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Figure 1: A heavy box sits atop a tower of spheres and thin plates (left); a boulder rolls across a swinging bridge (middle); a
massive box is suspended from a chain of rigid bodies (right). Each scenario involves mass ratios of 10,000:1, 1000:1, and 1000:1,
respectively. Our proposed adaptive sub-stepping scheme allows efficient and stable simulation of these challenging examples.

Abstract
Achieving stable simulation of constrained rigid body systems is a
primary concern for many computer graphics applications, such
as video games, robotic planning, and virtual reality training. In
this paper, we present a novel adaptive sub-stepping scheme that
achieves stable simulation by adaptively reducing the time step as
needed. Our approach employs a diagonalized geometric stiffness
matrix as a heuristic to determine when smaller time steps are
required, and adjusts the number of sub-steps accordingly. Our
method is straightforward to integrate into existing rigid body
simulators, and further eliminates manually tuning the number of
sub-steps required. We demonstrate the ability of our method to
produce stable simulates at real-time frame rates using a number
of challenging, complex examples.
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• Computing methodologies→ Real-time simulation; Inter-
active simulation; Physical simulation.
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1 Introduction
Physics simulation is a mainstay of interactive computer graphics.
In particular, constrained rigid body simulation has seenwidespread
adoption in video games and virtual reality applications. A primary
objective of simulations in this setting is to maintain real-time
framerates, while also remaining robust to user inputs and a wide
variety of simulation parameters. There has thus been a large body
of work that focuses on efficient methods for producing stable
simulations.

One popular technique proposed in recent years is that of sub-
stepping [Macklin et al. 2019b], which breaks down each visual
step into 𝑁 simulation time steps. This strategy not only improves
accuracy, e.g., collision detection for fast moving objects, but also
improves stability due to more frequent linearization of the non-
linear system modeling dynamics.
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Other approaches have focused on improving stability by explicit
damping [Cline 2002]. Damping improves the conditioning of stiff
systems, allowing semi-implicit and even explicit integrators to be
used. The non-linear constraints that characterize many rigid body
simulations may introduce damping by a Baumgarte-type stabi-
lization, which effectively introduces feedback of the constraint
error and generates constraint forces from implicit damped springs.
However, Tournier et al. [2015] observed that additional instabil-
ities due to geometric non-linearities that are ignored by many
first-order integrators are a principle cause of instability for con-
strained simulations. Including the geometric stiffness, a first-order
approximation of constraint force changes, helps to improve sta-
bility. Andrews et al. [2017] later proposed using a diagonalized
version of the geometric stiffness to compute an adaptive damping
term. Their approach was based on a stability analysis of a first-
order integrator that computed just enough damping to meet the
stability criterion. [Macklin et al. 2019a] found that this diagonal
approximation also acts as a good preconditioner for a non-smooth
Newton method. They compute the geometric stiffness using finite
differences, which avoids explicit computation of the matrix. They
found this geometric stiffness approximation to be quite effective on
particle-based objects, but less so on rigid articulated mechanisms,
and in the worst case can cause some jitter at joint limits.

In this paper, we propose a technique that combines the strategy
of sub-stepping with a stability analysis based on the geometric
stiffness. Specifically, an adaptive sub-stepping technique is demon-
strated that shows improved stability compared to a baseline simu-
lator, improved performance compared to previous sub-stepping
methods, and improved energy conservation versus adaptive damp-
ing techniques. We demonstrate our method with a number of chal-
lenging constrained rigid body simulations involving high mass
ratios and complex configurations of joints and contacts.

2 Background and Related Work
The report by Bender et al. [2014] provides an excellent background
on the simulation of rigid bodies with constraints. Here, we briefly
introduce the fundamentals of rigid body simulation and provide
the lead-up to our adaptive sub-stepping scheme.

