
Adaptive Distributed Simulation of Fluids and Rigid Bodies
Haoyang Shi

University of Utah

USA

Roblox

USA

haoyang.shi@utah.edu

Victor Zordan

Roblox

USA

vbzordan@roblox.com

Yin Yang

University of Utah

USA

yin.yang@utah.edu

Sheldon Andrews

École de technologie supérieure

Canada

Roblox

USA

sheldon.andrews@etsmtl.ca

Figure 1: A boat moves past several buoys while a propeller spins in the water. The buoys experience the effects of both the boat
wake and the larger scale effects of the propeller. Right column: show the dynamic behavior and rigid-fluid coupling using our
adaptive multigrid scheme. Leftmost image: visualizes the local grids that refine the fluid simulation in regions surrounding
each dynamic object, which are stepped at a higher framerate than the global grid.

MIG ’24, November 21–23, 2024, Arlington, VA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in The 17th ACM
SIGGRAPH Conference on Motion, Interaction, and Games (MIG ’24), November 21–23,
2024, Arlington, VA, USA, https://doi.org/10.1145/3677388.3696334.

ABSTRACT
We present a framework for the interactive simulation of fluids

coupled with rigid bodies that targets heterogeneous distributed

computing architectures. Specifically, our proposed approach is

well-suited for computer graphics applications that combine servers

https://orcid.org/0000-0002-6917-5007
https://orcid.org/0000-0002-7309-7013
https://orcid.org/0000-0001-7645-5931
https://orcid.org/0000-0001-9776-117X
https://doi.org/10.1145/3677388.3696334

MIG ’24, November 21–23, 2024, Arlington, VA, USA Shi, Zordan, Yang, and Andrews

with large compute capactiy with low-end devices. In this setting,

a global large-scale fluid simulation is performed on servers us-

ing high-end compute hardware, and local refinement of fluid and

rigid body coupling is performed on a client with limited compute

resources, such as a tablet or smartphone. We demonstrate the ef-

fectiveness of our framework to simulate large and complex scenes

involving wind, ocean, and dynamic objects, all while providing

plausible interactions through fluid-rigid coupling.

CCS CONCEPTS
•Computingmethodologies→Physical simulation;Distributed
simulation.

KEYWORDS
fluids, distributed simulation, rigid bodies, physics-based animation

ACM Reference Format:
Haoyang Shi, Victor Zordan, Yin Yang, and Sheldon Andrews. 2024. Adap-

tive Distributed Simulation of Fluids and Rigid Bodies. In The 17th ACM
SIGGRAPH Conference on Motion, Interaction, and Games (MIG ’24), Novem-
ber 21–23, 2024, Arlington, VA, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3677388.3696334

1 INTRODUCTION
Fluid simulation plays an important role inmany computer graphics

applications, including special effects in films, engineering visual-

ization, and video games. The demand for interactivity in the latter

necessitates overcoming computational challenges, especially on

mobile devices such as tablets, smartphones, and low-end laptops,

where achieving real-time frame rates can be daunting. Despite

these challenges, mobile devices are amongst the most popular class

of devices for gaming. However, few works in computer graphics

and physics-based animation have specifically aimed at developing

methods for mobile devices, especially for fluid applications.

Next generation online games and VR applications demand

heightened realism and interactivity, which includes simulating

physical phenomena such as rigid bodies, collisions, and fluids.

Executing these simulations on the local device is crucial since re-

sponse time is important, and remote execution of simulations may

introduce unwanted latency and unresponsiveness. However, the

limited computing power of so-called thin clients prohibits the sim-

ulation of rich, complex environments using traditional approaches.

Therefore, developing methods that address the problem of physics

simulation in the described context is essential. This work addresses

the requirements of applications with demand for coupled fluid and

rigid body simulation in a distributed setting.

Specifically, we present a multigrid distributed simulation frame-

work that assumes a common heterogeneous mixture of comput-

ing resources, combining thin clients with high-end servers. Our

methodology employs an adaptive multigrid method, performing a

global fluid simulated on a coarse grid computed on a server, and

coupling it with a number of fine-scale simulation on local grids

that are potentially executed on one or more clients. We employ

an adaptive refinement strategy to the flow field obtained on the

coarse grid for the higher-resolution client grids. We also propose

a novel blending strategy that merges flow field information from

the local grids back to the global simulation, offering details from

the local regions of interests back to the coarser global context.

Finally, we adopt a strategy where simulations are carried out at

different time scales-— low-frequency phenomena is simulated with

larger time steps, while higher-frequency details are computed at

higher rates (60 Hz) consistent with rigid body simulations for game

environments.

To validate the feasibility of our method, we showcase its ap-

plication in several complex scenes. The results demonstrate the

stability and efficiency of our proposed approach in handling fluid

simulation coupled with rigid bodies.

2 RELATEDWORK
Here we provide a brief review of prior work in fluid simulation in

computer graphics and scientific computing. Given the extensive

body of literature on this subject, our focus is on parallelized and

distributed physics simulation, and the coupling of fluids with rigid

bodies since these topics overlap with our proposed technique.

2.1 Parallel Fluid Simulation
Parallel algorithms are common for both particle and grid-based

fluid simulations. In particle simulations, parallelization is typically

achieved through local computation of forces, done iteratively to

address global behavior.

For grid-based fluid simulations, various approaches exist. Itera-

tive solvers, such as the Jacobi method and parallel implementations

of sparse conjugate gradient, are useful for the diffusion and di-

vergence computations and offer straightforward parallelization.

Stam [1999] pioneered the semi-Lagrangian approach in graphics,

advocating the use of a Jacobi-type fixed-point solver [Stam 2003].

Numerous variants of this approach have since emerged within the

graphics community. In our work, a Gauss-Seidel smoother com-

prises our multigrid scheme, optimizing performance by leveraging

multi-core hardware.

While many frameworks concentrate on utilizing local multi-

core hardware, e.g. Ament et al. [2010], our framework is designed

for a heterogeneous distributed environment. This assumes an en-

vironment where certain devices possess substantial computational

resources (e.g., servers or high-end graphics workstations), while

others, such as tablets, have limited compute capabilities.

Previous graphic studies have explored domain decomposition

techniques [Chu et al. 2017; Liu et al. 2016], which decomposes the

simulation into smaller sub-domains plus the interface between

them.Wang et al. [2020] proposed algorithmic and data structure op-

timizations to enhance the scalability of the material point method

(MPM) in a multi-GPU setting. However, their focus is on achieving

higher fidelity simulations, requiring minutes per frame, whereas

we target interactive and real-time applications.

Others have explored real-time distributed physics simulation,

although principally for rigid bodies with constraints [Brown et al.

2019; De Oliveira et al. 2024].

