
HAMLAT: A HAML-based Authoring Tool for Haptic

Application Development

Mohamad Eid
1
, Sheldon Andrews

2
, Atif Alamri

1
, and Abdulmotaleb El Saddik

2

 Multimedia Communications Research Laboratory (MCRLab)

University of Ottawa, Canada

Email: 1 sandr071@site.uottawa.ca, 2{eid, atif, abed}@mcrlab.uottawa.ca

Abstract. Haptic applications have received enormous attention in the last

decade. Nonetheless, the diversity of haptic interfaces, virtual environment

modeling, and rendering algorithms have made the development of hapto-visual

applications a tedious and time consuming task that requires significant

programming skills. To tackle this problem, we present a HAML-based

Authoring Tool (HAMLAT), an authoring tool based on the HAML description

language that allows users to render the graphics and haptics of a virtual

environment with no programming skills. The modeler is able to export the

developed application in a standard HAML description format. The proposed

system comprises three components: the authoring tool (HAMLAT), the

HAML engine, and the HAML player. The tool is implemented by extending

the 3D Blender modeling platform to support haptic interaction. The

demonstrated tool proves the simplicity and efficiency of prototyping haptic

applications for non-programmer developers or artists.

Keywords: Haptic authoring tools, HAML, 3D modeling

1 Introduction

The rapid adoption of haptic interfaces in human-computer interaction paradigms has

led to a huge demand for new tools and systems that enable novice users to author,

edit, and share haptic applications [1]. Nonetheless, the haptic application

development process remains a time consuming experience that requires

programming expertise. Additionally, assigning material properties (such as the

stiffness, static friction, and dynamic friction) is a tedious and non-intuitive task since

it requires the developers to possess technical knowledge about haptic rendering and

interfaces.

The haptic and graphical rendering pipelines should remain synchronized to

exhibit realistic and stable simulation. Additionally, there is a lack of application

portability as the application is tightly coupled to a specific device that necessitates

the use of its corresponding API. In view of these considerations, there is a clear need

for an authoring tool that can build hapto-visual applications while hiding

programming details from the application modeler (such as API, device, or virtual

model). This is achieved using standard XML-based descriptions that make these

components self-described.

The idea of having a framework that facilitates the development of haptic

applications has found significant interest from both the research and industry

communities. One research prototype is Unison [2], a viable and extensible

framework to standardize the development process of hapto-visual applications. It’s

main limitation is that the interface must be hard coded into a plug-in before a

component becomes usable by the framework. The Haptik Library [3] proposes a

hardware abstraction layer to provide uniform access to haptic devices. However, the

library does not support higher level behavior (such as collision detection and

response) and thus significant programming effort is still required. CHAI 3D is a open

source set of C++ libraries for developing real time, interactive haptic and visual

simulations [4], but it requires significant programming knowledge and skills. Other

research efforts towards building haptic authoring tools can be found in [5][6].

Commercially, HANDSHAKE VR Inc. [7] introduced the ProSENSE toolbox

which provides rapid creation of simulation content and includes tele-haptic

capabilities. Reachin Technologies [8] introduced an object-oriented development

platform for haptic applications that supports graphic and haptic rendering. However,

the platform does not have a graphic/haptic editor to build the graphic and haptic

scenes. SensAble introduced Claytools [9] and FreeForm systems [10] to incorporate

haptics in the process of creating and modifying 3D objects. Though no programming

is necessary, the workflow for these tools is complex and often requires additional

modeling tools.

The goal of the HAMLAT project is to produce a software application that

combines the features of a modern graphic modeling tool with haptic rendering

techniques. HAMLAT has the “look and feel” of a 3D graphical modeling package

that allows developers to generate realistic 3D hapto-visual environments. HAMLAT

is based on the Haptic Applications Meta Language (HAML) [11] to describe the 3D

scene, dynamic characteristics, haptic interface, network configurations, etc. The

application can be exported in HAML format so that other users can reload the

application to view, touch, and manipulate the populating objects.

