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Figure 1: Rigid body simulations have graph representations comprised of rigid body nodes (blue) connected by edges (red) due to a
constraint topology. Our work proposes several graph partitioning algorithms to decompose the simulation into smaller sub-systems that
may be solved in parallel. Here, graphs are hallucinated for several examples: Chain Drop (left), Rock Pile (middle), Log Tower (right).

Abstract
We propose several graph partitioning algorithms for improving the performance of rigid body simulations. The algorithms
operate on the graph formed by rigid bodies (nodes) and constraints (edges), producing non-overlapping and contiguous
sub-systems that can be simulated in parallel by a domain decomposition technique. We demonstrate that certain partitioning
algorithms reduce the computational time of the solver, and graph refinement techniques that reduce coupling between
sub-systems, such as the Kernighan–Lin and Fiduccia–Mattheyses algorithms, give additional performance improvements.

CCS Concepts
• Computing methodologies → Physical simulation; • Mathematics of computing → Graph algorithms;

1 Introduction
Simulating rigid bodies with contact is a long-standing challenge

in physics-based animation. A common approach is to model the
system as a constrained multi-body problem, where friction and
non-interpenetration constraints are formulated as a linear comple-
mentarity problem (LCP) [AE21]. Interactive and real-time appli-
cations typically solve the LCPs using iterative fixed-point meth-
ods, such as the projected Gauss-Seidel (PGS) method, and effi-
cient methods have been developed for simulating large piles or
stacks of bodies [Erl07]. The convergence of iterative solvers can
be improved by reordering constraints [AEKT17, PNE10]. Addi-
tionally, several strategies have been proposed to parallelize sim-
ulations using these solvers. Erleben [Erl04] used graph coloring
to solve multi-body systems ignoring interactions between sub-
systems. Fratarcangeli et al. [FTP16] similarly proposed an effi-
cient parallel PGS solver based on graph coloring. Other work
has proposed splitting techniques for parallelizing large-scale rigid
body simulations [IR11].

However, previous studies have noted that iterative solvers can

fail to produce realistic behaviour when the simulation requires
solving stiff numerical systems (e.g., due to large mass ratios or low
compliance [EATK18]). These are the class of simulations targeted
by our work. Direct methods are preferred for solving stiff LCPs,
such as the block principle pivoting method [JP94] and Lemke’s
algorithm. This class of methods typically produces more accu-
rate solutions compared to fixed-point iterative methods. However,
they are notoriously difficult to parallelize since they often require
computing a matrix factorization. Recently, Peiret et al. [PAK∗19]
proposed a domain decomposition approach that allows stiff multi-
body systems to be solved in parallel. Their approach requires par-
titioning the simulation into smaller sub-systems, along with an in-
terface connecting them. For simulations where a semantic rela-
tionship exists between components (e.g., a crane can be divided in
components such as a chassis, boom, and cables) there is an obvi-
ous semantic partitioning. However, for unstructured simulations in
which the coupling between simulation bodies can change at each
time step, such as a collapsing pile of objects, then an automated
technique must be used to partition the simulation. Peiret et al. pro-
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posed using a minimum degree partitioning that efficiently and au-
tomatically computes partitions for unstructured simulations based
on the graph of bodies and constraints.

In this work, partitioning algorithms for sub-structured rigid
body simulations are examined. The simulations are characterized
by contact and thus the constraint graph is not known a priori.
We perform extensive comparisons of the MinDP algorithm versus
other partitioning strategies, and propose refinements that further
increase solver performance.

2 Methodology
A constrained rigid body simulation can be viewed as an undi-

rected graph, where rigid bodies are nodes and constraints between
bodies, such as contacts and bilateral joints, are the edges. For in-
stance, graphs for some of our example simulations are visualized
in the teaser figure. Note that there is a dual graph where constraints
are the nodes and connectivity is determined by the rigid bodies.

