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Abstract— A mathematical evaluation and comparison of the space-efficiency of various 2D graphical representations of tree struc-
tures is presented. As part of the evaluation, a novel metric called the mean area exponent is introduced that quantifies the distribution
of area across nodes in a tree representation, and that can be applied to a broad range of different representations of trees. Several
representations are analyzed and compared by calculating their mean area exponent as well as the area they allocate to nodes and
labels. Our analysis inspires a set of design guidelines as well as a few novel tree representations that are also presented.
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1 INTRODUCTION

A variety of graphical representations are available for depicting tree
structures (Figure 1), from “classical” node-link diagrams [23, 7], to
treemaps [14, 26, 6, 30], concentric circles [2, 27, 31], and many others
(see [13] for a survey). A major consideration when designing, eval-
uating, or comparing such representations is how efficiently they use
screen space to show information about the tree. To date, however, it is
unclear how to go about evaluating space-efficiency in a way that can
be applied to the large variety of tree representations and that enables a
fair comparison of them. Space-efficiency might be described in terms
of area, aspect ratio, label size, or other measures. However, there is no
accepted standard set of metrics for evaluating the space-efficiency of
tree representations, and it is unclear what approach would be general
enough to be applied to all the forms in Figure 1.

Fig. 1. Several basic kinds of tree representations, here each showing
a complete 3-ary tree of depth 3 as an example. All representations
are drawn to just fit within a 1×1 unit square. A: classical (layered)
node-link [23, 7]. B: a variation on A, where the shape of nodes better
accommodates long labels. C: icicle. D: radial [10, 9]. E: concentric
circles [2, 27, 31]. F: nested circles, similar to [5, 28]. G: treemap [14,
26]. H: indented outline, sometimes called a “tree list”, and common in
file browsers such as Microsoft Explorer.
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One basic metric of space-efficiency is the total area of a representa-
tion. Assuming the representation is bound within a 1×1 square, both
icicle diagrams and treemaps (Figures 1C and 1G) have a total area of
1, and are equally efficient (and both optimal) according to this met-
ric. Likewise, concentric circles and nested circles (Figures 1E and 1F)
both have a total area of π/4 ≈ 0.785 (the area of a circle of diameter
1), and are also equally efficient according to the metric of total area.
However, experience suggests that the representations within each of
these pairs do not scale equally well with larger, deeper trees. This
article shows that there are finer ways of distinguishing efficiency, i.e.
that there is more to space-efficiency than total area.

Treemaps are often described as optimally space-efficient, not just
because they have a total area of 1, but also because they allow for
what we call a weighted partitioning of the area. Nodes can be allo-
cated more or less area, depending on some attribute such as file size,
population, or number of species, and furthermore this weighted par-
titioning can be done without reducing the total area used. These are
indeed desirable properties, however they are not unique to treemaps.
Figure 2 shows that icicle diagrams also allow for a weighted parti-
tioning of area, and incidentally have no need for margins between the
borders of nodes as treemaps often do.

Furthermore, although a weighted partitioning is useful for showing
the relative sizes of nodes in Figures 2A and 2C, an unfortunate side
effect is that labels on small nodes are very difficult to read. If users
are more interested in seeing the identity of all nodes rather than their
relative sizes, an alternative approach would be to give equal weight to
each leaf node (Figures 2B and 2D), improving the overall legibility
of nodes. (Although not shown in the figure, the labels could also be
augmented to numerically show the “size” attribute of each node.) In
terms of label size or legibility, Figures 2B and 2D are clearly prefer-
able, but even they still result in much whitespace around certain la-
bels, suggesting that a more space-efficient (in terms of label size)
representation might be possible.

Clearly, it would be useful to have some way to quantitatively dis-
tinguish the four possibilities in Figure 2, e.g. in terms of their respec-
tive scalability and the sizes of their labels. If total area is the only
metric of space-efficiency used, and “optimal” space-efficiency is de-
fined as a total area of 1 (possibly partitioned by weight), then we
have no way of distinguishing these four cases. If alternative metrics
of space-efficiency are used, such as those investigated in this article,
it is not clear initially if treemaps, or any other representation, will still
turn out to be optimal with respect to such alternative metrics.

This article identifies several metrics related to space-efficiency,
and performs the first rigorous analysis and comparison of the space-
efficiency of most of the basic tree representation styles in the infor-
mation visualization literature, including all those in Figure 1. Some
of the key ideas involved are (1) the use of a metric of the size of the
smallest nodes (i.e. the leaf nodes) in the representation, in addition to
a metric of total area; (2) analyzing the area of labels on the nodes,
which implicitly takes into account both the size and aspect ratio of
the nodes, measuring how much “useful” area they contain; and (3)
analyzing how these metrics behave asymptotically, as the tree grows



Fig. 2. A tree of regions and major islands of the Philippines, drawn
using squarified treemaps (top) and using icicle diagrams (bottom). The
two diagrams on the left weight leaf nodes by geographic area, whereas
the two diagrams on the right give equal area to leaf nodes. Labels are
rotated when necessary to maximize their size.

arbitrarily deep. Our analysis allows us to rank tree representations by
their efficiency, which is useful for helping designers choose the most
efficient representation allowable within other given constraints.

Our work also quantifies an interesting difference between repre-
sentations in how they distribute area across nodes. For example, the
icicle diagrams in Figures 1C, 2C, and 2D allocate equal area to each
level of the tree: the root node has the same area as all the leaf nodes
together. Treemaps, in contrast, typically allocate more area to deeper
nodes. There is a tradeoff here, since we would like users to be able
to see as many deep nodes as possible (which tend to also be the most
numerous nodes), while at the same time providing some information
about shallow nodes (for example, to give an overview of subtrees,
and/or to guide the user in zooming operations). This article develops
a new metric, the mean area exponent, that describes the distribution
of area across levels of a tree representation, to quantify this tradeoff.

Finally, we also present a set of design guidelines for using tree
representations, as well as a few novel tree representations, including
a variation on squarified treemaps that allows for larger labels within
the nodes.

2 RELATED WORK

Different tree representations, including classical node-link, icicle,
nested enclosure, and indented outline, were identified decades ago
in [4, 16], and an interactive version of the indented outline represen-
tation (now popular in file browsers such as Microsoft Explorer) was
presented in [11]. Subsequent years have seen variations on these rep-
resentations proposed. Treemaps are a relatively recent innovation,
and are a kind of nested enclosure representation. Treemaps are of-
ten described as space-filling, a highly desirable property for space-
efficiency.

The term “space-filling” can sometimes be problematic, however.
For example, a view sometimes expressed [21] holds that tree repre-
sentations can be divided into two classes: (1) node-link diagrams, that
illustrate parent-child relationships with line segments or curves, and

(2) space-filling representations, which include treemaps and concen-
tric circles such as Sunburst (Sunburst was described as space-filling in
[27], and [21] similarly describe [2] as space-filling.) However, these
two classes seem to not be disjoint, because some node-link diagrams
also “fill space” [19, 20]. The 2nd class also ignores an interesting dif-
ference between treemaps and concentric circles, namely that parent
nodes in treemaps enclose their children, whereas parents in concen-
tric circle diagrams are adjacent to their children. Finally, the term
“space-filling” suggests increased space-efficiency, however it is easy
to design a treemap layout algorithm that occupies all available space
without making good use of it, for example, by using excessively thick
margins, or by concentrating child nodes in only one corner of their
parent, leaving the rest of the parent empty and unused. Would such
a treemap cease to be considered space-filling, even though its root
node covers all the available space? Without a precise definition of
“space-filling”, we recommend being cautious about using this term
to refer to a category of tree representations, since the name seems
to imply that members of the category are more space-efficient than
non-members. As an alternative, categories of representations could
instead be based on how the nodes are drawn (e.g. representations
where the nodes are mapped to points, and those where the nodes are
mapped to areas) or on how parent-child relationships are shown (e.g.
through line segments, enclosure, adjacency, or relative positioning).
The space-efficiency of a given representation can be treated as a sep-
arate matter, and evaluated by several metrics, as demonstrated in this
article.

Within the graph drawing community, a common approach for eval-
uating space-efficiency is to compare the total area required by differ-
ent drawings (i.e., representations) of the same graph or tree. Since
any drawing can be scaled arbitrarily in x and y, to ensure a meaning-
ful comparison, the “resolution” of the representations is fixed, often
by requiring that nodes be positioned on a grid (i.e. with integer co-
ordinates) [9]. There are problems with this general approach, how-
ever, especially when comparing representations of trees rather than
graphs. For example, allowing only grid positions may be mislead-
ing, because non-integer coordinates can significantly reduce total area
without compromising the clarity of the representation or the space
available for labels (Figure 3). As a potential remedy, instead of posi-
tioning nodes on a grid, we might instead impose a minimum distance
between nodes, or a minimum size for non-overlapping labels centered
over the nodes. Unfortunately, matters are complicated by the fact that
some tree representations (such as Figures 1C, 1E, 1F, 1G) involve
nodes that have an area and shape, and there may be nodes and labels
of different sizes within a single representation (e.g. deeper nodes may
be smaller and have smaller labels). This makes it less clear how to
impose a fixed resolution in a way that is fair across tree representa-
tions. Note that this issue does not arise in traditional graph drawing,
where nodes are typically mapped to points.

Fig. 3. A and B are adapted from a comparison in Figure 5 of [1], and
show two different graphical representations of the same tree where
nodes are constrained to positions with integer coordinates. B is clearly
more compact than A. In C, however, we have redrawn the represen-
tation from A with the integer coordinate constraint relaxed, and the re-
sulting graphical representation has a convex hull whose area is only
about 5% greater than that in B. Notice also that the minimum horizon-
tal spacing between nodes in B and C is the same, allowing nodes to be
overlaid with horizontally oriented labels of the same size in both cases.

In our work, rather than comparing total area with a fixed resolution,
we fix the total area available, and fix its aspect ratio. Representations



are drawn within a fixed, bounding 1×1 unit square, and we analyze
the resulting area allocated to individual nodes as well as the resulting
size of labels. In a mathematical sense, this can be made equivalent to
the fixed-resolution approach, but we find our approach simpler. The
aspect ratio of typical computer screens, of typical windows, and of the
human visual field is approximately 1. By imposing the same square-
shaped total area on each representation, it is clear that comparisons
will be fair, while also allowing the representation to position nodes
and subdivide area between nodes in many different ways.

The graph drawing community has developed algorithms for draw-
ing trees, with nodes positioned on grid points, with optimal total area
[12, 25]. In the output of these algorithms, however, the relative posi-
tioning of sibling nodes varies greatly, making it difficult to perceive
the overall tree structure. We suspect these algorithms are unlikely
to gain widespread use, and focus on analyzing more conventional,
visually uniform, symmetrical depictions of trees.

Several algorithms exist for generating treemap layouts, each of
which has advantages and disadvantages in terms of criteria such as
stability, preservation of ordering of nodes, aspect ratio of nodes, and
shape of nodes. One recent example with a mathematical treatment is
[30]. All of these layout algorithms allow for a weighted partitioning
of the total area (and, interestingly, [30] identifies “space-filling” with
the ability to perform a weighted partitioning). In this article, we do
not consider stability or preservation of ordering, although these two
criteria are trivially met for many of the tree representations we con-
sider. Unlike the previous work, however, we do examine label area,
which implicitly takes into account both the size and aspect ratio of
nodes.

