 102 4.89 ·10−2 101 1.85 ·10−2 10−3 4.52 ·10−3 10−1 6.45 ·10−3

Table 4: Median of all data points in Figure 7 for the solver error δψres and the solver time tsol

6.5. Discussion

In our experiments, we observe some other noteworthy behavior.

Constraint ordering. We notice the common phenomenon for
iterative methods that convergence and solution accuracy are
highly dependent on the order which the constraint are solved
in [AEKT17]. Therefore, computation of the contact forces for the
bricks closer to the ground first leads to lower errors and better
convergence of an iterative solver.

Insufficient friction. We note that the SPOOK solver often fails to
produce adequate friction forces. In a further experiment, we model
a cable as a serial chain of rigid bodies which is then wrapped
around a rod modeled by a single rigid cylinder. Both ends of the
cable are pulled to create tension while the rod is pulled out of the
sling formed by the chain. We expect to need a large force to sep-
arate the rod from the cable due to the substantial friction forces
along the rod axis. However, SPOOK does not produce sufficient
friction forces unless we significantly increase the number of cou-

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

A. Enzenhöfer et al. / Comparison of Mixed Linear Complementarity Problem Solvers for Multibody Simulations with Contact

Figure 8: A debug view of the closed loop simulation showing fric-
tion forces (green lines). After the mechanisms slides and comes
to rest, the BPP and SPOOK solvers sometimes produce incorrect
frictional forces.

pling iterations between the direct and iterative phase since many
iterations are required to capture the correct coupling between the
bilateral cable constraints, contact normals, and friction.

Stationary point. We observe that the BPP and SPOOK solvers
sometimes converge to a stationary point. For instance, in the case
of the highly over-constrained example of the closed loop, these
solvers would produce an MLCP solution with non-zero friction
forces even when the loop is at rest and there are no external forces
other than gravity. The resulting motion is correct, since the fric-
tion forces produce zero resultant force and torque, but physically
this behavior is obviously incorrect. We find that this phenomenon
(shown in Figure 8) can be mitigated in the SPOOK solver by in-
troducing a regularization term for the frictional constraints early
during the iterative phase. The term is gradually reduced at each
iteration until it eventually reaches zero. This biases the solver to
minimize frictional forces while still solving the MLCP.

Lowest error solution. Direct methods compute an accurate so-
lution of the MLCP if the algorithm terminates. However, if the
algorithm does not terminate, e.g. due to an iteration limit common
in real-time simulations, the result obtained in the last iteration is
in general not the “best” solution, i.e. the closest to a true solution
of the MLCP. Thus, we recommend storing the best solution over
all iterations and use it to compute the system motion and configu-
ration at the next time step. This can significantly reduce the risk of
simulation instabilities. In this paper, we use the natural residual in
Eq. (3) to determine the solver error which represents the closeness
of a computed solution to a true solution of the MLCP. However,
this definition of the solver error can be problematic, for example, if
there are high mass ratios in the system. In this case, two constraint
forces of similar magnitude have substantially different effects on a
body of high or low mass. Then, a relatively small constraint force
error can lead to large error in the acceleration of the light body
whereas a relatively large constraint force error can cause a small
error in the acceleration of the heavy body. Choosing the solution
with the least force error will thus not necessarily keep the system
stable. Furthermore, the natural residual is unit inconsistent if some
constraint errors lie in the constraint space acceleration, others in
the constraint forces, so that there is no physical meaning in the sum
of these errors. Both issues can be prevented by scaling the solver

error with the effective mass perceived by the constraint which is
researched in ongoing work.

7. CONCLUSIONS

BPP and PGS-SM are accurate solution methods leading to low
solver errors because both methods terminate with a direct solve for
the MLCP including bilateral and unilateral constraints as well as
friction. If accuracy has priority over performance, BPP and PGS-
SM are the preferred methods to obtain accurate simulation results.
However, direct solvers may require a substantial number of iter-
ations before computing an accurate solution and should therefore
only be used if convergence is reached for the vast majority of time
steps. PGS solves the MLCP iteratively which requires compara-
bly little computational time. Thus, the method should be used for
simulations where accuracy is secondary but little computational
time is available for the solver. In contrast to direct solvers, the
result of a PGS iteration is always guaranteed to be closer to the
solution than the result of the previous iteration given the algo-
rithm converges. SPOOK solves for unilateral constraints and fric-
tion iteratively while applying a pivoting method to the bilateral
and unilateral constraints to prevent interpenetration. This delivers
accurate results for the bilateral and unilateral constraints if these
constraint forces do not change significantly in case of errors in the
friction forces. SPOOK is recommended in cases where the friction
forces are not decisive for the system configuration. If small fric-
tion changes have a significant impact on bilateral and unilateral
constraint forces, SPOOK should not be used.

7.1. Future Work

In future work, we intend to optimize our algorithm implementa-
tions to achieve faster computational speed. Sparse matrix repre-
sentation and variable bandwidth factorizations for the MLCP lead
matrix in direct methods can decrease algorithm complexity signif-
icantly and thus can lead to performance improvements. Moreover,
instead of recomputing the matrix factorization at each algorithm
step, as in the BPP and PGS-SM computation of the active set, ex-
isting factorizations can be updated or downdated efficiently if only
a few index sets have been pivoted.