The remainder of the paper is organized as follows: in Section 2, we introduce

the authoring tool architecture and discuss its comprising components and their

respective responsibilities. Section 3 presents the implementation details and the

evaluation of the current state of the tool. Finally, in Section 4 we highlight known

issues and possible future research avenues.

2 HAMLAT System Architecture

A conceptual overview of HAMLAT is shown in Figure 1. The diagram illustrates the

flow of data in the hapto-visual modeling pipeline. A “hapto-visual” application refers

to any software that displays a 3D scene both visually and haptically to a user in a

virtual setting. The objective is to automate the haptic application development

process giving the ability to compose and render hapto-visual applications with no

programming efforts. The application artist can export a standard HAML description

file and store it in a database. The HAML player, similarly to known audio/video

players, recreates the hapto-visual environment by parsing the HAML file.

Fig. 1. A conceptual overview of the HAMLAT Authoring Tool

2.1 HAML Description

HAML is designed to provide a technology-neutral description of haptic models [12].

It describes the graphics (including the geometry and scene descriptions), haptic

rendering, haptic devices (the hardware requirements), and application information. In

other words, HAML is the standard by which haptic application components such as

haptic devices, haptic APIs, or graphic models make themselves and their capabilities

known.

There have been at least three foreseeable approaches to implementing and

utilizing HAML documents: (1) application description that defines description

schemes for various haptic application components that, given similar requirements,

can be reused to compose similar applications, (2) component description where the

HAML file describes the device/API/model via a manual, semi-automatic or

automatic extraction, and (3) hapto-visual application authoring and/or composition.

The scope of this research is focused on the third approach.

The HAML schema is instantiated for compatibility with MPEG-7 standard

through the use of Description Schemes (DS). As explained in [12], the HAML

structure is divided into seven description schemes: application description, haptic

device description, haptic API description, haptic rendering description, graphic

rendering description, quality of experience description, and haptic data description.

An excerpt of a HAML document is shown in Figure 2.

2.2 HAMLAT Authoring Tool

The HAMLAT authoring tool is composed of three components: the HAMLAT

editor, the HAML engine, and the rendering engine (Figure 1). The HAMLAT editor

provides a GUI that enables environment modelers to create and import virtual

objects, enable or disable haptic interaction, and assign haptic properties to the

selected object(s). The graphic editor enables users to modify graphical properties of

objects in the application (such as colors and shading). However, haptic editing is

central to the HAMLAT tool. Once the application environment and objects are

created, various haptic attributes (such as stiffness, damping, and friction) may be

assigned in the same way visual or geometric properties are modified. Also, through

the HAMLAT editor, the user is able to specify application parameters, such as the

target haptic device and the developer information.

Fig. 2. An excerpt from a HAML document

The HAML engine is responsible for generating a HAML file that fully describes

the environment and through which the same environment can be reconstructed.

Therefore, the HAML-formatted document, which holds the default settings of the

haptic application, links the HAMLAT tool to the HAML player. Each HAML file

generated by HAMLAT represents a stand-alone application that is device and

platform independent. The HAML player is responsible for ‘playing back’ the HAML

file generated by the authoring tool. The HAML renderer (refer to HAML Player in

Figure 3) parses the HAML file to automatically map the application description with

the available resources. Subsequently, the HAML renderer invokes the appropriate

haptic and graphic rendering systems and displays through their APIs.

 <?xml version="1.0" ?>
<HAML>

<ApplicationDS>…</ApplicationDS>
<AuthorDS>…</AuthorDS>

<SystemDS>…</SystemDS>
<SceneDS>

<Object>
<Type>…</Type>

<Name>…</Name>

<Location>…</Location>

<Rotation>…</Rotation>

<Geometry>

<VertexList>

<Vertex>…</Vertex>

</VertexList>
<FaceList>

<Face>…</Face>
</FaceList>

</Geometry>
<Appearance>

<Material>…</Material>
</Appearance>

<Tactile>
<Stiffness>…</Stiffness>

<Damping>…</Damping>
<SFriction>…</SFriction>

<DFriction>…</DFriction>
</Tactile>

</Object>
</SceneDS>

</HAML>

3 HAMLAT Implementation

The basis for our haptic authoring tool is the Blender open source project [13].