2.2 Scalable, Adaptive and Hybrid Fluid Solvers
Multigrid solvers [Trottenberg et al. 2000] are amongst the most

efficient and scalable for fluid simulation. Geometric multigridmeth-

ods have had particular uptake in computer graphics due to the

simplicity of implementing coarsening and refinement operators on

https://doi.org/10.1145/3677388.3696334

Adaptive Distributed Simulation of Fluids and Rigid Bodies MIG ’24, November 21–23, 2024, Arlington, VA, USA

regular grid domains. [McAdams et al. 2010] used geometric multi-

grid as a preconditioner for the conjugate gradient (CG) method,

which significantly improves performance and robustness. One of

the advantages of geometric multigrid is that it is easily combined

with spatial adaptivity [Ferstl et al. 2014; Liu et al. 2016], a feature

that we leverage in our work. Chentanez andMüller [2011] explored

the use of heightfields for efficient fluid simulation on GPUs.

Adaptive mesh-refinement (AMR) method uses a hierarchy of

axis-aligned grid patches to improve resolution where required.

This allows for a straightforward implementation, although it could

require a large number of refinements if fine level of detail is re-

quired. Our approach resambles the Berger-Oliger-Colella adaptive

refinement [Berger and Colella 1989; Berger and Oliger 1984]. How-

ever, a key difference is that our framework performs integration

at different scales for the coarse and fine grids and we handle over-

lapping adaptive patches.

Chimera grids are a more general class of adaptive methods

that allow for oriented grids, which increases the flexibility of re-

finement since grids can be aligned with boundary features. In

graphics, English et al. [2013] demonstrate the benefits of Chimera

grids for achieving efficient, yet detailed, simulations on distributed

parallel hardware. However, Chimera grids require additional data

structures, e.g. Voronoi mesh, to determine stencil information in

overlapping regions, and automatic and robust methods for com-

puting such data structures is a challenge.

The divergence-free computation has long been recognized as a

bottleneck in grid-based fluid simulations. Earlier work in graphics

has examined economizing the pressure projection work done on

a coarse grid by mapping pressure values to a fine grid and then

performing local pressure refinements [Lentine et al. 2010]. We are

inspired by such approaches to reduce the computational load of

clients with limited computing resources, and our framework goes

one step further by amortizing the global divergence computation

over larger time scales.

Maintaining large grid structures can increase the memory foot-

print requirements for simulation. Golas et al. [2012] propose a

hybrid technique coupling a moving Eulerian domain and vortex

domain to reduce the memory footprint of large-scale fluid simula-

tions. The method demonstrates impressive speedup on a limited

number of examples, yet performance improvements diminish for

highly dynamic scenes, which are characteristic of games and other

interactive applications. Our approach assumes a setting where

large-scale storage and global computations are offloaded to high-

end servers, and devices with limited computing resources are only

responsible for refinement on limited regions near dynamic ob-

jects. Huang et al. [2021] aims to capture larger-scale wave effects

combined with local fluid interactions, and propose a hybrid-solver

that combines a local FLIP simulation with the boundary element

method used to simulate the larger domain. Their ambitions are

similar to our own, although they do not target our regime of ap-

plications.

2.3 Fluid-Rigid Coupling
Many works in computer graphics and scientific computing have

addressed fluid-solid coupling. The seminal work by Foster and

Metaxas [1996] demonstrated grid-aligned one-way coupling using

a marker-and-cell (MAC) discretization. This requires a rasteriza-

tion of the solid onto the grid and in order to determine boundary

conditions. Our work focuses on two-way coupling between fluids

and dynamic rigid bodies. Takahashi et al. [2002] achieve two-

way coupling by assigning zero Neumann boundary conditions for

pressures of any grid cell more than half filled with a solid. Cell

velocities covered by a solid are then assign velocities from the

solid, although this approach cannot couple forces and torques due

to fluid momentum.

The immersed boundary method [Peskin 2002] is another popu-

lar technique that gives a continuous forcing function that allows

the fluid pressure field to change the solid’s velocity by considering

the solid to be part of the fluid. The related approach by Carlson

et al. [2004] fixes the solid density to be the same as the fluid and

enforcing a rigidity constraint for velocities inside the solid using

Lagrange multipliers. Guendelman et al. [2005] propose a solid-fluid

coupling approach specialized for thin shells and cloth.

Cut-cell methods are another approach for computing inter-

actions between fluids and solids. They are popular due to their

simplicity and ability to encode fluxes due to geometric details

smaller than the grid resolution, but without having to refine or

change the grid structure. These approaches were first used in com-

puter graphics by Roble et al. [2005]. The area of grid cell faces

covered by the solid boundary is used to improve the accuracy of

the divergence calculations. [Batty et al. 2007] later used partial

grid cell overlap as part of their variational formulation of pressure

projection.

3 SYSTEM OVERVIEW

Figure 2: An overview of our adaptive multigrid simulation
framework for fluid-rigid coupling targeting distributed het-
erogeneous computing platforms.

Our framework employs a client-server architecture where a

coarse global simulation occurs on the server, while refined local

simulations take place on one or more clients. The global simu-

lation utilizes a coarse grid spanning the entire scene, and uses a

larger time step for integrating velocities and pressures. In contrast,

each local simulation uses a refined grid with higher resolution,

focusing on a small region of the scene centered around one or

more rigid bodies and using a smaller time step. The motivation for

a multiscale paradigm is to give consistent low-frequency behavior

MIG ’24, November 21–23, 2024, Arlington, VA, USA Shi, Zordan, Yang, and Andrews

at the global scale, while enabling higher-frequency detail and re-

sponsive coupling at the local level. A conceptual visualization of

our proposed framework is shown in Fig. 2, and the principal steps

of our methodology are summarized below.

(1) Global advection and divergence-free projection. On
the server, the fluid is simulated on a coarse grid using a semi-

Lagrangian approach and time step of Δ𝑡G = 𝑁 Δ𝑡 . Fluid-
rigid coupling is achieved using the immersed boundary

method. We employ a multigrid-preconditioned conjugate

gradient (MGPCG) solver that extends the general method

proposed by McAdams et al. [2010] to compute a divergence-

free flow field on the coarse grid.

(2) Adaptive multigrid refinement. Next, an adaptive re-

finement strategy is used to refine the flow field solution

obtained on the coarse grid by using a higher resolution grid

centered at each rigid body group. Boundary information

and flow field for grid cells occupied by dynamic objects are

identified and forwarded to each client handling the refined

simulation.

(3) Local simulation with rigid-fluid coupling. A stable

semi-Lagrangian integration scheme and the immersed bound-

ary method are again used to compute the updated flow field

for the local grid, this time using the local time step Δ𝑡 . This
process is repeated 𝑁 times, following which a restriction

operator maps flow field values from the fine-to-coarse grid.