The efficiency of “inclusion” tree layouts (another nested enclosure
representation, somewhat similar to treemaps) has also been investi-
gated [22], but not in a way that is easily compared to other kinds of
tree representations.

Previous work on labeling drawings of graphs [15] has assumed the
labels to be drawn with constant-size text, outside of the elements to
label. In trees, however, the number of elements to label grows ex-
ponentially with depth, and labels placed outside nodes can introduce
significant clutter and area requirements. Our work assumes labels
will be placed inside nodes, and allows for labels of varying size, cor-
responding to how nodes in trees are typically labeled in practice.

3 METRICS RELATED TO SPACE-EFFICIENCY

We use ni, j to denote the jth node at depth i in the tree. For example,
if ni,1 has P children, they will be ni+1,1, . . . ,ni+1,P; and if the next
node ni,2 has Q children, they will be ni+1,P+1, . . . ,ni+1,P+Q. We also
simply use ni to denote some node at depth i. For example, n0 and n0,1
both denote the root node. Finally, in the 2D representation of the tree,
the region corresponding to a node has area a(ni, j) or ai, j, or simply
ai if all nodes at depth i have the same area.

3.1 Total Area A

Total area is a basic metric of space-efficiency, which we define here
more precisely. To ensure a fair comparison between representations,
we require that the 2D representation be bounded by a 1×1 square.
The total area A occupied is simply

A = ∑
i, j

ai, j = ∑
n node

a(n)

To ensure 0 ≤ A ≤ 1, we require that no area be counted twice, i.e.
that we subtract away overlap. For example, in representations in-
volving nested enclosure such as treemaps, we require that a(n) be the
area corresponding to n after subtracting away any overlapping area
assigned to descendant nodes. In a treemap, if node n has thin mar-
gins surrounding its children, then a(n) will be the area of the margins,
and will not include the children. Not doing this would give an unfair
advantage to representations with overlapping areas.

3.2 Leaf Node Area

Another simple metric is based on the size of the smallest nodes in
the representation, which typically means the leaf nodes. This metric

could be defined as the average (or minimum) area of the leaf nodes
in the representation. In the case of a tree where all the leaf nodes are
at the same depth D, and they all have the same area, then the metric
would simply be aD = a(nD).

In typical representations, as a tree grows deeper, eventually the leaf
nodes become so small that they are barely visible, and any labels they
contain are illegible. The leaf node area a(nD) can be thought of as a
metric of roughly how much zooming the user must perform to make
the leaf node labels legible.

3.3 Mean Area Exponent ρ

Next, we define a novel metric ρ that quantifies the distribution of area
across levels of a tree representation, independent of the total area A.
In this subsection, we limit our consideration to “homogeneous” tree
representations (with constant branching factor, leaf nodes all at the
same depth, and nodes within the same level having the same area),
and in Section 3.6 we generalize to other representations.

Consider a complete B-ary tree of depth D ≥ 1, with B ≥ 2. In
other words, a tree where every non-leaf node has B children, and
the path between every leaf node and the root has D edges. Assume
also that nodes within the same level have the same area, i.e. for each
i = 0,1, . . . ,D, all nodes at depth i have the same area ai.

We first define a local metric ρ(p;c) associated with a parent node
p and one of its children c, or in other words associated with the edge
between p and c. We seek a definition of ρ(p;c) that satisfies the
following conditions:

ρ(p;c) =







−1
0

+1

if a(c) = a(p) ·B
if a(c) = a(p)
if a(c) = a(p)/B

ρ(p;c) < 0 if a(c) > a(p)

ρ(p;c) > 0 if a(c) < a(p)

A value of −1 corresponds to a child occupying B times the area of
its parent; a value of 0 corresponds to the child and parent occupying
equal area; and a value of +1 corresponds to a child occupying 1/B
the area of its parent. (In this 3rd case, the B children of a parent
collectively occupy the same total area as their parent, which is seen,
for example, in Figure 1C.) The definition of the local metric that we
will use is

ρ(p;c) = logB

a(p)

a(c)

(Intuitively, the use of a logarithm here is related to the fact that trees
grow exponentially with depth.)

In the tree we are considering, because all nodes within the same
level have the same area, we can associate the same ρi with all par-
ent nodes at depth i and their children at depth i + 1, where ρi =
ρ(ni;ni+1) = logB(ai/ai+1). We then define the global metric ρ for
the entire tree simply as an arithmetic mean:

ρ =
1

D

D−1

∑
i=0

ρi =
1

D

D−1

∑
i=0

logB

ai

ai+1

We will refer to this global metric as the mean area exponent ρ (this
name is explained in Section 3.5), and we can rewrite it as

ρ =
1

D

D−1

∑
i=0

logB

ai

ai+1

= logB
D

√

√

√

√

D−1

∏
i=0

ai

ai+1
(1)

= logB
D

√

a0

aD
(2)

Interestingly, the expression (1) has a simple interpretation: it is the
logarithm of the geometric mean of the ratios of areas of nodes on



consecutive levels. Expanding the product in expression (1) allows
many terms to cancel, yielding the rather simple expression (2) that
can be used to compute the metric. As will be seen, such canceling of
terms will not be possible in the more general case of heterogeneous
tree representations.

3.4 Example Analysis of Figure 4

To illustrate the calculation of the metrics A, a(nD), and ρ , we evaluate
them in the cases shown in Figure 4.

Fig. 4. Example representations of a tree with B = 3 and D = 3. A: clas-
sical node-link. B: icicle. C: a variation on icicle, where each child node
is scaled-down with respect to its parent in both the x and y directions
by the same factor, allowing for a larger label on the root.

Because the tree being considered is complete and B-ary, there are
Bi nodes at depth i for 0 ≤ i ≤ D, and (BD+1 − 1)/(B− 1) nodes in
total. Also, for each representation in Figure 4, all nodes at a given
depth have congruent rectangular regions. Let wi, hi, and ai = wihi be
the width, height, and area of the rectangular region corresponding to
a node at depth i.

In Figure 4A, because there are BD leaf nodes, and they are squares,
they each have width and height wD = hD = 1/BD. Since all nodes are

the same size, ai = wihi = aD = wDhD = 1/B2D and the total area
occupied is

A =
D

∑
i=0

Biai =
D

∑
i=0

Bi 1

B2D
=

(BD+1 −1)

(B−1)

1

B2D
= Θ(1/BD)

where Θ() denotes an asymptotically tight bound1. The mean area
exponent, which quantifies the distribution of area across levels of the
tree, is

ρ = logB
D

√

a0

aD
= logB

D

√

1/B2D

1/B2D
= 0

Next, consider Figure 4B. Each node has 1/B the area of its parent.

Clearly, wi = 1/Bi, hi = 1/(D+1), ai = 1/((D+1)Bi), and

A =
D

∑
i=0

Biai =
D

∑
i=0

Bi 1

(D+1)Bi
= 1

The leaf node area a(nD) = 1/((D + 1)BD) = Θ(1/(DBD)), and the
mean area exponent is

ρ = logB
D

√

a0

aD
= logB

D

√

1/((D+1)B0)

1/((D+1)BD)
= logB

D
√

BD = 1

Finally, consider Figure 4C. Although this representation might not
be used in practice, it illustrates a situation where the distribution of
area is more heavily towards the root. Each node now has 1/B the

width of its parent, 1/B the height of its parent, and 1/B2 the area

of its parent. Specifically, wi = 1/Bi, hi = (B− 1)BD−i/(BD+1 − 1),
and ai = (B− 1)BD−2i/(BD+1 − 1). It is easy to check that A = 1,

a(nD) = (B−1)/((BD)(BD+1 −1)) = Θ(1/B2D), and ρ = 2.
To summarize the results:
1Asymptotic analysis in this article is always with respect to D, i.e., expres-

sions that approach zero as D→∞, with B held constant. If f (D) and g(D) both

approach zero as D approaches infinity, then the statement f (D) = Θ(g(D))
means there exist constants k1,k2 > 0 such that k1g(D) < f (D) < k2g(D) for

all sufficiently large D.

Figure 4A 4B 4C

total area A Θ(1/BD) 1 1

leaf node area a(nD) 1/B2D Θ(1/(DBD)) Θ(1/B2D)
mean area exponent ρ 0 1 2

In terms purely of total area A, Figures 4B and 4C are preferable to
4A. However, total area does not help us distinguish 4B and 4C. This
distinction is provided by the other two metrics. The representation
with the most slowly shrinking leaf area (as a function of D) is 4B.
Notice also that 4A and 4C have the same leaf area (in terms of Θ-
complexity, ignoring hidden constants), but different ρ values, because
the value of ρ is based on the areas of leaf nodes and of the root node.
Larger values of ρ mean that more area is allocated to the root. In other
words, ρ is a measure of how heavily the representation’s total area is
weighted toward the root, or of how quickly node area decreases with
depth.

3.5 Other Metrics Related to ρ

A deeper understanding of ρ can be achieved by briefly considering
some closely related metrics of area distribution. We can define an
alternative local metric R(p;c) = a(p)/a(c) that is simply a ratio of

areas, and a global metric R = (∏D−1
i=0 ai/ai+1)

1/D that is the geometric
mean of these ratios. It is easy to check that ρ = logB R, i.e. Bρ =
R, which motivated calling ρ the mean area exponent. Furthermore,
whereas R and ρ are defined in terms of ratios of areas, we can define
analogous metrics that are ratios of lengths. The four resulting global
metrics R, ρ , S, and σ are summarized hence:

ratios logarithms of ratios

2D area mean area ratio mean area exponent
R = Bρ ρ = logB R

1D length mean scale factor mean scale exponent

S = Bσ =
√

R σ = logB S = ρ/2

These four metrics all measure the distribution of area in the tree rep-

resentation. Of these, S =
√

R has perhaps the most familiar geometric
interpretation, since it is simply an average scale factor. However, we
prefer to use ρ in our analyses, firstly because it is more often indepen-
dent of the particular branching factor B than R or S are, and secondly
because ρ is more often an integer than σ (due to the fact that we are
analyzing 2D tree representations).

Incidentally, we also experimented with using an arithmetic mean

of ratios, i.e. (1/D)∑D−1
i=0 ai/ai+1, and found that such a formulation

resulted in less elegant properties than will be presented in Section 3.6.

3.6 Generalizing ρ to Heterogeneous Tree Representa-
tions

We now extend the definition of ρ to complete B-ary trees where the
areas of sibling nodes are not equal. (Later we extend to incomplete
trees with variable branching factor.) In such a tree, let ni, j denote the

jth node at depth i, where 0 ≤ i ≤ D and 1 ≤ j ≤ Bi. The children
of ni, j are ni+1,( j−1)B+1, . . . , ni+1,( j−1)B+B. We define the value of ρ
associated with any non-leaf node as

ρ(ni, j) =
1

B

B

∑
k=1

ρ( ni, j ; ni+1,( j−1)B+k )

This is simply the arithmetic mean of the local ρ(p;c) defined earlier,
over all the node’s children.

Next, the value ρi characterizing the distribution of area across the
levels i and i+1 of a tree representation is itself an arithmetic mean of
the previous quantity:

ρi =
1

Bi

Bi

∑
j=1

ρ(ni, j)

Finally, the global metric ρ is defined as

ρ =
1

D

D−1

∑
i=0

ρi (3)



Combining these three equations yields an expression that can be
rewritten in a few different ways. (In reading the following, it helps to
keep in mind that i is an index over levels, j an index over parents in a
given level, and k an index over children.)