Another interesting avenue for future work is to explore the de-
pendency between the MLCP solver and the success rate of con-
trollers in character animation or robotics simulation for locomo-
tion and grasping tasks. Generally, iterative solvers may have diffi-
culties to compute accurate constraint forces for these tasks so that
the system motion may seem visually plausible but is not physically
correct. A direct solver used for critical subsystems in a simulation
can help to increase the accuracy and thus lead to physical correct-
ness of the simulation. We also plan to expand the repertoire of
solvers used in our experiments.

Acknowledgements

This work was supported by the National Science and Engineering
Research Council of Canada (NSERC) and CM Labs Simulations
Inc. The authors would like to thank the Vortex Dynamics team
around Daniel Holz at CM Labs Simulations for their help with the
solver implementations.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

A. Enzenhöfer et al. / Comparison of Mixed Linear Complementarity Problem Solvers for Multibody Simulations with Contact

References
[AEKT17] ANDREWS S., ERLEBEN K., KRY P. G., TEICHMANN M.:

Constraint reordering for iterative multi-body simulation with contact. In
ECCOMAS Thematic Conference on Multibody Dynamic (Prague, Czech
Republic, June 18–22, 2017). 8

[AP97] ANITESCU M., POTRA F. A.: Formulating dynamic multi-rigid-
body contact problems with friction as solvable linear complementarity
problems. Nonlinear Dynamics 14, 3 (1997), 231–247. 2

[BDF97] BILLUPS S. C., DIRKSE S. P., FERRIS M. C.: A comparison
of large scale mixed complementarity problem solvers. Computational
Optimization and Applications 7, 1 (1997), 3–25. 1

[BET14] BENDER J., ERLEBEN K., TRINKLE J.: Interactive simulation
of rigid body dynamics in computer graphics. Computer Graphics Forum
33, 1 (2014), 246–270. 1, 3

[CM 17a] CM LABS SIMULATIONS: Theory guide: Vortex soft-
ware’s multibody dynamics engine. https://www.cm-labs.
com/vortexstudiodocumentation/Vortex_User_
Documentation/Content/Concepts/Vortex_Dynamics_
Theory_final.pdf, 2017. [Online]. 5

[CM 17b] CM LABS SIMULATIONS: Vortex Studio. http://www.
cm-labs.com/, 2017. [Online]. 2, 5

[Cou17] COUMANS E.: Bullet physics library. http://
bulletphysics.org/, 2017. [Online]. 2

[CPS92] COTTLE R. W., PANG J.-S., STONE R. E.: The Linear Com-
plementarity Problem. SIAM, 1992. 1

[DF95] DIRKSE S. P., FERRIS M. C.: The path solver: a nommonotone
stabilization scheme for mixed complementarity problems. Optimization
Methods and Software 5, 2 (1995), 123–156. 1

[DS11] DRUMWRIGHT E., SHELL D. A.: An evaluation of methods
for modeling contact in multibody simulation. In IEEE International
Conference on Robotics and Automation (Shanghai, China, June 18–22,
2011), pp. 1695–1701. 2

[DS12] DRUMWRIGHT E., SHELL D. A.: Extensive analysis of linear
complementarity problem (LCP) solver performance on randomly gen-
erated rigid body contact problems. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (Vilamoura, Portugal, October
7–12 2012), pp. 5034–5039. 2

[Erl05] ERLEBEN K.: Stable, robust, and versatile multibody dynamics
animation. PhD thesis, University of Copenhagen, Denmark, 2005. 3

[Erl07] ERLEBEN K.: Velocity-based shock propagation for multibody
dynamics animation. ACM Transactions on Graphics 26, 2 (2007), 1–
20. 2, 3

[Erl13] ERLEBEN K.: Numerical methods for linear complementarity
problems in physics-based animation. In ACM SIGGRAPH Conference
on Computer Graphics and Interactive Techniques (Anaheim, CA, USA,
July 21–25, 2013), pp. 1–42. 1

[ETT15] EREZ T., TASSA Y., TODOROV E.: Simulation tools for model-
based robotics: Comparison of Bullet, Havok, Mujoco, ODE and Physx.
In IEEE International Conference on Robotics and Automation (Seattle,
WA, USA, May 26–30, 2015), pp. 4397–4404. 2

[GY11] GIOVANNI S., YIN K.: Locotest: Deploying and evaluating
physics-based locomotion on multiple simulation platforms. In Motion
in Games (2011), Allbeck J. M., Faloutsos P., (Eds.), Springer, pp. 227–
241. 2

[Hav17] HAVOK: Havok Physics. https://www.havok.com/
physics/, 2017. [Online]. 2

[IPPN14] IVALDI S., PETERS J., PADOIS V., NORI F.: Tools for sim-
ulating humanoid robot dynamics: A survey based on user feedback.
In IEEE-RAS International Conference on Humanoid Robots (Madrid,
Spain, November 18–20, 2014), pp. 842–849. 2