4. Local-to-global updates. Finally, updated flow field

information is sent back to the server. In cases where multi-

ple clients produce updated values for the same coarse grid

cells, i.e. they overlap, the information from each client is

merged using a novel and pragmatic blending scheme before

integration.

4 METHODOLOGY
Our fluid simulation framework is based on the semi-Lagrangian

approach developed by Stam [1999] for solving the Navier-Stokes

equations. However, a significant difference is our use of a compos-

ite grid consisting of a coarse global grid𝐺 and multiple local grids

{𝐿1, . . . , 𝐿𝐾 } that potentially overlap. Each local grid 𝐿𝑘 is paired

with collection of one or more rigid bodies with constraints 𝐵𝑘 .

pi,j
ui-1/2,j ui+1/2,j

vi+1/2,j

vi-1/2,j

pi+1,j

pi,j-1

pi,j+1

pi-1,j

The grids store the flow field veloci-

ties u and pressures p used by the fluid

simulation. Sub-scripts ·𝐺 and ·𝐿𝑘 are

used to distinguish between global and

local quantities, respectively. Similarly,

we store the generalized coordinates and

velocities of rigid bodies q and ¤q, respec-
tively, and pressure forces f coming from

the fluid simulation. The sub-script ·𝐵𝑘
is used to refer to a specific rigid body

group.

Velocity and pressure values are stored using a staggered grid

data structure. That is, pressure is stored at the center of grid cells,

and velocity at the faces between cells. The inline image shows a

2D example of a staggered grid. We use the standard convention

that splits the velocity into Cartesian components, such that 𝑢, 𝑣 ,

and𝑤 are the horizontal, vertical and depth directions, respectively.

Algorithm 1: High-level algorithm of our distributed fluid-

rigid simulation pipeline.

1 𝐺 = global grid

2 𝐿 = {𝐿1, 𝐿2, . . . 𝐿𝐾 } // local grids

3 𝐵 = {𝐵1, 𝐵2, ..𝐵𝐾 } // rigid body groups

4 function step():
// global sim

5 u′
𝐺
← advect(Δ𝑡G, u𝑡𝐺)

6 f𝐵 ← computePressureForces(Δ𝑡G, 𝐵, u′𝐺)

7 q′
𝐵
, ¤q′
𝐵
← integrate(q(𝑡)

𝐵
, ¤q(𝑡)
𝐵
, f𝐵)

8 u′
𝐺
, p′
𝐺
← project(u′

𝐺
, q′
𝐵
, ¤q′
𝐵
)

// in parallel

9 for 𝑘 = 1 . . . 𝐾 do
// local sim

10 for 𝑖 = 1 . . . 𝑁 do
11 u′

𝐿𝑘
← advect(Δ𝑡, u𝑡𝑖−1

𝐿𝑘
)

// Section 4.3.2

12 𝛼 ← 𝑖
𝑁

13 p′
𝐿𝑘
, p′
𝜕𝐿𝑘
← interpolate(𝛼, p𝑡

𝐺
, p′
𝐺
)

14 setDirichlet(𝐿𝑘 , p′𝜕𝐿𝑘)

15 f𝐵𝑘 ← computePressureForces(Δ𝑡, q𝑡𝑖−1
𝐵𝑘

, ¤q𝑡𝑖−1
𝐵𝑘

, u′
𝐿𝑘

)

16 q(𝑡+𝑖Δ𝑡)
𝐵𝑘

, ¤q(𝑡+𝑖Δ𝑡)
𝐵𝑘

← integrate(q𝑡𝑖−1
𝐵𝑘

, ¤q𝑡𝑖−1
𝐵𝑘

, f𝐵𝑘)

17 u(𝑡+𝑖Δ𝑡)
𝐿𝑘

, p𝐿𝑘 ← project(u′
𝐿𝑘
, q(𝑡+𝑖Δ𝑡)
𝐵𝑘

, ¤q(𝑡+𝑖Δ𝑡)
𝐵𝑘

)

18 end
19 end

// Synchronize local and global fluids

20 u′
𝐺
← unifiedView(u′

𝐺
, u𝐿) // Section 4.4

21 u𝑡+Δ𝑡G
𝐺

← project(u′
𝐺
)

22 p𝑡+Δ𝑡G
𝐺

← p′
𝐺

// Send local rigid body state back to global

23 q𝑡+Δ𝑡G
𝐵

← {q𝑡+𝑁Δ𝑡
𝐵1

, . . . , q𝑡+𝑁Δ𝑡
𝐵𝐾

}
24 ¤q𝑡+Δ𝑡G

𝐵
← {¤q𝑡+𝑁Δ𝑡

𝐵1
, . . . , ¤q𝑡+𝑁Δ𝑡

𝐵𝐾
}

For instance, 𝑢𝑖+ 1

2
, 𝑗,𝑘 gives the horizontal velocity between grid

cells (𝑖, 𝑗, 𝑘) and (𝑖 + 1, 𝑗, 𝑘).
Pseudo-code for computing a single step that advances the state

of the fluid and rigid bodies is presented inAlgorithm 1. The sections

below provide further technical details of our methodology.

4.1 Global Simulation
The global fluid simulation on grid 𝐺 is updated using two major

steps: an advection step advect that updates velocity and scalar val-

ues due to the current fluid flow, followed by a modified divergence

computation on irregular boundary geometry. Next, a pressure

projection project is applied to the velocity field to maintain a

divergence-free state.

Adaptive Distributed Simulation of Fluids and Rigid Bodies MIG ’24, November 21–23, 2024, Arlington, VA, USA

Computing the divergence-free velocity field u𝐺 requires solving

a Poisson equation. However, since our goal is to couple the fluid

and solid objects, we must correctly handle the Neumann boundary

conditions at the fluid-solid interface.

4.1.1 Divergence Stencil. Using a second-order accurate central

difference scheme, the divergence of a single cell in 2D is

𝑢𝑖+1/2, 𝑗 − 𝑢𝑖−1/2, 𝑗 + 𝑣𝑖, 𝑗+1/2 − 𝑣𝑖, 𝑗−1/2
ℎ

,

which computes the flux of the fluid through the faces divided

by the cell size ℎ. We denote this discrete divergence operator as

Dℎ , which maps a bundle of staggered single-component velocity

samples to cell-centered divergence on the grid.