ρ =
1

D

D−1

∑
i=0

1

Bi

Bi

∑
j=1

1

B

B

∑
k=1

logB

ai, j

ai+1,( j−1)B+k

(4)

=
1

D

D−1

∑
i=0

1

Bi

Bi

∑
j=1

logB
B

√

√

√

√

B

∏
k=1

ai, j

ai+1,( j−1)B+k

(5)

=
1

D

D−1

∑
i=0

1

Bi

Bi

∑
j=1

logB

ai, j

B

√

∏B
k=1 ai+1,( j−1)B+k

(6)

=
1

D

D−1

∑
i=0

logB

Bi
√

∏Bi

j=1 ai, j

Bi+1
√

∏Bi+1

j=1 ai+1, j

(7)

= logB D

√

√

√

√

a0,1

BD
√

∏BD

j=1 aD, j

(8)

Each of the above expressions has a fairly simple interpretation. The
radical in expression (5) is the geometric mean of the ratio of the
(i, j)th node’s area and each of its children’s areas. The inner ratio
in expression (6) is between the (i, j)th node’s area and the geomet-
ric mean of its children’s areas. The inner ratio in expression (7) is
between the geometric mean of areas of all parents on level i and the
geometric mean of areas of all children on level i + 1. Expanding ex-
pression (7) results in many terms canceling, yielding expression (8),
which involves a ratio between the root’s area and the geometric mean
of the leaf areas. Note that an alternatively defined metric, based on
arithmetic means of areas or arithmetic means of ratios, would not
lead to the kind of multiple, equivalent expressions shown above.

Notice that in equation (3) (and expression (7)), each level’s ρi con-
tributes with equal weight, even though deeper levels have many more
nodes. The root’s area has a much larger impact on ρ than any of the
BD leaf nodes. To make the unequal weighting of nodes more appar-
ent, we can rewrite equation (4) as

ρ =
1

DBD

D−1

∑
i=0

Bi

∑
j=1

B

∑
k=1

BD−(i+1) logB

ai, j

ai+1,( j−1)B+k

(9)

which is simply the weighted arithmetic mean of the local metric
ρ( ni, j ; ni+1,( j−1)B+k ), where the local metric for an edge between

levels i and i + 1 has weight BD−(i+1), and the sum of the weights is
DBD.

There is another way we can define ρ , that is equivalent to the pre-
vious definitions, but that is more easily extended to other kinds of

trees such as incomplete trees. In equation (9), the weight BD−(i+1)

assigned to an edge between levels i and i + 1 is equal to the number
of paths through that edge that connect the root node to a leaf node.
If we consider all paths between the root and leaf nodes, and for each
path we find the arithmetic mean of ρ(p,c) along that path, and then
find the (unweighted) arithmetic mean over all the paths, we end up
with the same quantity ρ defined earlier. The weighting of edges seen
in equation (9) arises “for free” because many paths pass through shal-
low edges, causing them to contribute many times.

To make this precise, let path(a,b) be the set of nodes along the
path from node a to node b, and let p(n) be the parent of node n. If n

is one of the BD leaf nodes, then path(n0,n) is the path from the root
to leaf n. We define

ρ =
1

BD ∑
n leaf

1

D
∑

m∈path(n0,n)\{n0}
logB

a(p(m))

a(m)
(10)

Not only is equation (10) equivalent to equation (9), it is also straight-
forward to generalize to incomplete trees with varying branching fac-
tor. Given a node n, let B(n) be the branching factor at n, i.e. the

number of children of n, and let D(n) be the depth of n, i.e. the num-
ber of edges in the path from n to the root n0. Also, let L be the set
of leaf nodes in the tree. Then we define a more general mean area
exponent as

ρ =
1

|L | ∑
n∈L

1

D(n) ∑
m∈path(n0,n)\{n0}

logB(p(m))
a(p(m))

a(m)
(11)

which subsumes the previous definitions as special cases, and which
can be applied to a fully heterogeneous tree representation2. We note
that the canceling of terms that resulted in simpler expressions (2) and
(8) cannot be performed here, partly because the logarithm in equation
(11) does not have a constant base.

The multiple equivalent formulations and interpretations we have
presented show that the mean area exponent ρ exhibits a promising
degree of conceptual versatility as a metric.

As a minor additional extension to our definitions, if the root node’s
area is zero and the leaf nodes all have positive area, then we define
ρ = −∞. In the opposite case, if the root node has positive area and
the leaf nodes all have zero area, then we define ρ = +∞.

We conclude this section with a simple example. Consider the icicle
diagram in Figure 5A, where the width of each parent node is evenly
divided amongst its children. As can be confirmed by the reader, ap-
plying Equation 11 reveals that ρ = 1 (exactly). In Figure 5B, how-
ever, each node is given a width proportional to the number of leaf
nodes under it, causing most leaf nodes to be larger than in the former
case, hence the metric ρ ≈ 0.884 is lower.

Fig. 5. Two icicle diagrams of the same tree. The top diagram (A) allo-
cates more of its total area to shallow nodes, as quantified by its higher
value of ρ.

3.7 Additional Metrics, and Example Analysis of Figure 2

So far, our metrics have considered the area of nodes in the representa-
tion. In many situations, however, the labels within the nodes (whether
they consist of strings, images, or some combination) are at least as
important to the user as the structure of the tree. The legibility of these
labels depends on their size, which is not generally equal to the size
of the nodes they appear on. As can be seen in Figure 2, a mismatch
in the aspect ratios of a label and its node can leave much whitespace
unused within the node. Hence, for each of the three metrics seen so
far (total area, leaf node area, and mean area exponent), we define a
variant based on the areas of labels, resulting in six metrics: the three
original metrics based on node areas, and three label-oriented metrics.

Let al(n)≤ a(n) be the area of (the rectangular bounding box of) the
label embedded in the area of node n. The first label-oriented metric
we define is the total label area

Al = ∑
n node

al(n) ≤ A ≤ 1

2A minor caveat: due to the base of the logarithm, ρ is not defined if any

node n has only one child, i.e. B(n) = 1. This problem does not arise in our

analyses, but if it had to be circumvented, the metrics R or S (Section 3.5)

could be defined in the fully heterogeneous case without any logarithms, and

used instead of ρ .



which is of course analogous to total area A.
The second label-oriented metric quantifies the size of the smallest

labels in the representation, which typically means the leaf labels (i.e.
labels on the leaf nodes). This second metric could be defined as the
average (or minimum) leaf label area, or in the case of a homogeneous
representation, it would simply be al(nD).

The third label-oriented metric is a variant of ρ that quantifies how
quickly the labels become illegibly small with depth. This variant ρl

is defined simply by replacing the areas of nodes with the areas of
labels in either equation (11) for the general case or equation (2) for
the homogeneous case. For example, in the homogeneous case,

ρl = logB
D

√

al(n0)

al(nD)

The following table lists the values of all six metrics for the 4 het-
erogeneous cases in Figure 2. In the table, rows 1-3 are for metrics
involving node area, and rows 4-6 are for the analogous label-oriented
metrics. Row 5 contains 3 different metrics of the size of the smallest
labels which will be explained shortly.

Figure 2A 2B 2C 2D

1
Total area A
of nodes 1.000 1.000 1.000 1.000

2
Average area
of leaf nodes 0.0465 0.0505 0.0278 0.0278

3
Mean area
exponent ρ 0.842 0.462 1.262 0.895

4
Total area Al

of labels 0.366 0.419 0.368 0.591

5

Average area of
leaf labels 0.0171 0.0219 0.00524 0.0177
Average leaf
label height 0.0586 0.0791 0.0294 0.0699
Minimum leaf
label height 0.0217 0.0360 0.00821 0.0418

6
Mean area exponent
ρl for labels 0.755 0.498 1.797 0.871

The metrics based purely on node area (rows 1-3) are of limited
value and can even be misleading. For example, the total area A = 1
in all four cases, failing to identify any difference in space-efficiency
between them. Also, the average area of leaf nodes is exactly equal
between cases 2C to 2D, even though it is plain from Figure 2 that
there is a difference in how easily the labels can be read.

We recommend instead using metrics based on labels (rows 4-6).
Examining these metrics, we notice that, as expected, from Figure 2A
to 2B, and again from 2C to 2D, there is an increase in Al as well as
in the average area of leaf labels, and also a decrease in ρl . These
effects are desirable if we want to improve legibility, rather than show
the relative sizes of nodes (as is usually done in treemaps, and done in
Figures 2A and 2C).

Comparing all four cases (2A, 2B, 2C and 2D) in terms of label size,
we see that 2D has the best Al value, but 2B has the best value for av-
erage area of leaf labels. The higher Al value for 2D seems due largely
to the larger labels it has on shallow nodes, which do not contribute
to the legibility of the deep nodes. On one hand, shallow nodes might
be considered more important than deep nodes, because they can give
the user a high-level overview of the tree structure when there is not
enough space to give every individual label a legible size. On the other
hand, most nodes in a typical tree are deep, and the shallow nodes only
constitute a minority, so making them bigger will impair the legibility
of a majority of nodes. Clearly, there is a tradeoff (quantified by ρl) in
allocating area to shallow or deep labels.

Nevertheless, if our goal is to make all the labels as legible as possi-
ble (which should be the case at least for static, non-zoomable tree rep-
resentations), then we should prefer representations where the smallest
labels are as large as possible (as quantified in the first sub-row within
row 5 of the table). We can further refine this idea for text labels (as
opposed to labels consisting of images): the legibility of a label is not

best quantified by its area, but rather by its area per character, or alter-
natively by its font size (hence the other two sub-rows within row 5,
concerning “label height”). With this in mind, the most space-efficient
representation in the table would either be 2B (whose leaf labels have
the best average height) or 2D (which has the best minimum leaf label
height).

Stepping back from the cases in Figure 2, we recapitulate the 6
kinds of metrics, numbered the same way they are in the above table:

1. Total node efficiency: the amount of available space that is oc-
cupied, as quantified by the total area A. Treemaps and icicle
diagrams, for example, are optimal in this sense, since A = 1 for
them.

2. Smallest node efficiency: the degree to which the smallest
node(s) are made as large as possible. Since leaf nodes are typ-
ically the smallest, this efficiency can normally be quantified by
the average (or minimum) area of leaf nodes. In the case of a tree
where all leaf nodes nD have the same area, it can be quantified
by their area aD = a(nD).

3. Node area distribution: a measure of the area tradeoff between
shallow and deep nodes. We quantify this with ρ , though the
other global metrics in Section 3.5 could play the same role.

4. Total label efficiency: the amount of available space devoted to
labels, as quantified by the total label area Al .

5. Smallest label efficiency: the degree to which the smallest la-
bel(s) are made as legible as possible. This can be quantified by
the average (or minimum) area of leaf labels, or, in the case of a
tree where all leaf labels have the same area, by al(nD). In the
case of labels that are strings of text of variable length, we can
instead quantify this with the average (or minimum) area of leaf
labels per character, or the average (or minimum) font height of
leaf labels.

6. Label area distribution: a measure of the area tradeoff between
shallow and deep labels, which we quantify with the mean area
exponent ρl for labels. A value close to zero indicates that all
labels are the same size, which is often desirable in static, non-
zoomable representations. However, in zoomable representa-
tions of deep trees, a value between 1 and 2 is better (Section 5.4
discusses why).