2.1 Constrained Rigid-body Dynamics
The Newton-Euler equations f (q(𝑡), u(𝑡)) = M(𝑡) ¤u(𝑡) describe the
dynamical behavior of a system at time 𝑡 with forces f (q(𝑡), u(𝑡))
acting on a collection of bodies with generalized masses M(𝑡),
positions q(𝑡), and velocities u(𝑡). Introducing a time step ℎ and
approximating u(𝑡 + Δ𝑡) ≈ u(𝑡) + ℎ ¤u(𝑡), the equations can be
discretized and a numerical integrator used to advance the state of
the system, giving the familiar velocity level equations of motion:

Mu+ = Mu + ℎf .

We use u+ to denote values at the end of a time step, and assume
that the mass of bodies does not change, giving constant mass
matrixM.

Kinematic constraints couple the motion of rigid bodies making
it possible to model the behavior of real-world joints, e.g., hinges,
ball-and-socket, and even contact. A constraint equation of the
form 𝜙 (q) = 0 implicitly defines the permissible configurations

for the degrees of freedom q for a system of rigid bodies. While
position-based frameworks for simulating rigid bodies have been
proposed [Müller et al. 2020], it is more common to resolve the
constraint equations at the velocity level, such that

Ju = − 1
ℎ
𝜙 ,

where J =
𝜕𝜙 (q)
𝜕𝑞 is the gradient of the constraint function 𝜙 (q),

and − 1
ℎ
𝜙 on the right-hand side is a Baumgarte-style stabiliza-

tion[Baumgarte 1972] term. Note that 𝜙 is sometimes also referred
to as the constraint error.

Constraints are enforced in the dynamical system through the
inclusion of impulses with magnitude 𝜆+ acting in the direction
of the constraint gradient, J𝑇 𝜆+, giving the revised equations of
motion:

Mu+ − J𝑇 𝜆+ = Mu + ℎf .
Simulations involving contact also require solving a mixed linear
complementarity problem (MLCP), since the system may include
both bilateral and unilateral constraints. Our rigid body simula-
tions use a box Coulomb friction model and follow the contact
formulation outlined by Andrews et al. [2022].

2.2 Stable Constrained Simulations
Observe that the constraint forces are generated by a linearization
of 𝜙 , which does not account for changes in the constraint force di-
rection between time steps. This can lead to simulation instabilities,
in particular when 𝜙 represents a stiff potential. However, Tournier
et al. [2015] showed that by including the geometric stiffness, even in
its explicit form, simulation stability is significantly improved. The
geometric stiffness is a tensor encoding variations in the constraint
force directions, and has the form

K̃ =
𝜕J𝑇

𝜕q
𝜆+ . (1)

Tournier et al. [2015] proposed to use an explicit version of Eq. 1
that is computed using constraint impulses from the start of the
time step, or K̃ =

𝜕J𝑇
𝜕q 𝜆. We use this form of the geometric stiffness

in our experiments and include it as a stiffness in the velocity-level
discretization of the constrained dynamical equations, such that[

M − ℎ2K̃ −J𝑇
J 1

ℎ2 C

] [
u+

ℎ𝜆+

]
=

[
Mu + ℎf
− 1
ℎ
𝜙

]
, (2)

where the diagonal matrix C contains the compliance (inverse
stiffness) of each scalar constraint. Forming the Schur complement
of the upper left block in Eq. 2 gives the reduced system(

JM̃−1J𝑇 + 1
ℎ2 C

)
ℎ𝜆+ = − 1

ℎ
𝜙 − JM̃−1 (Mu + ℎf) , (3)

where the augmented mass matrix is M̃ = M − ℎ2K̃.
Andrews et al. [2017] noted that inclusion of the geometric stiff-

ness in Eq. 3 leads to numerical difficulties when solving the linear
system. Mainly, that symmetry and positive definiteness of the lead
matrix are not assured. They proposed to diagonalize the K̃ matrix,
where each diagonal element Kd𝑖,𝑖 is computed as the 2-norm of
the corresponding column K̃𝑖 of the geometric stiffness, such that

Kd𝑖,𝑖 = ∥K̃𝑖 ∥ . (4)
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This diagonalization facilitates a stability analysis of a semi-implicit
integrator, where