With the boundary geometry taken into account, the flux of

the total material in cut-cell consists of a fluid contribution and

solid contribution. To get the cell fluid flux, we mask the face flux

by the corresponding fluid face fraction 𝜑𝑖+1/2, 𝑗 , 𝜑𝑖−1/2, 𝑗 , 𝜑𝑖, 𝑗+1/2,
𝜑𝑖, 𝑗−1/2. This gives the modified divergence operator as DL, where
L is a diagonal matrix formed by the fluid face fractions. Similarly,

the flux of the rigid body is masked by 1 − 𝜑𝑖+1/2, 𝑗 , 1 − 𝜑𝑖−1/2, 𝑗 ,
1 − 𝜑𝑖, 𝑗+1/2, 1 − 𝜑𝑖, 𝑗−1/2, and the divergence of a mixed fluid-rigid

domain is approximated by D
(
Lu

fluid
+ (I − L)u

rigid

)
. Note that

the subscript ℎ is dropped here since we assume the grid cell size is

fixed.

4.1.2 Divergence-free Projection. The divergence-free condition
dictates that the sum of fluid and solid volume should stay the same,

in other words, the flux of total material entering through the cell

faces, should equal the amount that is leaving.

The divergence-free condition on the Cartesian grid can be ex-

pressed as the following linear system

D
(
Lu

fluid
+ (I − L)u

rigid

)
= 0 ,

where u
fluid

are the divergence-free velocities after applying the

pressure u
fluid

= u′ − Δ𝑡
𝜌 Fp, with F the discrete gradient operator,

and u′ the velocity field after advection. Moving the unknowns, i.e.,

the pressure field, to the left-hand side, gives:

△𝑡
𝜌
DLFp = DLu′ + D(I − L)u

rigid
. (1)

After solving for pressure, the last step is to apply the pressure

gradient to the velocity field u′ to get an updated u, such that

u← u′ − Δ𝑡

𝜌
Fp . (2)

We use an occupancy data structure to determine if a grid cell is

empty, contains fluid, or is inside a solid object. If the center of a

cell is empty, we mark it as a cell with Dirichlet condition 𝑝𝑖, 𝑗 = 0.

Otherwise, we use a level set on the global or local grid to determine

whether it is completely inside a rigid body. If not, we mark it as

an unknown for the pressure solve.

For each pair of adjacent Dirichlet cell and interior cell marked

with an unknown pressure, we follow the ghost fluid method [Gibou

et al. 2002] to set up our Dirichlet boundary conditions. At its

simplest, the ghost fluid method brings the boundary resolution

to sub-cell level by estimating where the water-air interface lies

between two grid cells and enforcing the condition 𝑝 = 0 exactly at

the interface. In contrast, the voxelized approach can only enforce

the 𝑝 = 0 condition on cell centers.

pi,j pi+1,j

ϕi,j < 0 ϕi+1,j > 0

pf = 0

pi,j
ui−1/2,j ui+1/2,j

vi+1/2,j

vi−1/2,j

pi+1,j

pi,j−1

pi,j+1

pi−1,j

−
φi,j+1

ρi,j+1

−
φi,j-1

ρi,j-1

−
φi+1,𝑗𝑗

ρi+1,𝑗𝑗
−
φi-1,𝑗𝑗

ρi-1,𝑗𝑗

φi-1,𝑗𝑗

ρi-1,𝑗𝑗
+
φi+1,𝑗𝑗

ρi+1,𝑗𝑗
+
φi,𝑗𝑗−1

ρi,𝑗𝑗−1
+
φi,𝑗𝑗+1

ρi,𝑗𝑗+1

Figure 3: Left: Ghost pressures from a 2D grid are inserted
at cell centers where 𝜙𝑖, 𝑗 > 0. The boundary condition 𝑝 𝑓 = 0

is enforced at the position evaluated by the neighboring 𝜙𝑖, 𝑗
and 𝜙𝑖+1, 𝑗 . Right: The Poisson stencil.

4.1.3 Dirichlet Boundary Conditions. We use the example shown

in Fig.3 to explain the process. The pressure field is extrapolated

into the adjacent empty cell using the pressure 𝑝𝑖, 𝑗 and 𝑝 𝑓 = 0 at

the interface. The ghost pressure in this case is given by 𝑝
𝑔ℎ𝑜𝑠𝑡

𝑖+1, 𝑗 =

𝜙𝑖+1, 𝑗
𝜙𝑖,𝑗

𝑝𝑖, 𝑗 , which means we can express the ghost pressure as a linear

combination of existing unknown, thus excluding them from the

set of unknowns.

The end effect for the linear system in Equation 1 is scaling the

diagonal entry corresponding to 𝑝𝑖, 𝑗 by
𝜙𝑖+1, 𝑗−𝜙𝑖,𝑗

𝜙𝑖,𝑗
, and setting all

the pressure values in empty adjacent grid cells to be 0 when we

apply Eq. 2. Conceptually, this scaling factor is equivalent to the

inverse of the average liquid density in the adjoint cell estimated

on the two adjacent 𝜙 samples, denoted
1

𝜌 . Following this idea, we

construct the Poisson stencil shown in Fig. 3, which is expressed

by the parameters 𝜑 and 𝜌 .

Expressing the Poisson stencil with an explicit
1

𝜌 factor also

gives us additional convenience, as the flexibility for changing the

density will further facilitate fluid-solid coupling of rigid bodies of

different densities.

4.1.4 Solid-Fluid Coupling. The pressure force acting on a rigid

body may be computed by integrating the flux of the pressure

gradient ∇p over its volume 𝑉𝐵𝑘 :

f𝐵𝑘 =

∫
𝑉𝐵𝑘

∇p𝑑𝑉 . (3)

Fedkiw [2002] notes that, for incompressible fluids, the pres-

sure field for the divergence-free projection can be stiff and noisy,

making it unsuitable for computing the coupling force that drives

the solids. Therefore, a separate pressure field p𝑐 is introduced to

capture the reciprocated forces from the fluid.

We use the immersed boundary method [Peskin 2002] for solving

p𝑐 . The force that the fluid exerts on the rigid body is calculated

based on the difference between the rigid body motion and the fluid

motion. In this scheme, the pressure forces are a function of the rigid

body velocities ¤q𝐵𝑘 , which in turn is updated by the pressure force.