For completeness, we discuss and report all 6 kinds of metrics in
this section and the later sections of the article. However, as already
mentioned, we recommend using label-oriented metrics (numbers 4-6
in the above list), because they implicitly take into account the aspect
ratio of the node area and how well it matches the label’s aspect ra-
tio. An important lesson from our work is that only considering total
area A, without regard to labels, is a crude way of quantifying space-
efficiency, that fails to distinguish between any of the representations
in Figure 2.

Within the label-oriented metrics, even Al alone is not the best way
to quantify the space-efficiency of labels, since a large Al may be due
to a few large labels on shallow nodes while most deep labels are very
tiny. Metrics of smallest label efficiency should arguably take prece-
dence over Al . Finally, the mean area exponent ρl for labels is not a
measure of space-efficiency per se, but rather a measure of a tradeoff,
and will be discussed more in the later sections of the article.

The metrics listed above can each be evaluated for any given in-
stance of a tree’s representation (i.e. for any given drawing). How-
ever, we would like to gain insight into the behavior of these metrics
for large trees (i.e. as D → ∞), for a variety of different representation
styles (or drawing conventions, to use graph drawing terminology), as
a function of the aspect ratio of the labels involved. The next section
performs an analysis of such behavior, which requires some simplify-
ing assumptions, but which yields more general results than could be
obtained by analyzing individual instances of representations such as
those in Figure 2.



Since we will be interested in trends in the performance of a repre-
sentation for trees whose depth D is large, we finally define

A∞ = lim
D→∞

A ; ρ∞ = lim
D→∞

ρ

Al,∞ = lim
D→∞

Al ; ρl,∞ = lim
D→∞

ρl

Of course, in practical settings, D is always limited by the size of data
sets and the resolution of output media. However, the resolution and
physical size of common display devices have increased steadily over
recent years, and many tree data sets are deep enough to require some
amount of zooming before viewing leaf nodes. It seems reasonable to
us to evaluate the limit of various metrics as D → ∞, because repre-
sentations with better asymptotic efficiency should perform better at a
given display resolution and require less zooming.

4 ASYMPTOTIC ANALYSIS OF TREE REPRESENTATIONS

This section analyses the representation styles in Figure 1 and a few
other figures. The analysis considers complete B-ary trees with depth
D ≥ 1 and B ≥ 2, where all nodes at the same depth i have the same
area ai = a(ni). In addition, we assume that each node contains a rect-
angular label with aspect ratio L ≥ 1, where the label must fit within
the confines of the node without overlapping descendants, and the la-
bel is made as large as possible, rotating the label by an arbitrary angle
if necessary to better fit the node. For example, in the leaf nodes of 1C,
labels would be oriented vertically, and in the leaf nodes of 1E they
would be oriented along radial lines. Note also that L is constant for
the entire tree, hence it might be thought of as the maximum length of
strings, or the maximum aspect ratio of images.

Of course, in practical settings, real trees seldom have the properties
of being complete, with a fixed branching factor B, and labels of fixed
aspect ratio. However, these assumptions will allow our analysis to
shed significant light on basic differences between the various styles
of tree representations.

The results are presented in Table 1. For each representation, the
table reports the mean area exponent, area associated with leaf nodes,
and total area, for both nodes and labels, including limits as D → ∞.
Tree representations are also ranked by the various metrics.

The last row in Table 1 lists some additional simplifying assump-
tions that were used in certain cases. These simplify the expressions
appearing in the table, focusing attention on behavior in the most im-
portant cases. In almost all cases, it would be an easy matter to remove
these assumptions and work out a more complete analysis, however
this would clutter the table with more complicated results and would
probably not yield any important insights.

In the following subsections, we discuss our choice of the represen-
tations that were analyzed, and then present the mathematical details
of the analyses, case-by-case. Readers uninterested in these details
may prefer to skip ahead to Section 5, and the later sections, where the
results and their implications are discussed.

4.1 Choice of Representations to Analyze

Initially, we chose to analyze the representations in Figures 1 and 4,
because they include key representations from previous visualization
literature, as well as some interesting variants. In particular, 1B is a
variant of 1A that better accommodates long labels, 4C serves as an
example where ρ has a high value (and turns out to have an excellent
Al,∞ value, as will be seen), and 1G is an “extreme” treemap where the
margins have zero thickness and labels only appear on leaf nodes. (Al-
though such a treemap is ambiguous for homogeneous trees, treemaps
without margins and without labels on non-leaf nodes are used in prac-
tice, for example in software such as SequoiaView.)

The initial analysis of this set of representations had two outcomes
that led to analyzing additional representations. First, it became appar-
ent that leaf nodes are larger if they are laid out along a longer curve
(e.g. the leaf nodes in 1E, and their labels, are larger than those in
1C/4B, because in the former case they are laid out along a curve of
length π , and in the latter case they are laid out along a curve of length
1). This led us to invent and analyze the representation in Figure 8,
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iń
sk

i
(l

ay
er

ed
)

v
ar

ia
n
t

v
ar

ia
n
t

ci
rc

le
s

ci
rc

le
s

w
it

h
o
u
t

o
u
tl

in
e

sq
u
ar

es
w

it
h

m
ar

g
in

s
ca

rp
et

fr
ac

ta
l

m
ar

g
in

s
an

d
la

b
el

s

ρ
0

0
1

2
0

1
−

Θ
(

1 D
lo

g
B

D
)

ρ
∞
−

Θ
(

1 D
)

−
∞

Θ
(

1 B
D
)

1
−

Θ
(

1 D
lo

g
B

D
)

ρ
∞
−

Θ
(

1 D
)

lo
g

8
9
−

Θ
(

1 D
)

ρ
∞

0
0

1
2

0
1

2
lo

g
B
(1

/φ
)
≤

2
−

∞
0

1
lo

g
B

B
+

1
/L

1
−

m
>

1
lo

g
8

9
≈

1
.0

5
7

a
(n

D
)

1
B

2
D

Θ
(

1
D

B
D
)

Θ
(

1
D

B
D
)

Θ
(

B
−

1
B

B
2

D
)

Θ
(

π
2

2
B

2
D
)

Θ
(

π
2
D

B
D
)

π
4
(1

/φ
)2

D
1 B
D

Θ
(

B
−

1
B

B
D
)

Θ
(

2
D

B
D
)

(

1
−

m
B
+

1
/L

)

D
1

(B
+

1
)D

R
an

k
9

5
5

1
0

8
4

7
1

2
3

6
6

A
Θ

(
B

(B
−

1
)B

D
)

Θ
(

B
(B
−

1
)D

)
1

1
Θ

(
π

2
B

2
(B
−

1
)B

D
)

π
/4

≈
0
.7

8
5

π
/4

≈
0
.7

8
5

1
1
−

Θ
(

K
(B
−

1
)D

B
B

D
)

1
−

Θ
(

1 D
2
)

1
1

A
∞

0
0

1
1

0
π
/4

≈
0
.7

8
5

π
/4

≈
0
.7

8
5

1
1

1
1

1

R
an

k
7

5
1

1
6

4
4

1
2

3
1

1

ρ
l

0
0

2
−

Θ
(

2 D
lo

g
B

D
)

2
0

2
−

Θ
(

2 D
lo

g
B

D
)

ρ
l,

∞
−

Θ
(

1 D
)

−
∞

0
2
−

Θ
(

2 D
lo

g
B

D
)

ρ
l,

∞
−

Θ
(

1 D
)

lo
g

8
9
−

Θ
(

1 D
)

ρ
l,

∞
0

0
2

2
0

2
2

lo
g

B
(1

/φ
)
≤

2
−

∞
0

2
lo

g
B

B
+

1
/L

1
−

m
>

1
lo

g
8

9
≈

1
.0

5
7

a
l(

n
D
)

1
L

B
2

D
L

B
2

D
L

B
2

D
1

L
B

2
D

Θ
(

π
2

2
L

B
2

D
)

Θ
(

π
2
L

B
2

D
)

L
(L

2
+

1
)(

1
/φ

)2
D

1
L

B
D

Θ
(

L
(B
−

1
)2

B
2
B

2
D

)
Θ

(
1
6
L

B
2

D
)

1 L

(

1
−

m
B
+

1
/L

)

D
1

L
(B

+
1
)D

R
an

k
9

6
6

9
8

5
3

1
7

4
2

2

A
l

Θ
(

B
L
(B
−

1
)B

D
)

Θ
(

B
L

(B
−

1
)B

D
)

Θ
((

2
−

1 L
)(

B
+

1
B
−

1
)

1 D
)

A
l,

∞
−

Θ
(

1 B
D
)

Θ
(

π
2
B

2
L
(B
−

1
)B

D
)

Θ
(

π D
2
)

A
l,

∞
+

Θ
((

B
φ

2
)D

)
1
/L

Θ
(

L
(B
−

1
)

B
B

D
)

Θ
(

4 D
2
)

A
l,

∞
+

Θ
(k

D
)

1
/L

A
l,

∞
0

0
0

B
(B
−

1
)L

≤
1

0
0

L
(L

2
+

1
)

(1
−

2
φ
)2

(1
−

B
φ

2
)
<

1 2
1
/L

≤
1

0
0

(1
−

m
)2

(B
+

1
)L

(B
L
+

1
)2
−

(B
L
(1
−

m
))

2
<

3 4
1
/L

≤
1

R
an

k
1
1

8
5

1
1
0

7
4

2
9

6
3

2

N
o
te

s
as

su
m

es
as

su
m

es
as

su
m

es
as

su
m

es
as

su
m

es
B

=
8

L
≥

2
B
≥

4
D

ev
en

B
m

u
lt

ip
le

o
f

4
D

ev
en

Table 1. The space-efficiency of several tree representations. In each
row of rankings, 1 means best. Rankings are based first on upper
bounds and limits, and then on Θ-complexity, comparing “hidden” con-
stants (shown explicitly in many cases to aid comparison) to break ties.



where leaf nodes are laid out along a curve of length almost 4 (mak-
ing its leaf nodes and leaf labels even larger), and whose total area
A is nearly optimal. Second, it became apparent that treemaps have
promising space-efficiency properties. (Although it has long been ac-
knowledged that treemaps are optimal in terms of total area A, it was
initially unclear to us how efficient treemaps would be in terms of label
size, and our evaluation of multiple metrics clarified this.) It became
clear that we should analyze a treemap where there are margins be-
tween nodes and labels on every node, hence we added the case in
Figure 9. Finally, we added the case in Figure 10, which is inspired
by a kind of fractal, and which we suspected would have excellent
space-efficiency and be interesting to compare to treemaps and other
representations.

4.2 Case-By-Case Analysis

4.2.1 Case 1A/4A

Section 3.4 already found the values of ρ , ai, a(nD), and A for Fig-
ure 1A/4A, from which the values of ρ∞ and A∞ follow immediately,
allowing us to fill several cells in the first column of Table 1. (Note
that the asymptotic expressions in the table sometimes explicitly show
the (normally hidden) coefficient of the leading term, e.g. showing
A = Θ(B/((B−1)BD)) rather than A = Θ(1/BD), to aid in comparing
the metrics of various representations.)

We must next determine the area al(ni) of a label on a node at depth
i. Because each node is a square with area a(ni), a label with aspect
ratio L ≥ 1 within the square will have area a(ni)/L (see Figure 6,
top right and bottom right, for examples). Hence al(ni) = a(ni)/L =
1/(LB2D), and the values of ρl , ρl,∞, al(nD), Al , and Al,∞ all follow by
straightforward application of their definitions, completing the entries
in the first column of Table 1.