ℎ2Kd𝑖,𝑖
M𝑖,𝑖

≤ 4𝛼 (5)

is the stability criterion, where 𝛼 ∈ [0 . . . 1] is a positive scalar used
to determine how close the system must be to the boundary before
damping is applied. If the stability criterion in Eq. 5 is violated for
any degree of freedom 𝑖 , a damping coefficient B𝑖,𝑖 is computed as:

B𝑖,𝑖 =
ℎ2Kd𝑖,𝑖 − 4𝛼M𝑖,𝑖

ℎ
. (6)

The augmented mass matrix in Eq. 3 is then assembled as

M̃ = M + ℎB ,

where B is the global damping matrix with non-zero coefficient
only for indices 𝑖 where Eq. 5 indicates that damping is required.

3 Adaptive Sub-stepping
In the section, we explain how the stability criterion in Eq. 5 may
be repurposed for performing adaptive sub-stepping, thus leading
to our proposed algorithm. The stability criterion is derived from a
stability analysis of a damped oscillator with stiffness 𝑘 , damping 𝑏,
and mass𝑚. The criterion states that the eigenvalues of the update
matrix of the integrator satisfy the inequality�����ℎ2𝑘 + ℎ𝑏 − 2𝑚 ±

√
ℎ4𝑘2 + 2ℎ3𝑏𝑘 + ℎ2𝑏2 − 4ℎ2𝑘𝑚

2𝑚

����� ≤ 1 . (7)

Observe that multiple parameters affect the simulation stability:
time step size, mass, stiffness, and damping. Strategies to satisfy the
criterion in Eq. 7 include lowering the stiffness, increasing the mass,
adding damping, or reducing the time step. Servin et al. [2011]
derived a similar stability threshold that allowed them to adaptively
refine the resolution of a cable simulation.

While Andrews et al. [2017] noted that their adaptive damp-
ing scheme produced very stable simulations, it also sometimes
produced artifacts in the dynamic behavior. Particularly when ap-
plied to translational degrees of freedom, objects appeared to move
through a viscous fluid. Therefore, they suggested only applying
damping to the rotational degrees of freedom. However, damping
ultimately changes the physical behavior of the simulation and
introduces additional energy dissipation in the simulation that may
be undesired. We provide further analysis on this point in the re-
sults section. Increasing the mass and stiffness similarly changes
the dynamical behavior.

Alternatively, stability may be achieved by reducing the time
step. Macklin et al. [2019b] explored this strategy and proposed
an integration scheme that uses more sub-steps and fewer solver
iterations to achieve improved stability and reduced numerical
dissipation. Notably, they demonstrate that a sub-stepping strategy
can better preserve the kinetic energy present in the system.

Our approach is inspired by both the work by Andrews et al.
[2017] and Macklin et al. [2019b], where an adaptive sub-stepping
scheme is guided by a stability analysis of the numerical integrator.
To this end, we use the criterion in Eq. 5 to determine if additional
sub-steps are required for stability over the next time step ℎ:

Algorithm 1 Geometric Stiffness Guided Adaptive Time-stepping
1: compute Kd using q, u ⊲ Eq. 4
2: 𝑟 ← 0
3: for each degree of freedom 𝑖 do
4: 𝑟 ← max(𝑟,Kd𝑖,𝑖/M𝑖,𝑖 ) ⊲ Eq. 9
5: end for
6: ℎ̄ = 2

√︁
𝛼/𝑟 ⊲ Eq. 10

7: 𝑁steps = ⌈ℎ/ℎ̄⌉ ⊲ Eq. 11
8: Δ𝑡 = ℎ/𝑁steps
9:
10: while 𝑛 < 𝑁steps do
11: perform collision detection using q, u
12: q+, u+← solve(q, u, Δ𝑡 )
13: 𝑛 ← 𝑛 + 1
14: end while

ℎ ≤ 2

√︄
𝛼
M𝑖,𝑖

Kd𝑖,𝑖
. (8)