By letting those two quantities be compatible, a fixed-point iterative

method emerges (see Algorithm 2). Although multiple iterations

MIG ’24, November 21–23, 2024, Arlington, VA, USA Shi, Zordan, Yang, and Andrews

Algorithm 2: Computing pressure force

Data: q𝐵𝑘 , ¤q𝐵𝑘 for rigid bodies in 𝐵𝑘 , 𝐻 grid (global or local)

Result: f𝑐 pressure force
1 function computePressureForces(Δ𝑡, q𝐵𝑘 , ¤q𝐵𝑘 , u′𝐻):
2 𝜙 ← min(𝜙

rigid
, 𝜙

fluid
)

3 L← computeFaceFraction(𝜙) // Section 4.1.1

4 update volumes 𝑉𝐵𝑘 from q𝐵𝑘
5 ¤q(0) = ¤q𝐵𝑘
6 for 𝑖 = 1 . . . maxIter do
7 u𝐵𝑘 ← rigidToGrid(𝐻, ¤q(𝑖−1))
8 solve

△𝑡
𝜌
DFp(𝑖)𝑐 = DLu′

𝐻
+ D(I − L)u𝐵𝑘 // Eq. 1

9 f (𝑖)𝑐 ← integratePressure(𝑉𝐵𝑘 , p
(𝑖)
𝑐) // Eq. 3

10 ¤q(𝑖) ← ¤q𝐵𝑘 + Δ𝑡f
(𝑖)
𝑐

11 if ∥ ¤q(𝑖) − ¤q(𝑖−1) ∥ < 𝜖 then
12 return f (𝑖)𝑐
13 end
14 end

are helpful for refining the pressure forces, we set maxIter = 1 in

practice and find that it typically gives a plausible solution. In the

pseudocode, the RigidtoGrid function computes the rigid veloc-

ity on the staggered grid, and the integratePressure function

integrates the pressure force according to Eq. 3.

4.2 Multigrid Solver
In this section, we describe the basic components of our geometric

multigrid solver for solving the linear system in Eq. 1. The solver

is based on the multigrid method proposed by McAdams et al.

[2010], which we extend to work with non-voxelized geometry and

spatially varying fluid density.

4.2.1 Smoother. We use the stencil described in Fig. 3 for smooth-

ing. Specifically, 6 red-black Gauss-Seidel iterations are performed

on the finest grid for pre-smoothing, and 6 for post-smoothing. The

iteration count is doubled each time there is a transition to a coarser

level, with a maximum cap of 24 iterations.

4.2.2 Grid Transfer. Transferring grid values from a finer to a

coarser level consists of three parts:

• Cell type. A coarse grid cell is labeled as a “Dirichlet” cell if

all of its children are also labeled as “Dirichlet”. This is deter-

mined implicitly by checking if all children have 0 average

density.

• Restriction of the Poisson stencil. The face fraction of

a coarser grid can be computed as the average of its chil-

dren weighted by the face area, which we denote as the face

restriction operator 𝑅𝑓 . Similarly, the average density of a

coarse face cell can be averaged from the volume-weighted

density of its children, denoted as density restriction opera-

tion 𝑅𝜌 . In 2D, operators 𝑅𝑓 and 𝑅𝜌 are:

𝑅𝑓 =
1

2

[
0 1 0

0 1 0

]
2ℎ

ℎ

, 𝑅𝜌 =
1

8

[
1 2 1

1 2 1

]
2ℎ

ℎ

.

• Restriction/Prolongation for approximations. We use

a constant restriction and tri-linear interpolation scheme

for cell-centered multigrid. In 2D, the restriction 𝐼2ℎ
ℎ

and

prolongation 𝐼ℎ
2ℎ

operators are:

𝐼2ℎ
ℎ

=

[
1 1

1 1

]ℎ
2ℎ

, 𝐼ℎ
2ℎ

=
1

16


1 3 3 1

3 9 9 3

3 9 9 3

1 3 3 1


2ℎ

ℎ

.

Finally, we use a direct solver on the coarsest level.

4.3 Distributed Adaptive Refinement
Adaptive refinement of the coarse grid allows high-frequency de-

tails and rigid-fluid coupling to be ameliorated by performing fine

scale simulations in specific regions, e.g. the vicinity of rigid bod-

ies. In a distributed setting, such refinements may be carried out

remotely, and consequently the round trip time between compute

nodes can easily become a bottleneck. Our design choice for adap-

tive refinement is therefore biased toward minimizing the depen-

dence on the global grid.

Compared to the coarse grid simulation, the underlying Navier-

Stokes equation and the advection-projection type stepping remain

unchanged, and the only difference is we discretized on a higher

resolution, plus we need to account for the boundary conditions

imposed by the larger grid 𝐺 surrounding the subdomains 𝐿1...𝐾 .

This results in the addition of line 12-14 in Algorithm 1 to the local

simulation compared to the global simulation. Moreover, the local

projection uses a much simpler Gauss-Seidel solver as it starts from

a fairly accurate initial guess given by the global pressure solve.

4.3.1 Local Advection. In the advection stage, a vicinity of radius

|umax |Δ𝑡 is explored as we backtrace from one grid point to its

previous position. Therefore we interpolate the coarse fluid field

on a band of width |umax |Δ𝑡 ghost cells surrounding the local grid

in addition to the interior grid points of the local grid.

4.3.2 Local Projection. After advection, the steps outlined in Sec-

tion 4.1.1 are used to assemble the linear system Eq. 1 on local grid

𝐿𝑘 . This requires computing a new modified boundary-aware diver-

gence operator DL𝐿𝑘 on the refined grid, and the total divergence

of the advected refined flow field DL𝐿𝑘u
′
𝐿𝑘
+ D(I − L𝐿𝑘)urigid .

As the coarse pressure is already known, we follow the coarse-to-

fine full multigrid approach to solve Eq. 1. This starts by mapping

the global pressures p′
𝐺
onto the local adaptive grid with tri-cubic

interpolation, giving an initial approximation p′
𝐿𝑘
. To apply the

Adaptive Distributed Simulation of Fluids and Rigid Bodies MIG ’24, November 21–23, 2024, Arlington, VA, USA

correct compatible boundary condition, the interpolation domain

is extended by 1 grid on the subdomain boundary, forming a 1-grid

Dirichlet padding p𝜕𝐿𝑘 around the subdomain as shown below.

Based on the smoothing stencil DL𝐿𝑘 , initial solution p′
𝐿𝑘

and

Dirichlet boundary pressure values p𝜕𝐿𝑘 , 30 iterations of red-black
Gauss-Seidel iterations are applied as the smoother, and we get an

improved solution p𝐿𝑘 .
In a typical adaptive multigrid cycle, the coarse levels are revis-

ited for at least another cycle. However, this would be expensive

in a distributed setting since we assume that the fine (local) and

coarse (global) grids are separated across the network. We therefore

propose to use a single coarse-to-fine cycle, i.e. skip revisiting the

coarser grids later on, and later use a special blending method to

merge local flow field information back to the global grid.

Another notable difference of our approach is that multiple up-

dates are performed on the local grid using an asynchronous sub-

stepping scheme. During intermediate substeps, the initial approxi-

mation of the pressure field and its boundary is interpolated from

the temporal interpolation of the latest two available p′
𝐺
.

Finally, the smoothed local grid pressure solution p𝐿𝑘 stays on

the local grid as we apply Eq. 2 to update the velocity field.

4.4 Synchronous Local-to-Global Updates
Due to asynchronously stepping the local grid, the flow field may

begin to diverge at interfaces between the local and global grids.