Fig. 6. Labels are shown in dashed red, enclosed by nodes in solid
blue. Labels have a fixed aspect ratio L (equal to 1 in the examples of
the bottom row, and greater than 1 in the top row). If the aspect ratio
of nodes grows arbitrarily large with depth D (the examples at left), then
label area al(n) will be proportional to L. On the other hand, if the aspect
ratio of nodes stays fixed as D increases (the examples at right), then
label area al(n) will be inversely proportional to L.

4.2.2 Case 1B

In Figure 1B, as with the previous case, we have nodes all of equal
area, and leaf nodes tiling one edge of the unit square (hence h(i) =
1/BD), but now the nodes are rectangles with width w(i) = 1/(D+1),

allowing more area to be filled. So ai = 1
(D+1)BD and

A =
D

∑
i=0

Bi 1

(D+1)BD
=

(BD+1 −1)

(B−1)

1

(D+1)BD
= Θ(

B

(B−1)D
)

and A∞ = 0. Also, because all nodes have the same area, we again
have ρ = ρ∞ = 0.

To find the area of labels, we note that, unlike the previous case,
the aspect ratio of nodes grows arbitrarily large as D increases. This
is because the height h(i) of each node decreases much faster than the
w(i). Hence, labels will look like those in Figure 6, top left and bottom
left, and will have an area proportional to L (assuming a sufficiently
large D, to ensure that the node’s aspect ratio is greater than L). In

particular, al(ni) = L(h(i))2 = L/B2D. Because all labels have the
same size, it follows that ρl = ρl,∞ = 0. Finally

Al =
D

∑
i=0

Bi L

B2D
=

(BD+1 −1)

(B−1)

L

B2D
= Θ(

BL

(B−1)BD
)

and Al,∞ = 0.

4.2.3 Case 1C/4B

Section 3.4 found the values of ρ , ai, a(nD), and A for this case, from
which the values of ρ∞ and A∞ follow immediately. Similar to the
previous case, nodes become arbitrarily “skinny” as D increases. For
sufficiently large D, the labels on leaf nodes will be rotated to be ori-
ented vertically and have area al(nD) = L(w(D))2 = L/B2D, whereas
the label on the root node will be oriented horizontally and have area
al(n0) = L(h(0))2 = L/(D+1)2. Hence,

ρl = logB

(

al(n0)

al(nD)

)1/D

= logB

(

B2D

(D+1)2

)1/D

= logB B2 − logB(D+1)2/D = 2−Θ(
2

D
logB D)

and ρl,∞ = 2.
Next, we must calculate Al , which requires carefully considering

the labels that can fit within the nodes. Let i1 = logB((D + 1)/L),
i2 = logB(D + 1), and i3 = logB(L(D + 1)). If i2 is an integer, nodes
at depth i = i2 are squares. At depth i < i2, nodes are wider than high
(i.e. w(i) > h(i)), and labels are oriented horizontally. At depth i > i2,
we have the opposite situation, and labels are rotated to be oriented
vertically. And at depth i < i1 or i > i3, the aspect ratio of the nodes is
greater than the aspect ratio L of the label. This leads to the following
piece-wise expression for label area:

al(ni) =















L(h(i))2 = L/(D+1)2 if i ≤ i1
(w(i))2/L = 1/(LB2i) if i1 ≤ i ≤ i2
(h(i))2/L = 1/(L(D+1)2) if i2 ≤ i ≤ i3
L(w(i))2 = L/B2i if i3 ≤ i

Hence, the summation for calculating Al can be split into four summa-
tions, one for each of the pieces defining al(ni), which we summarize
here without the full details:

Al =
D

∑
i=0

Bial(ni)

= ∑
0≤i≤i1

Bi L

(D+1)2
+ ∑

i1<i≤i2

Bi 1

LB2i

+ ∑
i2<i≤i3

Bi 1

L(D+1)2
+ ∑

i3<i≤D

Bi L

B2i

≈ (B+1)(2−1/L)

(B−1)(D+1)
− L

B−1

(

1

(D+1)2
+

1

BD

)

= Θ

((

2− 1

L

)(

B+1

B−1

)

1

D

)

The step in the above calculation that involves an approximation is
exact if i1, i2, and i3 are integers and D is sufficiently large.

Finally, we clearly have Al,∞ = 0.

4.2.4 Case 4C

Section 3.4 found the values of ρ , ai, a(nD), and A for this case, from
which the values of ρ∞ and A∞ follow immediately. If we assume that

L ≥ 2 (the more typical case), we find al(ni) = (w(i))2/L = 1/(LB2i).
It is easy to confirm, then, that

Al =
D

∑
i=0

Bial(ni) =
B

(B−1)L
− 1

(B−1)LBD
=

B

(B−1)L
−Θ(

1

BD
)



hence Al,∞ = B/((B−1)L). The values for ρl , ρl,∞, and al(nD) listed
in the table are also easy to verify.

Actually, the above results (that are reported in Table 1) do not only
hold for L ≥ 2, but also hold more generally if the label’s aspect ratio
L is greater than or equal to the node’s aspect ratio (i.e. L ≥ (BD+1 −
1)/((B− 1)BD) < 2). In the opposite case, where 1 ≤ L ≤ (BD+1 −
1)/((B−1)BD), we instead find that al(nD) = Θ(L(B−1)2/(B2B2D))
and Al = L(B− 1)/B + Θ(1/BD). The results for this opposite case
are omitted from Table 1 for brevity, but are reported in Table 2 where
we need them to rank representations as a function of L.

4.2.5 Case 1D

All nodes in this case are squares of equal size. The leaf nodes
have their centers on a circle with radius almost 1/2 and circumfer-
ence almost π (with this approximation becoming arbitrarily good as
D increases). The side length of each node is well approximated by

π/((
√

2)BD), where the factor of
√

2 ensures that corners of adjacent

leaf nodes need never overlap. It follows that a(ni)≈ π2/(2B2D), from
which it is easy to confirm the values of the metrics listed in Table 1
for this case.

4.2.6 Case 1E

In a circle of radius r, a sector (i.e. a “pie slice”-shaped region) with

angle θ radians has area θ
2π πr2 = 1

2 θr2. The area of each node in
Figure 1E can be expressed as the difference in area between two
overlapping sectors with the same angle but different radii. The an-
gle corresponding to a node at depth i is 2π/Bi, and the radii of the

corresponding sectors are i
2(D+1)

and i+1
2(D+1)

. So the area of the node

is

a(ni) =
1

2

2π

Bi

(

(

i+1

2(D+1)

)2

−
(

i

2(D+1)

)2
)

=
π(2i+1)

4(D+1)2Bi

It is then straightforward to verify that A∞ = A = ∑D
i=0 Biai =

π/4, as we should expect from the figure, and also that a(nD) =
Θ(π/(2DBD)). Next, we find

ρ = logB

(

a(n0)

a(nD)

)1/D

= logB

(

BD

2D+1

)1/D

= 1− logB(2D+1)1/D = 1−Θ

(

1

D
logB D

)

Unlike the previous cases where ρ is a constant, here ρ is a function
of D, with ρ < 1. Evaluating the limit, we find ρ∞ = 1.

Next we analyze the size of labels. For the label on the root
node, we make use of the fact that the area of a rectangle (such as
a rectangular label) of aspect ratio L ≥ 1 inscribed within a circle
of radius r is 4Lr2/(L2 + 1). Since the radius of the root node is
1/(2(D + 1)), we deduce that the area of the root node’s label is

al(n0) = L/((L2 + 1)(D + 1)2). As for leaf labels, we know that if
D is large, the leaf nodes can be well approximated as skinny rectan-
gles that are much longer than wide, with width (D/(D+1))(π/BD).
Hence al(nD) ≈ Lπ2/B2D for large D. Calculating ρl and ρl,∞ is then
straightforward.

To find Al , we first note that Al is bounded below by the area of
the root label al(n0) = L/((L2 + 1)(D + 1)2) = Θ(1/D2). Next, an
upper bound on Al can be found by approximating all nodes (except
for the root) with rectangles containing appropriately oriented labels.
We can then find an approximating upper bound on al(ni) defined in
four pieces, closely analogous to that used in Section 4.2.3. Once
again, we can split Al into four summations, to find an upper bound
on Al that is Θ(1/D2). Because the lower and upper bounds have
the same Θ-complexity, this establishes the asymptotically tight bound
of Al = Θ(1/D2). Furthermore, the detailed calculations involved in
the approximating upper bound suggest that the hidden constant is π ,
hence Al is given as Θ(π/D2) in Table 1.

Note that, although the value of the hidden constant for Al may only
be approximate, its value only makes a difference when comparatively
ranking representations with the same complexity. In Table 1, the only
other representation whose Al has the same complexity is that in Fig-
ure 8, whose Al value was found with an approximation so similar
to 1E’s that any error in the hidden constants would not change their
relative ranking.

4.2.7 Case 1F

In this representation, we assume that the circles corresponding to sib-
ling nodes are laid out with their centers in a circle, so they are inside,
and tangent to, the parent node’s circle.

It can be shown that the ratio φ < 1 of a node’s circle’s radius to its
parent’s circle’s radius is

φ =
sin(π/B)

1+ sin(π/B)

(This is shown in [17]). Note that since B ≥ 2, we have 0 < φ ≤ 0.5.
Since the radius of the root node’s circle is 0.5, the radius r(i) of a

node at depth i is r(i) = 0.5φ i, and its area is

π(r(i))2 =
1

4
πφ 2i

Recall that a(ni) is defined as the area of the node after subtracting
away the overlapping area of descendants, which in this case means
subtracting away the area of the B children whenever i < D:

a(ni) =

{

1
4 πφ 2i if i = D
1
4 πφ 2i(1−Bφ 2) otherwise

It is easy to check that A = A∞ = π/4. The mean area exponent is

ρ = logB

(

a(n0)

a(nD)

)1/D

= logB

(

1−Bφ 2

φ 2D

)1/D

= 2logB

1

φ
− 1

D
logB

1

1−Bφ 2
= 2logB

1

φ
−Θ(

1

D
)

As with the previous case, ρ is a function of D, now with ρ < 2. We
note that φ ≈ π/B for large B, and

ρ∞ = lim
D→∞

ρ = logB

1

φ 2
= 2logB

(

1+
1

sin(π/B)

)

≤ 2

The formula used in the previous subsection (1E), for the area of a
rectangle inscribed within a circle, can again be applied to show that
the area of leaf labels in this case is al(nD) = L/((L2 + 1)(1/φ)2D).
For labels on non-leaf nodes, we simplify calculations by assuming
that labels are inscribed within a circle that is itself inscribed within
the child nodes (Figure 7). The circle inscribed within the children,
i.e. the dashed red circle in Figure 7, has radius r(i)− 2r(i + 1) =
φ i(0.5 − φ), hence the label inscribed within it has area al(ni) =
4Lφ 2i(0.5− φ)2/(L2 + 1). This is not the optimal label size, but is
an excellent approximation of the optimal size for large B. It is then a
straightforward exercise to calculate ρl , ρl,∞, Al and Al,∞.

(The results for Case 1F in Table 1 assume B ≥ 4, as indicated in
the last row of the table. For B = 2 and B = 3, a different choice of
label position makes the non-leaf labels significantly larger, but this
would not change al(nD) nor the upper bound of Al,∞ ≤ 1/2 that we
give in Table 1, and therefore would not change the rankings given in
Table 1.)