2.1 Partitioning Strategies
In this section, several partitioning algorithms are presented for

producing contiguous sub-systems that are simulated using the par-
allel solver proposed by Peiret et al [PAK∗19]. Specifically: min-
imum degree partitioning (MinDP), maximum degree partitioning
(MaxDP), breadth-first search (BFS), mass ratio heuristic (MR),
and a mixed (MIX) strategy. They are described below.
MinDP [PAK∗19] is inspired by Cuthill-McKee equation reorder-
ing to produce band-limited Cholesky factorizations.
BFS is a common graph algorithm that we use to generate partitions
based on a natural ordering of simulation bodies, incrementally ex-
panding partitions based on constraint connectivity. This algorithm
does not consider physical properties.
MaxDP is similar to minimum degree partitioning, but instead ex-
pands partitions based on bodies with the highest valence, selecting
bodies with more connected constraints.
MR expands an existing partition by examining the mass of adja-
cent bodies and adding bodies that satisfy

max{mi,m j}
min{mi,m j}

< τMR , (1)

where mi is the current minimum mass of all bodies in the partition,
m j is the mass of the body that will potentially be added to the
partition, and τMR is a user specified mass ratio. The motivation
here is to avoid creating poorly conditioned sub-systems and the
mass ratio of bodies is contributing factor in this context.
MIX combines MinDP with a partial Fiduccia-Mattheyses algo-
rithm (see Section 2.2). We use a ratio τmix to decide when to ter-
minate MinDP and switch to adding bodies according to the esti-
mated gain. The pseudocode for this method can be found in Algo-
rithm 1. The algorithm is similar to MinDP, except that the proce-
dure MAXGAINBODY adds bodies with maximal connectivity to
the new partition in terms of the number of constraints.

2.2 Refining Strategies
The partitioning algorithms from the previous section focus on

finding contiguous groupings of bodies and constraints. However,
since the parallel solver used in our experiments is based on a Schur
complement domain decomposition technique, there may be bene-
fits to reducing the coupling between sub-systems by reducing the
number of edges connecting adjacent partitions. Two graph refine-

Algorithm 1 The mixed partitioning algorithm with parameters
τmix ∈ (0,1) and nmax the maximum bodies per partition.

function MIXED(τmix,nmax)
G0← all bodies ▷ initialize default partition
i← 1 ▷ partition id
while size(G0) < nmax do

β← MINDEGREEBODY(G0)
Gi←{β}
while size(Gi) < nmax do
A← ADJACENTBODIES(Gi) ▷ bodies adjacent to Gi
if size(Gi) < (τmix nmax) then

β← MINDEGREEBODY(A∩G0)
else

β← MAXGAINBODY(A∩G0)
end if
Gi←Gi +β ▷ add body to the partition
G0←G0−β ▷ remove from the default partition

end while
end while

end function

ment algorithms that swap bodies at the interface between parti-
tions are evaluated.
Kernighan–Lin (KL). The KL algorithm [KL70] uses a heuristic
to reduce the number of edges between pairs of partitions. Consider
a graph with two partitions – Ga and Gb. Given body βi ∈ Ga and
β j ∈ Gb, we calculate a gain αKL indicating if the edges connecting
two partitions will be reduced if the bodies are swapped, such that

αKL = (Ei− Ii)+
(
E j− I j

)
−2c

c =

{
1 if βi has an edges with β j

0 otherwise

,

where Ei represents the number of edges connecting βi to Gb and
Ii is the number of edges connecting βi to Ga. Similarly, E j is the
number of edges connecting β j to Ga and I j is the number of edges
connecting β j to Gb. In our experiments, αKL is computed for every
pair of bodies across all pairs of partitions. Pairs of bodies with
the maximum positive αKL are then swapped at each iteration; the
process is repeated until there is no positive gain.
Fiduccia–Mattheyses (FM). The FM algorithm [FM82] uses a
slightly different strategy. Instead of exchanging of a pair of bodies,
it only attempts to find one body to swap between partitions. The
gain for the FM algorithm is computed as