Blender includes a full-fledged 3D graphical renderer, an integrated scripting engine,

a physics and game engine, and an adaptive user-interface. For these reasons, Blender

was chosen as the platform for development of HAMLAT. Figure 3 shows a snapshot

of the HAMLAT authoring tool with haptic rendering. The modeler is able to “feel”

the physical properties of the rhinoceros as s/he moves the proxy over its surface.

Fig. 3. A snapshot of the Blender-based HAMLAT editor with the haptic renderer

In HAMLAT, the modifications to the Blender framework include:

• extensions to Blender data structures for representing haptic properties

• user interface components for adding and modifying haptic properties

• an external renderer for displaying and previewing haptically enabled scenes

• scripts which allow scenes to be imported / exported in the HAML format

The current implementation is limited to static scenes. In other words, HAMLAT

does not support dynamic contents such as animations. This is envisioned as one of

our immediate future work. Also, multi-user rendering as well as network capabilities

are not supported at the current stage of implementation.

A class diagram outlining the changes to the Blender framework is shown in

Figure 4. Components which are pertinent to HAMLAT are shaded in gray. Data

structures for representing object geometry and graphical rendering have been

augmented to include fields which encompass the tactile and kinesthetic properties

necessary for haptic rendering. HAMLAT uses a custom renderer for displaying 3D

scenes graphically and haptically, and is independent of the Blender renderer. This

component is developed independently since haptic and graphic rendering must be

performed simultaneously and synchronously.

Fig. 4. Class diagram of modifications to the Blender framework (Components added for

HAMLAT are in gray)

3.1. Data Structure

In this section, we describe the extensions made to the Blender source code to

accommodate haptic modeling and rendering capabilities. Blender applies different

data structures to various types of objects in a 3D scene. The Mesh data structure is

used to describe a polygonal mesh object. It is of particular interest for haptic

rendering since most solid objects in a 3D scene have the same structure. The tactile

and kinesthetic cues are typically rendered based on the geometry of the mesh.

An augmented version of the Mesh data structure is shown in Figure 5 (left). It

contains fields for vertex and face data, plus some special custom data fields which

allow data to be stored to/retrieved from memory. We have modified this data type to

include a pointer to a MHaptics data structure, which stores the haptic properties such

as stiffness, damping, and friction for the mesh elements (Figure 5 (right)).

Fig. 5. Augmented Mesh data structure (left), the haptic property data structure (right)

The Mesh data type also has a complimentary data structure, called EditMesh,

which is used when editing mesh data. It contains copies of the vertex, edge, and

face data for a polygonal mesh. When the user switches to editing mode, Blender

copies the data from a Mesh into an EditMesh, and when editing is complete the data

is copied back. Care must be taken to ensure that the haptic property data structure

remains intact during the copy sequence. The editing mode is currently used to

typedef struct Mesh {

MFace *face;

MVert *vert;

CustomData vdata, fdata, hdata;

MHaptics *haptics;

…

} Mesh;

typedef struct MHaptics {

 float stiffness;

 float damping;

 float st_friction;

 float dy_friction;

} MHaptics;

modify mesh topology and geometry, not the haptic and graphical rendering

characteristics. The haptic properties of particular interest are: stiffness, damping,

friction, and mass. The hardness-softness of an object is typically rendered using the

spring-force equation. The damping of an object defines its resistance to the rate of

deformation due to some applied force. The static friction and dynamic friction

coefficients are used to model the frictional forces experienced while exploring a

surface of a 3D object.

3.2 Editing

Figure 6 shows a screen shot of the button space which is used to edit properties

for a haptic mesh. It includes user-interface panels which allow a modeler to change

the graphical shading properties of the mesh, to perform simple re-meshing operations,

and to modify the haptic properties of the selected mesh. The user calibrates the

haptic properties (stiffness (N/mm), damping (Kg/s), static and dynamic frictions) and

renders the scene until the proper values for these properties are found.