4.2.8 Case 1G

The representation shown in Figure 1G is a slice-and-dice treemap
[14]. The figure shows thin margins around each set of child nodes
for illustration purposes. However, here we consider the extreme case
where the margins have thickness zero and can be ignored. Because
ai is defined as the area of a node after subtracting away the area of



Fig. 7. The representation from Figure 1F with B = 10 and D = 2. Nodes
are shown in black. Red rectangles, inscribed within the dashed red
circles, show where we assume the labels are for the root node and for
the root’s children. The labels’ aspect ratio L = 2 in this example. (For
simplicity, labels on leaf nodes are not shown.)

descendant nodes, the leaf nodes are the only nodes with non-zero
area, and the leaf nodes furthermore cover all the available area:

ai =

{

1/BD if i = D
0 otherwise

It follows that A = A∞ = 1. Also, because a0 = 0 and aD > 0, we have
ρ = ρ∞ = −∞.

As indicated by ρ = −∞, the treemap allocates all area to its leaf
nodes. We could of course modify the treemap to have margins, which
would increase the value of ρ . We consider such a case later.

The analysis of label area is simple if we assume D is even (ensuring
leaf nodes are square), yielding the results in Table 1. For D odd, the
results are slightly different, and omitted for brevity.

4.2.9 Case 1H

This representation corresponds to the “indented outline” tree views
used in many file browsers and other software. Nodes are rectangles
of constant height, stacked in a single column. The top-to-bottom or-
dering of rectangles corresponds to a depth-first traversal of the tree.
Each rectangle is indented to the right by a distance proportional to its
depth.

The height of each node is h(i) = (B − 1)/(BD+1 − 1). Let the
indentation per level be Kh(i), a constant multiple of the height, where
K > 0. Then the width of the nodes is w(i) = 1− iKh(i), and

ai =
(B−1)(1− iKh(i))

BD+1 −1
=

(B−1)(BD+1 −1−K(B−1)i)

(BD+1 −1)2

We omit the details of calculating A, and simply give the result:

A = 1− KB(DBD(B−1)−BD +1)

(BD+1 −1)2
= 1−Θ

(

K(B−1)D

B BD

)

hence A∞ = 1. Also, it is straightforward to show that

ρ = − 1

D
logB

(

1− KD(B−1)

BD+1 −1

)

≥ 0

Next, consider that for any quantity x that approaches zero, we have
logB(1+x) = Θ(x/ lnB) = Θ(x). This fact can be used to simplify the

above expression for ρ , yielding ρ = Θ(1/BD). We also have ρ∞ = 0.

Finally, it is straightforward to also calculate the metrics related to
label area, reported in Table 1.

4.2.10 Case 8

One result of our analysis which we noticed early on is that the leaf
nodes (and labels) in 1E are larger than those in 1C, because the leaf
nodes are laid out along a curve of length π rather than a curve of
length 1. This led us to invent the representation in Figure 8, where
leaf nodes are laid out along (most of) the 4 edges of the bounding unit
square, having a length of almost 4. This concentric squares represen-
tation leaves small corners of the unit square unused, but nevertheless
outperforms the 1E representation in terms of all the area metrics.

Fig. 8. A concentric squares representation, with B = 4 and D = 4. No-
tice that A < 1 because of the small square regions in the corners that
are not used.

To simplify the analysis of this representation, we assume that B is
a multiple of 4 (note that any B value could be used with concentric
squares, albeit perhaps less efficiently). We also assume the concentric
squares increase in size with a constant step, i.e. the side length of the
squares is (i+1)/(D+1) for i = 0, . . . ,D, analogous to the concentric
circles in 1E. It follows that the area of the root node is a(n0) = 1/(D+
1)2, the area of the four unused corners is equal to a(n0), and the area

of each leaf node is a(nD) = 2D/((D + 1)2BD). We omit the further
details of the calculations, which are simple for most of the metrics.
The calculation of Al is non-trivial, but can be done in a very similar
manner to how Al was calculated in Sections 4.2.3 and 4.2.6, i.e. with
a summation split into four parts. The non-leaf nodes are trapezoids in
this case, but can again be approximated with rectangles, leading to an
upper bound on Al , as was done in Section 4.2.6, and a lower bound
of the same complexity is found by simply considering the root node’s
label.

4.2.11 Case 9

Because treemaps (e.g. representation 1G) seem promising, we ana-
lyze a treemap with margins and with labels on all its nodes. We con-
sider the kind of treemap shown in Figure 9, where labels alternate in
orientation from one level to the next, to save space and simplify anal-
ysis. Nodes at even depths 0,2,4, . . . are squares (hence w(i) = h(i)
for even i) and have horizontally oriented labels. Nodes at odd depths
are rectangles and have vertically oriented labels. All labels have as-
pect ratio L. Given i even, the labels at depths i and i+1 are the same
size, and the size of labels is chosen so that each label at depth i + 1
matches the height of the nodes at depth i + 2. The sizes and relative
positions of labels and margins within nodes at depths i and i + 1 are
simply scaled down for each of the nodes at depths i + 2 and i + 3,
respectively. The only exception to this is at i = D, where labels are at
maximum size within leaf nodes.

Let m ≥ 0 be the small fraction of the height (or width) of each
node at even depth that is devoted to margins, with m independent
of i or L. Next, consider the labels at depth 0 and 1, and how their
dimensions along the vertical axis must add up to the total length 1−m
not used for margins. There is 1 label at depth 0, with vertical size
hl(0), and B labels at depth 1, each with vertical size wl(0) (because
they have the same dimensions as the root label, only rotated). Hence,
hl(0)+Bwl(0) = 1−m. Since wl(0) = Lhl(0), it follows that hl(0) =



Fig. 9. A treemap with margins and labels, with branching factor B = 3

and depth D = 4. Rather than show actual labels, the bounding rect-
angles for the labels are shown in black, and have an aspect ratio of
L = 3.5 in this example. The root node’s label is at upper left; there are
also 34 = 81 leaf nodes, each with their own label.

(1−m)/(1+BL). More generally, for i even, it can be shown that

hl(i)

h(i)
=

1−m

BL+1
;

h(i+2)

h(i)
=

w(i+2)

w(i)
=

1−m

B+1/L

The area of each square corresponding to a node at even depth i is

w(i)h(i) = (w(i))2 =

(

1−m

B+1/L

)i

(Note that the above expression is not equal to ai, because ai is defined
as the area after subtracting away the area of descendants.) Assuming
D even, it is straightforward to confirm the values given in Table 1 for
ρ , ρ∞, and a(nD), and clearly A = A∞ = 1.

The area of a label is

al(ni) =

{

al(ni−1) if i odd or i = D

1
L

(

1−m
B+1/L

)i+2
otherwise

Assuming D even, the values of ρl , ρl,∞, and al(nD) given in Table 1
follow. Though we omit the demonstration, for D even it can also be
shown that

Al =
(1−m)2(B+1)L

(BL+1)2 − (BL(1−m))2
+kD

(

1

L
− (1−m)2(B+1)L

(BL+1)2 − (BL(1−m))2

)

where k = (1−m)/(1+1/(BL)) < 1. (Note that Al is close to 1 for m
small, B large, D small, and L = 1.) Evaluating the limit, we find

Al,∞ = lim
D→∞

Al =
(1−m)2(B+1)L

(BL+1)2 − (BL(1−m))2

Keeping in mind that B ≥ 2, L ≥ 1, and m ≥ 0, it can be shown that
the above is bounded by Al,∞ < 3/4. (Note that Al,∞ is close to 3/4 for
m small, B small, and L large). Thus, the treemap in Figure 9 fills all
available area (A = 1), and has excellent leaf label area with al(nD) =
1
L ( 1−m

B+1/L
)D; but in the limit, as D → ∞, its labels use less than 75% of

the available area (Al,∞ < 3/4). In contrast, the treemap in Figure 1G

also has A = 1, has better leaf label area al(nD) = Θ( 1
LBD ), and its

Al,∞ can be as high as 1 (depending on L), but it has the significant
disadvantage of having no labels on non-leaf nodes.

As a side note, there is an interesting variation on 1G that allows
all nodes to be labeled. The idea is to temporarily add an extra child
to each non-leaf node, yielding a (B + 1)-ary tree, and then generate
a layout using the representation in Figure 1G, and then use the space
allocated for the temporary children to display labels of their parent
nodes. This allows all of the original nodes to be labeled, and yields a

leaf label area al(nD) = 1
L a(nD) = 1

L(B+1)D (assuming D even). Fur-

ther analysis also shows that Al,∞ ≤ 11/15 (with Al,∞ = 11/15 when
B = 2 and L = 3). The bound on Al,∞ here is not as high as in Fig-
ure 9, so we did not include this case in Table 1, but it is interesting
that 11/15 is so close to 3/4.

4.2.12 Case 10

Is it possible for a representation to allow labels on all nodes (al(ni) >
0 for all i), and not only occupy all available area (A = 1), but also
use all available area by filling it with labels (Al = A = 1)? Figure 10
shows an example of a tree representation with these properties for the
special case B = 8 and L = 1. Consider first the case where B = 8 and
L ≥ 1 is variable. All nodes in the representation are squares, the total
area A = A∞ = 1, total label area Al = Al,∞ = 1/L, and the leaf label

area al(nD) = 1
L a(nD) = 1

L(B+1)D is comparable to that in Figure 9. It

can also be shown that ρ = ρl = D−1
D log8 9 and ρ∞ = ρl,∞ = log8 9 ≈

1.057. If L = 1, then Al = A = 1, as we sought.

Fig. 10. A tree representation with B = 8 and D = 4 based on the
Sierpiński carpet fractal. Each non-leaf node is surrounded by its 8
children. The root node is white, surrounded by its 8 children in blue,
and the leaf nodes are green, surrounding their parents in red. Notice
that the bottom two levels consist of nodes of the same size.

Note that the representation in Figure 10 can be extended to cases
where B = (a2 −1)b2, for integers a ≥ 2 and b ≥ 1. To see how, imag-
ine a “generating pattern” for the representation in Figure 10 based on
a grid of 3× 3 cells, where the central cell is the root node and each
of the other 8 cells are recursively subdivided. Now, imagine instead
a grid of a× a cells, where one cell is the root node and each of the
other (a2 −1) cells are further divided into a b×b smaller cells, each
of which is then recursively subdivided. Similar tricks can be used to
extend the representation to other values of B if rectangular nodes are
used (appropriate for labels with L > 1) and/or a small amount of area
is left unused after tiling most of the grid with nodes.

5 DISCUSSION

5.1 General observations

Perhaps the most important thing that Table 1 allows us to do is
compare different representations. When Stasko and Zhang [27] de-
scribed Sunburst (essentially 1E) as “space-filling”, with the qualifica-
tion that it does “not completely occupy the display space as does the
Treemap”, they were presumably referring to the fact that A = π/4 < 1
for 1E. Our analysis allows us to compare 1E with many other repre-
sentations (including treemaps), not just in terms of total area A, but
according to all the metrics we have considered. Doing so reveals
some subtle issues that go beyond the fact that A < 1 for 1E. For exam-
ple, we could compare 1E with 1C which, like treemaps, have optimal
total area A = 1. (1E and 1C are also interesting to compare because
the former is a polar coordinate version of the latter.) We find that 1E
has leaf nodes that are (asymptotically) ≈ π/2 times larger, and leaf

labels ≈ π2 times larger, than those in 1C, despite the fact that both
representations must fit within the same 1×1 square, and 1E doesn’t



even take up all the available space! So, there are clearly some impor-
tant advantages in 1E that might make it preferable over 1C, despite
the fact that 1E “does not completely occupy the display space” like
1C does.