Solving Eq. 5 for ℎ gives the maximum time step for the 𝑖th
degree of freedom that meets the stability threshold. It suffices then
to compute the largest inverse ratio across all 𝑛 constrained degrees
of freedom:

𝑟 = max
𝑖∈𝑛

Kd𝑖,𝑖
M𝑖,𝑖

. (9)

The stability analysis then gives us the maximum stable time step
ℎ̄ for some stability threshold 𝛼 :

ℎ̄ = 2
√︂

𝛼

𝑟
. (10)

The number of sub-steps needed for a stable simulation is then the
ceiling of the ratio of the target time step ℎ and the maximum stable
time step ℎ̄:

𝑁steps =

⌈
ℎ

ℎ̄

⌉
(11)

We summarize the method in Algorithm 1. Note that while Eq. 2
is solved for the constraint impulses and velocities at the next time
step, our method is compatible with a variety of integration and
constraint solving methods as long as they accept a variable time
step and can produce constraint forces 𝜆 used for computing K̃.

4 Results
We evaluate our adaptive sub-stepping approach using the example
scenes shown in the teaser image (see Figure 1), which are known
to cause instability. A time step of 𝑡 = 1

60 s is used for each simula-
tion frame. Furthermore, a custom rigid body framework featuring
collision detection, contact handling, articulated joints, and various
solver algorithms is used to simulate the example scenes.

The baseline comparison in our experiments is to execute the
solver algorithm using a single sub-step and without additional
damping. Two solvers are used in our experiments: (i) projected
Gauss-Seidel (PGS) and (ii) block principal pivoting (BPP) algo-
rithm [Júdice and Pires 1994] with Cholesky factorization (direct).
We compare our adaptive approach against a sub-stepping scheme
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Figure 2: Comparison of the number of sub-steps using our adaptive approach (blue) versus the constant 𝑁 (dashed) proposed
in previous work [Macklin et al. 2019b]. In these experiments, 𝑁 (constant sub-steps) is tuned such that the total constraint
error is below a fixed threshold for each simulation frame. Stability threshold 𝛼 = 0.1 is used in all of our experiments.
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Figure 3: Kinetic energy computed for the Swinging Box example over 200 s of simulation time. The adaptive damping technique
proposed by [Andrews et al. 2017] causes kinetic energy to gradually dissipate, whereas adaptive sub-stepping better preserves
kinetic energy of the system.

where the number of sub-steps is determined by manually adjust-
ing 𝑁 to give good behavior. This is effectively equivalent to the
technique proposed by Macklin et al. [2019b].

The supplementary video contains complete animations obtained
from simulations of each example scene. A PGS solver with a max-
imum of 25 iterations is used for the Swinging Box and Bridge
examples, whereas a BPP solver with 20 pivoting steps is used for
the Heavy Stack example.

4.1 Examples
4.1.1 Swinging Box. A 25-link chain is modeled using hinge con-
straints and supports a large, heavy box. The mass ratio here is
1000:1 and both the PGS and the BPP solvers work for this scene,
but explode without additional sub-steps or damping added. Run-
ning with a single sub-step and no damping applied, the chain is
immediately unstable and falls through the floor, even with a direct
solver. The chain swings stably using the method of Andrews et al.

[2017], albeit with slightly damped behavior. This is evident from
the kinetic energy of the system, which slowly decreases with the
adaptive damping stabilization (see Figure 3). Using our proposed
approach, the chain swings stably and conserves energy very well.
The number of sub-steps our method uses is greatest at the bottom
of the swing, since the the forces are greatest at that point, and
reduce as the chain swings upward, which can be seen in the upper
row of Figure 2