HAMLAT follows the context-sensitive behavior of Blender by only displaying the

haptic editing panel when a polygonal mesh object is selected. In the future, this panel

may be duplicated to support haptic modeling for other object types, such as NURB

surfaces. The haptic properties for mesh objects are editable using sliders or by

entering a float value into a text box located adjacent to the slider. When the value of

the slider/text box is changed, it triggers an event in the Blender windowing sub-

system. A unique identifier indicates that the event is for the haptic property panel,

and HAMLAT code is called to update haptic properties for the currently selected

mesh.

Fig. 6. Blender's button space, including the haptic property editing panel

3.3 Hapto-Visual Rendering

The 3D scene being modeled is rendered using two passes: the first pass renders

the scene graphically, and the second pass renders it haptically. The second pass is

required because the OpenHaptics toolkit intercepts commands send to the OpenGL

pipeline and uses them to display the scene using haptic rendering techniques. In this

pass, the haptic properties of each mesh object are used much in the same way color

and lighting are used by graphical rendering—they define the type of material for

each object. To save CPU cycles, the lighting and graphical material properties are

excluded from the haptic rendering pass.

Figure 7 shows C code used to apply the material properties during the haptic

rendering pass. The haptic renderer is independent from the Blender framework in

that it exists outside the original source code. However, it is still heavily dependent on

Blender data structures and types.

Fig. 7. Code for applying haptic properties of a mesh using the OpenHaptics toolkit

3.4 Scripting

The Blender Python (BPy) wrapper exposes many of the C data structures, giving the

internal Python scripting engine access to them. For example, the haptic properties of

a mesh object may be accessed through the Mesh or NMesh wrapper classes. The

Mesh wrapper provides direct access to object data, whereas the NMesh class updates

changes into the original mesh. Figure 8 shows Python code for reading the haptic

properties from a mesh object.

An import script allows 3D scenes to be read from a HAML file and reproduced

in the HAMLAT application; an export script allows 3D scenes to be written to a

HAML file, including haptic properties. The BPy wrappers also expose the Blender

windowing system that allows the user to specify meta-data about the application.

Using the Blender’s Python scripting engine, we have added import and export

plug-ins for HAML files as part of the authoring tool. Modelers may export scenes

from the authoring tool, complete with 3D geometry and haptic properties. The

HAMLAT interface provides a HAML export function to generate the HAML file.

Fig. 8. Export script which uses the BPy wrappers to access haptic properties of mesh objects

hlMaterialf(HL_FRONT_AND_BACK,

 HL_STIFFNESS,

 haptics->stiffness);

hlMaterialf(HL_FRONT_AND_BACK,

 HL_DAMPING,

 haptics->damping);

hlMaterialf(HL_FRONT_AND_BACK,

 HL_STATIC_FRICTION,

 Haptics->st_friction);

hlMaterialf(HL_FRONT_AND_BACK,

 HL_DYNAMIC_FRICTION,

 haptics->dy_friction);

def exportHaptics(filename,scene):

 file = open(filename,'w');

 obs = scene.getChildren();

 for ob in obs:

 na = ob.name;

 me = ob.data;

 ha = me.haptics;

 st = ha.stiffness;

 da = ha.damping;

 file.write(na+‘%d,%d’%(st,da));

 file.close();

4 Application Development

This section provides a brief outline for the development of a simple hapto-visual

application using HAMLAT and the HAML framework. Figure 9 shows the three

phases of development: design, rendering and testing, and exporting to a HAML file.

For the first step, the author creates the geometry and location of objects in the

3D scene. This includes specifying the orientation and scale of mesh objects, as well

as the position of the camera and scene lights. The author edits the visual and haptic

properties for each object in the scene by selecting them individually and using the

buttons and sliders. The rich set of modeling and editing tools available to the author

via the Blender-based interface means that scenes such as the one represented in

Figure 9 may be developed quickly and easily.