It is worth noting how misleading metrics that ignore label size can
be. For example, cases 1C, 1H, and 8 all have optimal asymptotic total
area A∞ = 1, however their asymptotic total label area Al,∞ = 0 is as
bad as can be. Case 1H is a particularly dramatic example: in Table 1,
it is ranked 2nd in terms of both leaf area a(nD) and total area A, and

the complexity of its leaf area a(nD) = Θ(1/BD) is as good as can be
(ignoring leading coefficients), yet this representation is ranked 9th in
terms of total label area Al . More generally, any representations that
have leaf nodes that become arbitrarily “skinny” with depth D (i.e. 1B,
1C, 1E, 1H, 8) will have leaf area a(nD) values much larger than their
leaf label area al(nD), because the mismatch between the aspect ratios
of the leaf nodes and labels grows arbitrarily bad with depth D, hence
most of the area within each leaf node will not be used by the label.
This clearly demonstrates the importance of taking into account label
size to evaluate the space-efficiency of tree representations.

One pattern that can be seen in the leaf label area values is that rep-
resentations with arbitrarily skinny leaf nodes (1B, 1C, 1E, 1H, 8) have
al(nD) proportional to L, because they correspond to the situation in
Figure 6, top left and bottom left. On the other hand, representations
whose leaf nodes have a roughly fixed aspect ratio correspond to the
situation in Figure 6, top right and bottom right, and have al(nD) in-
versely proportional to L — this is true, or approximately true, of all
the other representations analyzed.

It is also interesting that, within the set of representations with ar-
bitrarily skinny leaf nodes (1B, 1C, 1E, 1H, 8), the leaf nodes are laid
out, or tiled, along a 1-dimensional curve. In cases 1B, 1C, and 1H,
this curve is an edge of the 1×1 bounding square, and has length 1. In
case 1E, the curve is the circumference of an inscribed circle, and has
length π . In 8, the curve is (most of) the 4 edges of the 1×1 bounding
square, with length almost 4. In all these cases, the labels on the leaf
nodes are oriented perpendicular to the direction of the tiling, and as
D → ∞ there is plenty of room for the labels in this perpendicular di-
rection. The size of the labels is only constrained along the direction
of tiling, and hence the length of the curve is the limiting factor for the
size of leaf labels. The complexity of al(nD) = Θ(L/B2D) is the same
(ignoring leading coefficients) for all these cases, but the leading coef-
ficients reveal that the representations with longer curves have larger
al(nD) values. This explains why 1E has a better al(nD) value than 1B
or 1C, and also why the representation in Figure 8 is the best of the set.
In fact, our invention and analysis of representation 8 was motivated
by a desire to tile the leaf nodes along a longer curve than in 1E, as
well as a desire to fill more of the corners of the available area than
does 1E. Finally, it is also clear why 1H has the worst al(nD) value
of the set of representations: it tiles all nodes along the same curve of
length 1 rather than just tiling leaf nodes.

Certain other representations (i.e. 1A, 4C, 1D) also tile their leaf
nodes along a curve, but are worse because their leaf nodes have a fixed
aspect ratio. Hence, labels are constrained both along the direction of
tiling and perpendicular to it, and al(nD) = Θ(1/(LB2D)) is inversely
proportional to L for these representations.

In addition to tiling nodes along a longer curve (Figure 8), another
approach we experimented with to create more space for leaf nodes
is shown in Figure 11, right. This is a variation on 1E where the last
level of nodes is “rotated” to lie along radial lines instead of along a
circumference; we call this an asymmetrical representation. (Such a
rotation of nodes is comparable to the “folding” in section 4.1 of [8].)
To avoid confusion, in an incomplete tree, such rotation should only
be applied to the deepest level of leaf nodes, and not to leaf nodes on
more shallow levels.

5.2 Comments on 1H

The indented outline representation (1H) is interesting for a few rea-
sons. Prior to our analysis, we expected this representation to perform
rather well, because it allows nodes to be tiled vertically while also al-
lowing long labels to extend horizontally without introducing any extra

Fig. 11. Two different representations with B = 4 and D = 5. At left is
a normal case, with radii of circles chosen so ρ = 1. As can be seen,
the leaf nodes, appearing in the outermost ring, are crowded beyond
legibility, making the ring appear almost black. At right, nodes on levels
0 through 4 are shown as usual with the central circle and the inner
4 rings, however the leaf nodes (in red) are then distributed over the
subsequent 4 outer rings. Each set of B leaf nodes with a common
parent (in gray) is effectively “rotated” and laid along a radial line from
its parent. This allows leaf nodes to retain a useful size, unlike the case
on the left.

space between nodes. Now, in a practical setting, the nodes in such a
representation are typically not nearly as wide as the representation is
tall; for example, the tree might contain 200 hundred nodes, each of
which has a label that is a mere 25 characters long, so the aspect ratio
of a rectangle bounding the representation might be ≈ 200/25. For
the sake of our analysis, however, to enable fair comparison with other
representations, we imposed the same 1×1 bounding square as with
all the representations, and therefore we made the nodes in 1H extend
horizontally as far as possible to fill the available space. The results
partially confirmed our expectations: al(nD) is proportional to L (in-
dicating that labels have room to “grow” without any penalty) and,
as D → ∞, we have A∞ = 1, i.e. the space left unused by indentation
becomes negligible and the nodes fill all the available space. (Interest-
ingly, 1H is the only representation we have found for which A∞ = 1
while all the nodes have asymptotically the same size, i.e. ρ∞ = 0).
However, somewhat to our surprise, the total space used by labels goes
to zero (i.e. Al,∞ = 0) and 1H ranks relatively poorly in terms of leaf
label area and total label area. As explained in the previous section,
this is because the mismatch in aspect ratios of labels and nodes grows
without bound as D → ∞.

Now, what if we had instead modeled this representation as it is
typically used in practice, i.e. with nodes that are just wide enough
to contain their labels instead of extending horizontally as far as pos-
sible? The bounding rectangle around the representation would then
have been tall and narrow instead of a square, and in the limit (as
D → ∞), all of the bounding rectangle’s area would be used by the la-
bels. But, in the limit, the aspect ratio of the bounding rectangle would
also go to infinity, so if a user zoomed out to fit the entire representa-
tion within their (square) screen, most of the available screen space
would be wasted. So, the end result of the analysis would be the same,
but the analysis would be complicated by having to consider the aspect
ratio of the bounding rectangle of the representation. This illustrates
why it is simpler and easier to bound all representations within a 1×1
bounding square from the start of analysis: if a tree representation
performs poorly within such a square (i.e. Al,∞ is small), there’s no
point in relaxing the constraint of a bounding square and re-analyzing,
since the poor performance may simply be re-expressed as a poor as-
pect ratio of the bounding rectangle, resulting in yet another metric to
consider.

Despite the relatively poor space-efficiency we found for 1H, this
indented outline representation is popular in user interfaces such as
file browsers. This popularity may partly be due to the fact that when
users are using an indented outline, they are typically zoomed in on
some subregion of the tree rather than looking at the entire tree, and



during scrolling they mostly only need to scroll vertically. It may also
have something to do with how users can expand or collapse subtrees,
and work their way down a path, by clicking on nodes and performing
small, similar, repeated mouse motions, e.g. motions down and right.
Such details are not captured in our analysis (though the incorpora-
tion of such interactive aspects would be an interesting direction for
future research). However, in examining the results of our analysis,
we found a way to improve the space-efficiency of 1H (in terms of
al(nD)), while remaining true to the basic idea of an indented layout.
The key was to combine 1B with 1H in a way that is exactly as space-
efficient as 1B (Figure 12). Such a hybrid might prove to be useful
in interactive software, combining advantages of 1H while being more
space-efficient.

Fig. 12. A hybrid of the representations in Figures 1B and 1H. Each
non-leaf node in 1B is shifted upwards to be aligned with its top-most
child. The result imitates the indentation in 1H, but requires no change
in node (or label) sizes, hence the labels have the same, larger size they
have in 1B.

5.3 Optimal Space-Efficiency?

Examining the rankings by label-oriented metrics in Table 1, we see
that the most space-efficient representations are 1G, 9, and 10. The
only representations that allow Al,∞ to achieve a value of 1 are 1G, 10,
and 4C (the last of which has one of the worst al(nD) values of all).
1G is unique in having the best possible a(nD), but has the important
disadvantage of not allowing labels on non-leaf nodes. 10 has itself
the severe disadvantage of only being efficient for certain values of B,
such as B = 8.

The remaining representation, 9, is perhaps the most space-efficient
“usable” representation. It also has a disadvantage, though arguably
less severe: our analysis showed that Al,∞ < 3/4 for this representa-
tion. Thus, in the limit, it is impossible to fully use all the available
space for labels. The value of the bound 3/4 is perhaps an artifact of the
size and placement we chose for nodes and labels in our treemap with
margins. However, the fact that there is a bound less than 1 probably
reflects a deeper limitation of treemaps with margins, and achieving
Al,∞ = 1 may be impossible without “filling up” the space to the right
of labels with nodes. It is an intriguing challenge to try to find an al-
ternative way to layout a treemap that would improve on our bound of
3/4, as this could have both theoretical and practical implications.

A more ambitious goal would be to find a tree representation for
which Al,∞ = 1 and al(nD) = Θ(1/BD), that (unlike 1G) allows la-
bels on all nodes. Ideally, such a representation would also be equally
efficient for all values of B and L.

One objection that might be raised against seeking optimal space-
efficiency is the following: even if some representation can be found
that has optimal Al,∞ and al(nD), there will likely be a perceptual ben-
efit in introducing some whitespace or margins between elements of
the representation, to help users better perceive appropriate groupings
of elements. This is a valid point, however, it would be preferable for
the amount of whitespace to be under the control of the user (or the
designer) and to be something that can be added to the representation
(e.g. in the form of margins), rather than there being a minimal amount
of whitespace imposed by the representation. Hence we still see value
in seeking representations that are optimal, i.e. that use all available
space.

5.4 Observations concerning ρ and ρl

Regarding the mean area exponent ρ , we point out that representations
can often be adjusted to yield different ρ values. For example, the hor-
izontal lines in 1C/4B are shifted downward to produce 4C, changing
the heights of nodes and the ρ value from 1 to 2. In an analogous
manner, Figure 13 shows how 1E can be adjusted to yield different ρ
values. Thus, one could imagine exposing ρ as a controllable parame-
ter to a designer or user, to “tune” a tree representation.

Fig. 13. Changing the radii of circles in Figure 1E allows us to create
a representation with any ρ value. Here, B = 4, D = 4, and from left to
right, ρ is 0, 0.33, 0.66, and 1, respectively, gradually allocating more
area to shallow nodes.

In terms of label-oriented metrics, the most space-efficient repre-
sentations in Table 1 that allow labels on all nodes (namely, 9, 10, and
1F, but not 1G since it only allows labels on leaf nodes) have ρl,∞ val-
ues between 1 and 2. Representations with ρl,∞ < 1 or ρl,∞ ≥ 2 are
ranked as less efficient.