The global grid therefore must update its estimate of the flow field

velocities u′
𝐺
by incorporating information from each of the local

grids u𝐿1...𝐾 . We refer to this step as fluid blending, which is then

followed by a final Poisson computation to bring the flow field to a

divergence-free state.

4.4.1 Fluid Blending. 3D fluid blending has not been a well-tackled

research problem. To our knowledge, no scheme readily takes

in two divergence-free fields and outputs a blended fluid field

that preserves the divergence-free condition, hence an additional

divergence-free projection follows the blending operation. One re-

lated method is presented by English et al. [2013], where a Voronoi

partitioning is constructed to decide the extent of the valid refine-

ment grids. Similarly, when multiple local grids cover the same

global cell, we query the signed distance to each rigid body group

with a level set constructed on the local grids to determine which

local value to inherit from. We call this the min-sdf strategy, since

it uses the minimum distance to the closest rigid body level set to

assign flow field values.

4.4.2 Final Pressure Projection. The final projection step is the

same as the previous approach: based on the geometry, we compute

the divergence operator Dℎ𝐺 L𝐺 on the global grid and DhL𝐿𝑘 on

the local grids; form the linear system in Eq. 1; solve it on the global

grid 𝐺 and project the fluid velocity by Eq. 2. Unlike the pressure

solve on line 8 of Alg. 1, pressure field computed here (line 21 of

Alg. 1) is immediately discarded after projection and not used in

the subsequent local substepping.

5 RESULTS
In this section, we evaluate our proposed framework using several

compelling examples and experiments. Unless otherwise stated,

the global and local time step is Δ𝑡G = 0.01 s and Δ𝑡 = 1

4
Δ𝑡G,

and the grid size is 128
3
and 64

3
for the global and local grids,

respectively. Each refinement grid contains a single rigid body

and has an effective resolution of 256
3
compared to the global.

We use 4 multigrid V-cycles on the coarse grid, and 30 red-black

Gauss-Seidel iterations on the local subdomain for projection. All

experiments were implemented in Python using Warp [Macklin

2022] and executed on an NVIDIA RTX 3060 GPU with 12 GB of

memory.

Our rigid body simulation uses the extended position-based

dynamics (XPBD) [Macklin et al. 2016] implementation available

in Warp. Water surface is traced with narrow-band FLIP [Ferstl

et al. 2016] with blending 𝛼 = 0.99. The level set of each rigid body

𝜙𝐵𝑘 is computed offline with OpenVDB. At run-time, the new level

set on the global and local grids is generated by transforming the

sample points to the rigid body frame and resampling 𝜙𝐵𝑘 .

5.1 Example Scenes
5.1.1 Boat Wake. The scene from the teaser Fig. 1, a propeller con-

stantly stirs the water as a boat zooms through the water. Nearby

buoys experience the effects of its wake. Rigid-fluid coupling gen-

erates buoyancy forces that keep the buoys afloat. The quantity

of water being displaced by the boat motion creates a wave that

later causes the buoys to move away from the wake. In the supple-

mentary video, a comparison against a monolithic simulation with

high resolution grid shows that qualitative simulation behavior is

attained by our adaptive multigrid simulation scheme.

5.1.2 Fast Car. Two cars drive closely past each other, causing a

stack of lightweight boxes to topple, as shown in Fig. 5. The scene

is decomposed into multiple overlapping local grids and coupled

through a coarse global grid encompassing the entire scene, and

it demonstrates the ability to capture subtle behaviors achieved

through rigid-fluid coupling.

5.1.3 Dam Break. An array of cubes begins free fall while the

water collapses from the left. The water flows in and out of the

local subdomains centered at each rigid body without being affected

by the adaptive grids. This scene shows the ability of our method

to handle many dynamic rigid objects in close proximity.

5.1.4 Flow Past Sphere. We compare reference simulations of a

smoke plume interacting with a static sphere using a 64
3
coarse

grid and 256
3
fine grid against our method using 64

3
coarse grid

and 256
3
resolution adaptive region (see Fig. 4). We show that our

method gets the same low-frequency motion as the fine reference,

and addsmore detail compared to the coarse reference. To isolate the

influence of grid refinement, this example uses the same timestep

for coarse and fine grids, i.e. Δ𝑡G = Δ𝑡 = 0.01 𝑠 .

5.2 Performance
The time consumption of a global step and a local step is recorded

in Table 1. In all our demo scenes, our global simulator runs at an

interactive rate (10 fps) and client-side update is real-time (<30 ms).

The residual of the multigrid solve is recorded in Table 2. With

four V-cycles, our multigrid solver is able to reduce the divergence

by three orders on average, and the local grid smoother achieves

MIG ’24, November 21–23, 2024, Arlington, VA, USA Shi, Zordan, Yang, and Andrews

Table 1: Computation time for each step of our pipeline. Timing results are reported in ms. The computation is divided
into 4 stages: advection, computing the divergence operator Dℎ , computing and integrating the coupling pressure p𝑐 , and
divergence-free projection. Execution time for the global grid step and local grid step are recorded separately. As there are
multiple local grids, the local time measures the worst-case execution time in all local grids. In the Flow Past Sphere scene, even
under a synchronous update setting, the total time of our method (global + local +merge) is still more than 10 times lower than
the fine grid reference.

global local

scene dimension advect Dℎ p𝑐 project total advect Dℎ p𝑐 project total merge

Boat Wake 128 × 128 × 64 10.47 8.19 26.49 19.16 73.91 0.79 3.89 3.69 5.33 8.05 14.54

Fast Car 128
3

8.41 5.12 41.15 57.77 114.23 0.38 2.92 4.17 5.69 12.5 14.0

Dam Break 128
3

20.07 7.68 39.67 34.08 117.17 2.31 2.24 3.26 5.57 11.87 26.73

Flow Past Sphere, Fine 256
3

77.43 16.33 - 491.79 585.56 - - - - - -

Flow Past Sphere 64
3

2.44 1.27 - 10.09 13.80 2.08 2.65 - 15.45 20.18 17.99

Table 2: Efficiency of our multigrid solver.

solver dimension avg. local error reduction avg. global error reduction convergence factor V-cycle time (ms)

Boat Wake 128 × 128 × 64 0.0359 2.09 × 10−3 0.214 2.68

Fast Car 128
3

0.0544 7.61 × 10−3 0.295 6.96

Flow Past Sphere 64
3

0.0313 5.88 × 10−3 0.277 3.01

Dam Break 128
3

0.0443 6.63 × 10−3 0.285 2.21

Table 3: Divergence of each blending scheme for scene in
Fig. 7. The lower the value, the closer to the desired incom-
pressible divergence-free state. The proposed softmin-sdf
scheme performs best, preserving the incompressibility of
the fluid and a smooth transition between subdomain bound-
aries.

blending scheme total divergence boundary divergence

min-sdf (Δ𝑡G = 4Δ𝑡) 2.43 × 10−6 1.16 × 10−5
min-sdf 1.34 × 10−5 2.98 × 10−6

softmin-sdf 2.36 × 10−5 7.48 × 10−6
linear blending 3.02 × 10−5 1.50 × 10−5
fine reference 5.84 × 10−8 NA

two orders of divergence reduction, measured in the infinite norm.