The modeler can choose to render their “in-progress” scene using the interactive

haptic renderer. This allows them to experience how the scene will be displayed to the

end user. Evaluating the haptic and visual rendering of a scene is often a necessary

step in the modeling pipeline since the author may be unaware of particular aspects of

the scene until rendering is performed. Therefore, having an interactive hapto-visual

renderer integrated as part of the modeling environment is a powerful feature.

Fig. 9. Development of a HAML application. Left-to-right: design, render, and export

Finally, once the modeler is satisfied with the environment, the entire application

can be exported (including geometry, graphical, and haptic properties) to an XML file

for distribution in a HAML repository or playback as a standalone HAML application.

Workflow: 1. User creates geometry for the scene, 2. assigns visual and haptic

material properties, 3. exports to HAML file format, 4. HAML player loads the scene

from a repository and renders it to the end user.

5 Conclusion and Future work

The current paper presents a HAML-based authoring tool, known as HAMLAT for

hapto-visual application development that requires no programming efforts from the

modeler. The artist creates or imports graphical models in the HAMLAT editor and

assigns haptic properties to them. HAMLAT can render both the graphics and haptics

of the created environment. Finally, the modeler can export the environment in a

HAML format that can be distributed and rendered using the HAML player.

As per future work, we plan to extend HAMLAT to include support for other

haptic platforms and devices. Currently, only the PHANTOM series of devices is

supported since the interactive renderer is dependent on the OpenHaptics toolkit [14].

Furthermore, the current version of HAMLAT does not support dynamic scenes

simulation. One of our future works is to enable developers to define the environment

dynamics and render them haptically. Finally, rendering of multi-user applications

(such as user-object-user simulations) will be considered for incorporation in the

upcoming version of HAMLAT.

References

1. Eid, M. Orozco, and A. El Saddik, “A Guided Tour in Haptic Audio Visual Environment and

Applications”, International Journal of Advanced Media and Communication, vol.1, n.3,

265 – 297, 2007.

2. N.R. El-Far, X. Shen, and N.D. Georganas, “Applying Unison, a Generic Framework for

Hapto-Visual Application Development, to an E-Commerce Application”, Proceedings of

HAVE, Ottawa, Canada, 2004.

3. The Haptik Library: http://sirslab.dii.unisi.it/haptiklibrary/. Last viewed on June 1, 2007.

4. The CHAI 3D Open Source Project Website: http://www.chai3d.org. Last viewed on

September 3, 2007.

5. Rossi, K. Tuer, and D. Wand, “A New Design Paradigm for the Rapid Development of

Haptic and Telehaptic Applications”, IEEE Conference on Control Applications, Toronto,

Canada, 2005.

6. A. Pocheville, A. Kheddar, and K. Yokoi, “I-TOUCH: A generic multimodal framework for

industry virtual prototyping”, Technical Exhibition Based Conference on Robotics and

Automation, TExCRA'04, Treasure hunting in technologies, 2004.

7. HANDSHAKE VR Inc. http://www.haptic.ca/section/view/ index.php.

8. Reachin Technologies: http://www.reachin.se. Last viewed on June 1, 2007.

9. J. Alguire, “Claytools System 1.0”, In GameDeveloper magazine, 2005.

10. FreeFlorm Systems from SensAble: http://www.sensable.com/products-freeform-

systems.htm. Last viewed on June 1, 2007.

11. F.R. El-Far, M. Eid, M. Orozco, and El Saddik, “Haptic Application Meta-Language”, DS-

RT, Malaga, Spain, 2006.

12. M. Eid, A. Alamri, and A. El Saddik, “MPEG-7 Description of Haptic Applications Using

HAML”, In Proceedings of the HAVE 2006, Ottawa, Canada, 2006.

13. Blender official Website: http://www.blender.org. Viewed on June 1, 2007.

14. OpenHaptics Toolkit: http://www.sensable.com/products-openhaptics-toolkit.htm. Viewed

on June 1, 2007.