[JP94] JÚDICE J. J., PIRES F. M.: A block principal pivoting algo-
rithm for large-scale strictly monotone linear complementarity problems.
Computers & Operations Research 21, 5 (1994), 587–596. 3

[Júd94] JÚDICE J. J.: Algorithms for linear complementarity prob-
lems. In Algorithms for Continuous Optimization, Spedicato E. G., (Ed.).
Springer, 1994, pp. 435–474. 1

[Lac06] LACOURSIÈRE C.: A regularized time stepper for multibody sys-
tems. Tech. rep., Umeå University, Sweden, HPC2N and Department of
Computing Science, 2006. 2

[Lac07] LACOURSIÈRE C.: Ghosts and machines: regularized varia-
tional methods for interactive simulations of multibodies with dry fric-
tional contacts. PhD thesis, Umeå University, 2007. 1, 3

[LL11] LACOURSIÈRE C., LINDE M.: Spook: a variational timestep-
ping scheme for rigid multibody systems subject to dry frictional con-
tact. Tech. rep., Umeå University, Sweden, HPC2N and Department of
Computing Science, 2011. 3

[LLWT13] LACOURSIÈRE C., LU Y., WILLIAMS J., TRINKLE J.: Stan-
dard interface for data analysis of solvers in multibody dynamics. In
Canadian Conference on Nonlinear Solid Mechanics (Montréal, QC,
Canada, July 23-26, 2013). 2

[LT15] LU Y., TRINKLE J.: Comparison of multibody dynamics solver
performance: Synthetic versus realistic data. In ASME International De-
sign Engineering Technical Conferences and Computers and Informa-
tion in Engineering Conference (Boston, MA, USA, August 2–5, 2015),
pp. 1–10. 2

[LWTL14] LU Y., WILLIAMS J., TRINKLE J., LACOURSIERE C.: A
framework for problem standardization and algorithm comparison in
multibody system. In ASME International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference
(Buffalo, NY, USA, August 17–20, 2014), pp. 1–10. 2

[MS86] MANGASARIAN O. L., SHIAU T.-H.: Error bounds for mono-
tone linear complementarity problems. Mathematical Programming 36,
1 (1986), 81–89. 4

[MY88] MURTY K. G., YU F.-T.: Linear complementarity, linear and
nonlinear programming. Heldermann Verlag, 1988. 1

[NE15] NIEBE S., ERLEBEN K.: Numerical methods for linear comple-
mentarity problems in physics-based animation. In Synthesis Lectures
on Computer Graphics and Animation, Barsky B. A., (Ed.). Morgan &
Claypool Publishers, 2015, pp. 1–159. 1

[NVI17] NVIDIA: PhysX. https://www.geforce.com/
hardware/technology/physx, 2017. [Online]. 2

[Pan86] PANG J.-S.: Inexact newton methods for the nonlinear comple-
mentarity problem. Mathematical Programming 36, 1 (1986), 54–71.
4

[Smi17] SMITH R.: Open dynamics engine. http://www.ode.
org/, 2017. [Online]. 2

[SNE10] SILCOWITZ M., NIEBE S., ERLEBEN K.: Interactive rigid
body dynamics using a projected gauss–seidel subspace minimization
method. In International Conference on Computer Vision, Imaging and
Computer Graphics (Angers, France, May 17–21 2010), pp. 218–229. 3,
5

[ST96] STEWART D. E., TRINKLE J. C.: An implicit time-stepping
scheme for rigid body dynamics with inelastic collisions and coulomb
friction. International Journal for Numerical Methods in Engineering
39, 15 (1996), 2673–2691. 2

[Tod17] TODOROV E.: Multi-Joint dynamics with Contact (MuJoCo).
www.mujoco.org, 2017. [Online]. 2

[WLN∗13] WILLIAMS J., LU Y., NIEBE S., ANDERSEN M., ERLEBEN
K., TRINKLE J. C.: RPI-MATLAB-Simulator: A tool for efficient re-
search and practical teaching in multibody dynamics. In Workshop in Vir-
tual Reality Interactions and Physical Simulation (Lille, France, Novem-
ber 27–29, 2013), pp. 71–80. 2

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

https://www.cm-labs.com/vortexstudiodocumentation/Vortex_User_Documentation/Content/Concepts/Vortex_Dynamics_Theory_final.pdf
https://www.cm-labs.com/vortexstudiodocumentation/Vortex_User_Documentation/Content/Concepts/Vortex_Dynamics_Theory_final.pdf
https://www.cm-labs.com/vortexstudiodocumentation/Vortex_User_Documentation/Content/Concepts/Vortex_Dynamics_Theory_final.pdf
https://www.cm-labs.com/vortexstudiodocumentation/Vortex_User_Documentation/Content/Concepts/Vortex_Dynamics_Theory_final.pdf
http://www.cm-labs.com/
http://www.cm-labs.com/
http://bulletphysics.org/
http://bulletphysics.org/
https://www.havok.com/physics/
https://www.havok.com/physics/
https://www.geforce.com/hardware/technology/physx
https://www.geforce.com/hardware/technology/physx
http://www.ode.org/
http://www.ode.org/
www.mujoco.org