This gets us plausible fluid behavior.

5.3 Local-to-Global Fluid Blending
We progressively disable the asynchronous stepping and min-sdf

blending in our local-to-global blending scheme in a simplified

2D simulation with three overlapping local grids. We record the

L2-norm of the cell-centered divergence field before the final pro-

jection to quantify visual plausibility. We also record the divergence

of the cells adjacent to the subdomain boundary to gauge the dis-

crepancy at the boundary. A visual comparison is listed in Fig. 7. At

a bare minimum, a naive linear blending is listed as a reference. The

global grid is 256 × 256 with resolution ℎ𝐺 = 1

256
; each local grid is

256 × 256 with ℎ = 1

512
. Lastly, we add a fine-resolution reference

on a full 512 × 512 grid. Table 3 confirms the superiority of the

min-sdf blending with frequency domain guiding in terms of both

Figure 4: Flow Past Sphere scene. The results produced by our
adaptive multigrid approach compared to global simulations
using coarse (left plume) and fine (right plume) grids. Our
method (middle plume) produces plausible high-frequency
detail in adaptive regions, and there are no perceivable arti-
facts at boundaries or the global-local interface.

measurements. On the other hand, running a global simulation

with Δ𝑡G = 4Δ𝑡 doesn’t deteriorate the visual plausibility.

6 CONCLUSION
We propose a framework for simulating fluids and rigid bodies

designed for heterogeneous distributed computing architectures.

Our approach relies on an adaptive multigrid scheme to minimize

computational overhead on client devices, whereas a coarse grid

spanning the entire scene efficiently manages global effects of the

fluid. We believe that our framework paves the way for novel uses

of distributed computing to power the next generation of interac-

tive computer graphics applications by seamlessly leveraging the

computing resources of a diverse array of devices for performing

simulation.

Adaptive Distributed Simulation of Fluids and Rigid Bodies MIG ’24, November 21–23, 2024, Arlington, VA, USA

ACKNOWLEDGMENTS
We thank Kyle Chand for his advice and many illuminating discus-

sions about multigrid methods and fluid simulations.

REFERENCES
Marco Ament, Gunter Knittel, Daniel Weiskopf, and Wolfgang Strasser. 2010. A

Parallel Preconditioned Conjugate Gradient Solver for the Poisson Problem on a

Multi-GPU Platform. In 2010 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing. 583–592. https://doi.org/10.1109/PDP.2010.51

Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A Fast Variational

Framework for Accurate Solid-Fluid Coupling. ACM Trans. Graph. 26, 3 (jul 2007),
100–es. https://doi.org/10.1145/1276377.1276502

Marsha J Berger and Phillip Colella. 1989. Local adaptive mesh refinement for shock

hydrodynamics. Journal of computational Physics 82, 1 (1989), 64–84.
Marsha J Berger and Joseph Oliger. 1984. Adaptive mesh refinement for hyperbolic

partial differential equations. Journal of computational Physics 53, 3 (1984), 484–512.
Alexander Brown, Gary Ushaw, and GrahamMorgan. 2019. Aura projection for scalable

real-time physics. In Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games (Montreal, Quebec, Canada) (I3D ’19). Association for

Computing Machinery, New York, NY, USA, Article 1, 9 pages. https://doi.org/10.

1145/3306131.3317021

Mark Carlson, Peter J. Mucha, and Greg Turk. 2004. Rigid Fluid: Animating the

Interplay between Rigid Bodies and Fluid. ACM Trans. Graph. 23, 3 (aug 2004),

377–384. https://doi.org/10.1145/1015706.1015733

Nuttapong Chentanez andMatthias Müller. 2011. Real-Time EulerianWater Simulation

Using a Restricted Tall Cell Grid. InACM SIGGRAPH 2011 Papers (Vancouver, British
Columbia, Canada) (SIGGRAPH ’11). Association for Computing Machinery, New

York, NY, USA, Article 82, 10 pages. https://doi.org/10.1145/1964921.1964977

Jieyu Chu, Nafees Bin Zafar, and Xubo Yang. 2017. A Schur Complement Preconditioner

for Scalable Parallel Fluid Simulation. ACM Trans. Graph. 36, 4, Article 139a (jul
2017), 11 pages. https://doi.org/10.1145/3072959.3092818

Saulo Soares De Oliveira, Carlos Henrique R. Souza, Jefferson Carvalho Silva, and

Sérgio T. Carvalho. 2024. Towards Scalable Cloud Gaming Systems: Decoupling

Physics from the Game Engine. In Proceedings of the 22nd Brazilian Symposium
on Games and Digital Entertainment (Rio Grande (RS), Brazil) (SBGames ’23).
Association for Computing Machinery, New York, NY, USA, 151–160. https:

//doi.org/10.1145/3631085.3631225

R. Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013. Chimera grids for water

simulation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (Anaheim, California) (SCA ’13). Association for Computing

Machinery, New York, NY, USA, 85–94. https://doi.org/10.1145/2485895.2485897

Ronald P. Fedkiw. 2002. Coupling an Eulerian Fluid Calculation to a Lagrangian Solid

Calculation with the Ghost Fluid Method. J. Comput. Phys. 175, 1 (2002), 200–224.
https://doi.org/10.1006/jcph.2001.6935

Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey.

2016. Narrow band FLIP for liquid simulations. In Proceedings of the 37th Annual
Conference of the European Association for Computer Graphics (Lisbon, Portugal)
(EG ’16). Eurographics Association, Goslar, DEU, 225–232.

Florian Ferstl, Rüdiger Westermann, and Christian Dick. 2014. Large-Scale Liquid

Simulation on Adaptive Hexahedral Grids. IEEE Transactions on Visualization and
Computer Graphics 20, 10 (2014), 1405–1417. https://doi.org/10.1109/TVCG.2014.

2307873

Nick Foster andDimitriMetaxas. 1996. Realistic Animation of Liquids. GraphicalModels
and Image Processing 58, 5 (1996), 471–483. https://doi.org/10.1006/gmip.1996.0039

Frederic Gibou, Ronald P. Fedkiw, Li-Tien Cheng, and Myungjoo Kang. 2002. A Second-

Order-Accurate Symmetric Discretization of the Poisson Equation on Irregular

Domains. J. Comput. Phys. 176, 1 (2002), 205–227. https://doi.org/10.1006/jcph.