4.1.2 Bridge. A series of thin planks connected by pairs of ball-
and-socket joints is used to model a swinging bridge. The large
ball rolling through the scene has mass of 1000 kg, giving a mass
ratio of 1000:1. A Coulomb coefficient of 𝜇 = 0.8 is used to simulate
friction between the ball and planks. This scene demonstrates the
stabilizing abilities of our approach with a combination of joints
and contact when subjected to high mass ratios. Simulation with
a single sub-step and no damping, the bridge quickly jitters apart
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Figure 4: Selected frames from the Heavy Stack example simulated using various solvers and stabilization methods. Only
the BPP solver with Cholesky factorization is able to maintain a stable configuration for this high mass ratio example, and
only using our adaptive sub-stepping approach. Even with adaptive damping, the balls in between the plates begin to slide,
indicating that numerical errors and instabilities begin to affect the behavior.

and cannot support the weight of the ball. The damping approach
of Andrews et al. [2017] works well and is able to maintain stability
as the ball rolls across, although there is some notable jitter in the
planks as it does so. The proposed adaptive time-stepping method
is stable, maintains energy well and does not suffer from increased
jitter. The number of sub-steps used by our adaptive technique
automatically reduces once the ball falls off the bridge, which can
be seen in the lower row of Figure 2.

4.1.3 Heavy Stack. A stack of balls and thin plates, where all bodies
have mass of 1 kg except for the top most box that has mass of
10,000 kg. There is no friction in this example, since friction is
a dissipative element in the simulation that could contribute to
stabilization. Only the BPP solver is able to simulate this example.
This is likely due to the fact that warm-starting iterative solvers
with contact is not implemented by our framework. The PGS solver
is thus not able to converge enough to maintain stability, even with
hundreds of iterations. However, even the direct solver struggles
here. The tower quickly collapses without additional stabilization
or smaller time-steps. The damping method of Andrews et al. [2017]
fails to maintain stability for very long. Our proposed approach
gives enough stability such that the stack remains standing, even
after 10 s of simulation time. The supplementary video also shows
a taller version of this example, with 20,000:1 mass ratio. However,
setting 𝛼 = 0.05 was required to obtain this more challenging result.

4.2 Implementation Details
One important detail about our implementation of Macklin et al.
[2019b] is that collision detection is performed at each sub-step.
This is because our simulation engine does not feature predictive
collision handling, which allowed the previous work to perform col-
lision detection only once per frame. Another important difference
is that we keep the number of PGS iterations fixed per sub-step,
where Macklin et al. [2019b] proposed to keep constant 𝑁steps× the
number of PGS iterations. Rather, for our comparisons, we tune the
number of PGS iterations such that the total constraint error, i.e.∑
𝑖 ∥𝜙𝑖 (q)∥1, remains below a small threshold in our experiments.
Mathematical details about the geometric stiffness matrices used

for our experiments can be found in the supplementary appendix.
Andrews et al. [2017] provide similar mathematical details. We addi-
tionally propose a novel geometric stiffness for contacts, specifically
non-interpenetration constraints, which is a modified version of
the geometric stiffness for ball-and-socket constraints.

5 Conclusion
In this paper, we have proposed a new take on sub-stepping for
constrained rigid body simulation. Rather than manually tuning the
number of sub-steps in order to achieve stability and accuracy for
each different simulation, we instead analyze the problem based on
the stability criterion of the numerical integrator. This simplifies the
process of tuning the sub-step parameter, and we demonstrate that
the quality of results achieved with our method is comparable, or
better, to prior work on this topic. Additionally, since the number
of sub-steps is computed on a per frame basis, simulations can
be executed more efficiently. Our method is also agnostic to the
specific numerical method used to solve the dynamical equations,
and thus we believe many physics engines could benefit from our
approach.

One limitation of our work is that, depending on the value of 𝛼 ,
a large number of sub-steps may be invoked, which is computation-
ally costly. We found that 𝛼 = 0.1 worked well for all the examples
presented in this paper. However, selecting the number of sub-steps
will increase proportional to decreases in 𝛼 , e.g. halving the pa-
rameter will double the number of time steps, although we did not
find this to be problematic. A possible extension of our algorithm
is to combine the adaptive sub-stepping and damping approaches,
whereby sub-steps are increased until a maximum threshold 𝑁max,
at which point adaptive damping is for a time step of ℎ

𝑁max
. We

leave this for future work.
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