αFM = Ei− Ii , (2)

where Ei and Ii for body βi have the same definition as in KL al-
gorithm. Parameter αFM is computed for every node in Ga, and a
body is moved to the partition giving the maximum positive αFM .
The process is repeated for all pairs of adjacent partitions until nei-
ther has a body with positive αFM .
Implementation details. The KL and FM algorithms are mainly
suited for optimizing bi-partitioned graphs. For k-way partitioning,
a recursive algorithm may be used [KK98]. However, in large-scale
rigid body simulations, analyzing all bodies and constraints in the
system is time-consuming. Therefore, during the partitioning pro-
cess, we track peripheral bodies in each partition connected to ad-
jacent partitions. The KL and FM algorithms are then applied to
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Figure 2: The partitioning algorithms (columns) and refinements algorithms (rows) applied to the Rock Pile example.
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Figure 3: Average solve time for all examples and combinations of
partitioning and refinement algorithms.

bodies at the interface between partitions, with gains of bodies at
the interface between adjacent partitions being computed.

3 Results
Simulations were performed using the Vortex physics engine and

Intel Core i9 2.40GHz CPU with 8 cores (16 threads). Partitioning
and refinement algorithms were implemented as a C++ plugin.

We evaluate the partitioning algorithms by reproducing several
examples from the work by Peiret et al. [PAK∗19]: Chain Drop,
Log Tower, and Rock Pile. We also introduce a second variation of
the last example, Large Rock Pile, which has three times as many
rocks with random masses of 10 kg, 100 kg, and 1000 kg.

Figure 2 shows the sub-systems produced by the partitioning and
refinement algorithms for a selected frame from the Rock Pile ex-
ample. Bodies in the same partition are visualized as spheres of the

same color (see supplementary video).

3.1 Solver Performance
Performance is evaluated by computing the solve time over the

first 500 time steps of each simulation. Figure 3 summarizes these
statistics for each of the five partitioning strategies with i) no re-
finement, ii) KL refinement, and iii) FM refinement. In all exam-
ples, the MinDP and MIX partitioning algorithms gave the best
performance, with the partition refinement algorithms giving an ad-
ditional performance boost. For instance, in the Log Tower exam-
ple, FM and KL reduced solve time by about 31% and 12%, re-
spectively, compared to the MinDP algorithm without refinement.
Max solve times were also reduced (see Figure 5). The MIX algo-
rithm with FM refinement also reduced the solve time by 46% and
35% for the Rock Pile and Large Rock Pile examples. We also ob-
served that performance gains do not depend on problem size. Fig-
ure 4 shows the average solve time for different scales of the Rock
Pile example (50 to 800 bodies). The FM and KL refinement con-
sistently reduce solver time. However, significant performance im-
provements were not observed for all examples. For instance in the
Chain Drop example, the simplest scenario we tested, the MinDP
resulted in 4 ms solve time on average, and KL and FM gave only
limited improvements. Complete timing information for the solver
and partitioning methods can be found in Table 1. The MIX algo-
rithm with KL or FM refinement typically gave best performance,
except for the Chain Drop example where the BFS algorithm with
FM refinement gave a better result.

4 Conclusions
Solving multi-body systems with stiff constraints and contact is

non-trivial. The MinDP proposed by Peiret et al. for their parallel
sub-structuring solver gives good performance compared to other
strategies, and applying the KL and FM algorithms to refine parti-
tions can further improve solver performance. We have additionally
proposed a new partitioning algorithm, called MIX, that gives the
lowest solver wall clock time across all examples we tested, not ac-
counting for overhead due to partitioning. We believe that computa-
tional overhead of the partitioning and refinement algorithms could
be significantly improved with careful optimization of the code,
which would further reduce timings reported in Table 1. It would
be interesting to experiment with min-cut type partitioning algo-
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Figure 4: Average solve times for the Rock Pile example for dif-
ferent number of rocks. The KL and FM refinement algorithms im-
prove the performance, even for different system sizes.
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Figure 5: The solve time per time step for the Log Tower when
MinDP is used. FM and KL refinements improve performance and
help to reduce peaks.

rithms. However, preliminary tests we performed using Karger’s al-
gorithm [Kar93] were not competitive with the methods evaluated
in this paper. Finally, our simulation experiments target a parallel
sub-structuring solver using a direct numerical method, making it
well suited to stiff and poorly conditioned system. However, other
partitioning strategies may be better suited for iterative solvers.
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