2001.6977

Abhinav Golas, Rahul Narain, Jason Sewall, Pavel Krajcevski, Pradeep Dubey, and

Ming Lin. 2012. Large-scale fluid simulation using velocity-vorticity domain de-

composition. ACM Trans. Graph. 31, 6, Article 148 (nov 2012), 9 pages. https:

//doi.org/10.1145/2366145.2366167

Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. 2005. Coupling

Water and Smoke to Thin Deformable and Rigid Shells. ACM Trans. Graph. 24, 3
(jul 2005), 973–981. https://doi.org/10.1145/1073204.1073299

Libo Huang, Ziyin Qu, Xun Tan, Xinxin Zhang, Dominik L. Michels, and Chenfanfu

Jiang. 2021. Ships, splashes, and waves on a vast ocean. ACM Trans. Graph. 40, 6,
Article 203 (dec 2021), 15 pages. https://doi.org/10.1145/3478513.3480495

Michael Lentine, Wen Zheng, and Ronald Fedkiw. 2010. A novel algorithm for incom-

pressible flow using only a coarse grid projection. ACM Trans. Graph. 29, 4, Article
114 (jul 2010), 9 pages. https://doi.org/10.1145/1778765.1778851

Haixiang Liu, Nathan Mitchell, Mridul Aanjaneya, and Eftychios Sifakis. 2016. A

Scalable Schur-Complement Fluids Solver for Heterogeneous Compute Platforms.

ACM Trans. Graph. 35, 6, Article 201 (dec 2016), 12 pages. https://doi.org/10.1145/

2980179.2982430

Miles Macklin. 2022. Warp: A High-performance Python Framework for GPU Simu-

lation and Graphics. https://github.com/nvidia/warp. NVIDIA GPU Technology

Conference (GTC).

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-

based simulation of compliant constrained dynamics. In Proceedings of the 9th
International Conference on Motion in Games (Burlingame, California) (MIG ’16).
Association for Computing Machinery, New York, NY, USA, 49–54. https://doi.

org/10.1145/2994258.2994272

A.McAdams, E. Sifakis, and J. Teran. 2010. A Parallel Multigrid Poisson Solver for Fluids

Simulation on Large Grids. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Madrid, Spain) (SCA ’10). Eurographics Asso-
ciation, Goslar, DEU, 65–74.

Charles S Peskin. 2002. The immersed boundary method. Acta numerica 11 (2002),

479–517. https://doi.org/10.1017/S0962492902000077

Doug Roble, Nafees bin Zafar, and Henrik Falt. 2005. Cartesian Grid Fluid Simulation

with Irregular Boundary Voxels. In ACM SIGGRAPH 2005 Sketches (Los Angeles,
California) (SIGGRAPH ’05). Association for Computing Machinery, New York, NY,

USA, 138–es. https://doi.org/10.1145/1187112.1187279

Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley

Publishing Co., USA, 121–128. https://doi.org/10.1145/311535.311548

Jos Stam. 2003. Real-Time Fluid Dynamics for Games. (05 2003).

Tsunemi Takahashi, Heihachi Ueki, Atsushi Kunimatsu, and Hiroko Fujii. 2002. The

Simulation of Fluid-Rigid Body Interaction. In ACM SIGGRAPH 2002 Conference
Abstracts and Applications (San Antonio, Texas) (SIGGRAPH ’02). Association for

Computing Machinery, New York, NY, USA, 266. https://doi.org/10.1145/1242073.

1242279

Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. 2000. Multigrid.
Elsevier.

Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu,

Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang. 2020. A Massively

Parallel and Scalable Multi-GPU Material Point Method. ACM Trans. Graph. 39, 4,
Article 30 (aug 2020), 15 pages. https://doi.org/10.1145/3386569.3392442

https://doi.org/10.1109/PDP.2010.51
https://doi.org/10.1145/1276377.1276502
https://doi.org/10.1145/3306131.3317021
https://doi.org/10.1145/3306131.3317021
https://doi.org/10.1145/1015706.1015733
https://doi.org/10.1145/1964921.1964977
https://doi.org/10.1145/3072959.3092818
https://doi.org/10.1145/3631085.3631225
https://doi.org/10.1145/3631085.3631225
https://doi.org/10.1145/2485895.2485897
https://doi.org/10.1006/jcph.2001.6935
https://doi.org/10.1109/TVCG.2014.2307873
https://doi.org/10.1109/TVCG.2014.2307873
https://doi.org/10.1006/gmip.1996.0039
https://doi.org/10.1006/jcph.2001.6977
https://doi.org/10.1006/jcph.2001.6977
https://doi.org/10.1145/2366145.2366167
https://doi.org/10.1145/2366145.2366167
https://doi.org/10.1145/1073204.1073299
https://doi.org/10.1145/3478513.3480495
https://doi.org/10.1145/1778765.1778851
https://doi.org/10.1145/2980179.2982430
https://doi.org/10.1145/2980179.2982430
https://github.com/nvidia/warp
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1017/S0962492902000077
https://doi.org/10.1145/1187112.1187279
https://doi.org/10.1145/311535.311548
https://doi.org/10.1145/1242073.1242279
https://doi.org/10.1145/1242073.1242279
https://doi.org/10.1145/3386569.3392442

MIG ’24, November 21–23, 2024, Arlington, VA, USA Shi, Zordan, Yang, and Andrews

Figure 5: Fast Car scene. The disturbance caused by fast moving cars topples a stack of boxes. The scene is decomposed into
multiple overlapping local grids and coupled through a coarse global grid encompassing the entire scene.

Figure 6: Dam Break Scene. An array of cubes begins free fall while the water collapses from the left. The water unaffectedly
flows in and out of the local subdomains centered at each rigid body, while the rigid bodies and fluid exhibit plausible coupling.

Figure 7: A steady stream flows against three floating cubes, which are simulated with three overlapping local grids. Different
subdomains are highlighted in red, green and blue, respectively. From left to right: min-sdf, Δ𝑡G

Δ𝑡 = 4; min-sdf, Δ𝑡G
Δ𝑡 = 1; linear

blending; 256 × 256 coarse grid reference; 512 × 512 unguided fine grid reference.

	Abstract
	1 Introduction
	2 Related work
	2.1 Parallel Fluid Simulation
	2.2 Scalable, Adaptive and Hybrid Fluid Solvers
	2.3 Fluid-Rigid Coupling

	3 System Overview
	4 Methodology
	4.1 Global Simulation
	4.2 Multigrid Solver
	4.3 Distributed Adaptive Refinement
	4.4 Synchronous Local-to-Global Updates

	5 Results
	5.1 Example Scenes
	5.2 Performance
	5.3 Local-to-Global Fluid Blending

	6 Conclusion
	Acknowledgments
	References