Why would 1 ≤ ρl,∞ < 2 correspond to more efficient representa-
tions? Well, as D → ∞, the number of leaf nodes increases exponen-
tially, so their size (and label legibility) decreases exponentially. If ρl,∞
is low (ρl,∞ = 0, for example), then this exponential decrease in size
will also happen to labels on shallow nodes, making the representation
less efficient in terms of Al,∞. In contrast, if ρl,∞ ≈ 1, shallow labels
are more likely to remain legible as D increases, which would make
a zoomed-out overview of the tree more useful, with shallow labels
guiding the user during zoom-in operations. Finally, if ρl,∞ is high
(ρl,∞ ≥ 2), then the exponential decrease in size of deep labels will
be faster, making the representation less efficient in terms of al(nD).
Representations 9 and 10, arguably the 2 best representations overall,
have ρl,∞ only slightly larger than 1. This is not surprising, because
the best leaf label size al(nD) we could hope for would be something

slightly less than 1/BD, for which we expect ρl,∞ to be close to 1 (as-
suming the root label’s area al(n0) does not go to zero exponentially
fast as D → ∞). So, ρl,∞ values close to 1 seem to characterize the
most space-efficient representations in terms of label size.

We also note that neither al(nD) nor Al alone is always a good in-
dicator of space-efficiency. For example, 1G has optimal al(nD), but
does not allow labels on any non-leaf nodes, and 4C has the best Al,∞
value among the representations analyzed, but has a poor al(nD) value.
In contrast, the condition 1 ≤ ρl,∞ < 2 consistently corresponds only
to the most space-efficient forms we have analyzed. So, if the space-
efficiency of a representation is to be assessed with just a single metric,
it may be feasible to use ρl,∞ (or ρl , whose value as a function implies
the value of ρl,∞) as the metric of choice, rather than al(nD) or Al .
However, if two metrics can be used, we recommend using al(nD) and
Al , with the former taking precedence over the latter, because together
they provide more information than ρl alone. This is the approach
taken in Table 2 which is described next.

6 DESIGN IMPLICATIONS AND GUIDELINES

6.1 Further comparisons of representations

In Table 2, we have attempted to distill the most important information
in Table 1. We eliminated representations 10 (which we judge to be
impractical) and 1G (which, while used in practice in software such as
SequoiaView, has very limited support for labels). Representation 4C,
which we initially analyzed to illustrate a high-ρ case, turns out to have
an excellent total label area Al , and could be useful in a zoomable user
interface (ZUI) [3], and so is not eliminated in Table 2. We also report
only the most important label-oriented metrics in Table 2, and give 2



rankings for different values of L. In both rankings, representations
are ranked by al(nD), using Al only to break ties. In the first ranking,
L is assumed to be significantly larger than 1, for example, L > 5. In
the second ranking, the labels are squares (such as image thumbnails)
with L = 1. There’s nothing particularly special about the value 5 in
the L > 5 case; 5 is simply chosen to make the ranking for that case
more clear, since the relative performance of certain representations
can be more subtle for values of L between 1 and 5.

Interestingly, in the L > 5 ranking, we find that the best represen-
tations are all those involving nested enclosure of nodes, followed by
all those with “skinny” leaf nodes (i.e. leaf nodes with unbounded as-
pect ratio), followed by all those with “squarish” leaf nodes (i.e. leaf
nodes with a fixed aspect ratio). These three categories are indicated
in the column headings in Table 2, and representations are arranged
left-to-right, from most to least space-efficient, according to the L > 5
ranking. In the L = 1 ranking, again the best representations are those
involving nested enclosure, but after that point the ranking alternates
somewhat between the other two categories of representations.

The last two rows in Table 2 contain some additional information of
practical value. The second last row concerns the orientation of labels,
which can impact readability. The last row indicates which representa-
tions lend themselves to a weighted partitioning. As already explained,
treemaps are commonly used to create a weighted partitioning of the
total area available, however other representations also allow this, such
as 1C (as shown in Figure 2), or 1E and 8 (by changing the angles of
wedges according to weight). In other representations, such as 1D or
1A, it would be possible to vary the size of nodes according to their
weight, but this might reduce the total area A of the representation, so
they do not lend themselves as well to weighted partitioning.

As a side note, the second last row of Table 2 indicates that rep-
resentation 9 allows all labels on leaf nodes to be oriented the same
way. This is not necessarily true if the tree is incomplete (i.e. if leaf
nodes are not all at the same depth). However, it is easy to modify the
treemap in Figure 9 so that all labels are oriented horizontally, even if
this comes at the cost of a reduction in space-efficiency. Because of
this, the information in the second last row is a useful approximation
of the truth for treemaps with margins and labels.

6.2 Design Guidelines

We now enumerate some guidelines that may be useful to designers.
For brevity, we use the terms skinny label to refer to a label whose
aspect ratio L is significantly greater than 1, squarish label to refer to
a label where L ≈ 1, skinny leaf to refer to a leaf node whose aspect
ratio grows arbitrarily large as D → ∞, and squarish leaf to refer to a
leaf node whose aspect ratio remains fixed or converges to a constant
value as D → ∞.

1. Choose a representation whose leaf node aspect ratio matches
the aspect ratio of labels to be used. If the labels to be placed on
nodes are skinny, the designer could look in Tables 1 or 2 for rep-
resentations whose leaf nodes are skinny (indicated in the tables by
al(nD) proportional to L), and consider using those first. On the other
hand, if the labels are squarish, the designer could consider first using
representations with squarish leaf nodes (indicated by al(nD) inversely
proportional to L).

2. Modify labels to match the aspect ratio of their nodes. If a
designer has chosen a representation whose leaf nodes are squarish,
then labels consisting of long strings of text should be wrapped into
squarish multi-line blocks of text. On the other hand, if the represen-
tation has skinny leaf nodes, then labels consisting of long strings of
text should of course not be wrapped into multiple lines.

3. Modify nodes to match the aspect ratio of their labels. In the
case of representations with skinny leaf nodes, even with skinny la-
bels, eventually most of the available space will not be used by the
labels, because the leaf nodes’ aspect ratio grows without bound. One
possible way to create a better match between aspect ratios is shown in
Figure 14. The horizontal lines separating levels of nodes are shifted
downward as far as possible without making deep labels any smaller.
This allows shallow labels to be made larger, increasing Al . Anal-
ogously, the circles and squares separating levels within Figures 1E
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Table 2. A comparison of representations relevant for practical applica-
tions. Rankings are by al(nD) (1 being best), using Al to break ties.



and 8 can be shifted away from the root node to increase Al without
reducing al(nD).

Fig. 14. At left, an icicle diagram like Figure 1C, with labels added. At
right, the icicle diagram has been modified to allow shallow labels to be
larger, without reducing the size of deep labels.

Another example of modifying nodes to match the aspect ratio of
labels is presented in Section 7, where nodes in a treemap are “recti-
fied” rather than squarified, to create rectangles whose aspect ratio is
closer to the aspect ratio of their labels.

4. In classical representations, orient labels to be perpendicular
to the levels. It is interesting that 1A, the most “classical” of repre-
sentations, is ranked last in space-efficiency in Table 2 when L > 5.
Representation 1B is significantly superior, because it uses up more
of the space available between the levels of nodes. Rotating skinny
labels so their length is perpendicular to the levels of the tree imitates
1B and is more space-efficient. Although there is a strict 1×1 bound-
ing rectangle in Figures 1A and 1B, this guideline also holds when the
representation is allowed to have a bounding rectangle that is not 1×1:
in such a case, applying the guideline simply improves the aspect ratio
of the bounding rectangle of the representation. Figure 15 illustrates.

Fig. 15. At right, labels have been rotated (as has the entire representa-
tion), allowing labels to be shown at a larger size within the same square
viewport.

5. In radial representations, orient labels to be along radial lines.
For reasons analogous to those in the previous guideline, if design-
ers wish to use a radial representation, they should consider orienting
labels so their length is along radial lines, in imitation of 1E rather
than 1D. This will allow labels to be larger within the allowed space.
(Note, however, that this can also negatively impact readability, as the
user may need to rotate the view to read certain labels.)

6. In representations that do not use nested enclosure, modify
the representation to lay out skinny leaf nodes along a curve that
is as long as possible. As already discussed, laying out skinny leaf
nodes along a longer curve will allow the leaf labels to be larger. This
motivated our concentric squares representation (Figure 8). Designers
may find other ways to tile skinny nodes along longer curves, perhaps
by taking inspiration from space-filling curves.

7. Within the given constraints, choose a representation that max-
imizes space-efficiency. Designers typically work within several con-

straints beyond just space-efficiency, which might make them choose
any of the representations considered. However, we can still identify
simple criteria and rules of thumb for choosing a representation that
increases space-efficiency.

First, the most basic criterion is that there be labels on all nodes
that decrease in size with depth, i.e. al(ni) > al(ni+1) > 0 or ρl > 0.
Second, the representation should have a leaf label size al(nD) that

shrinks as slowly as possible (ideally, al(nD) = Θ(1/BD) or ρl ≈ 1).
Third, the representation should have a total label area Al as high as
possible (ideally, Al = 1). The representations in Table 2 all satisfy the
first criterion, and are ranked according to the degree to which they
satisfy the 2nd and 3rd.

Other criteria may also be considered, producing a decision pro-
cedure for choosing a representation. For example, a representation
that uses nested enclosure may be deemed too confusing in certain
contexts, or the designer may want to improve legibility of labels on
leaf nodes by having them all oriented the same way — such criteria
eliminate subsets of representations from further consideration. The
following is an example decision procedure based on the information
in Table 2:

if okay to use nested enclosure then
use treemap (Figure 9)

else if leaf labels needn’t be all oriented the same way then
use concentric squares (Figure 8)

else if L significantly larger than 1 then
use icicle (Figure 1C)

else if need support for weighted partition then
use icicle (Figure 1C)

else
use radial (Figure 1D)

The first step in the above procedure is to ask if the use of nested
enclosure is acceptable. If it is, no further questions need be asked:
a treemap should be used, because it is the most space-efficient, and
because it also allows labels to all be oriented the same way, and allows
for weighted partitioning of area. If not, then further questions are
required to narrow down the choices.

Designers may combine the above criteria with their own criteria
that may have little to do with label size, and create their own rules of
thumb or decision procedure. Such a decision procedure could also be
extended to include novel tree representations not considered here, by
performing the same kind of analysis of space-efficiency that we have
done in this article.

6.3 Using the metrics to evaluate other representations

Given a tree representation not considered in our analysis, such as one
being considered by a designer, or a novel representation being pro-
posed by a researcher, which metrics should be used to evaluate its
space-efficiency, and how?

Section 3.7 listed six kinds of metrics, and Sections 3.7 and 5.1
showed how misleading metrics can be that do not take into account
label size. We recommend evaluating, most importantly, a metric of
smallest label efficiency (for example, al(nD), or the average font
height in leaf labels), and preferably also a metric of total label effi-
ciency (i.e. the total area Al devoted to labels).

These two kinds of metrics can be applied to any given instance of
a tree representation, such as those in Figures 2, and so could be used
to evaluate and compare different static diagrams of the same tree.

However, if one wishes to evaluate a given representation style (i.e.
drawing convention), then these metrics should ideally be evaluated
analytically, as is done in Section 4. If an analytical approach is too
difficult or requires introducing unrealistic assumptions, then a numer-
ical evaluation may be performed over many randomly generated trees
to find average values of the metrics. To evaluate representation styles,
we also recommend finding the asymptotic behavior of these metrics
for large values of depth D, ideally evaluating Al,∞, as well as the mean
area exponent ρl and its limit ρl,∞. As discussed in Section 5.4, having
1 ≤ ρl,∞ < 2, with ρl,∞ close to 1, is a condition associated with highly
efficient representations.



Fig. 16. A squarified treemap of a randomly generated tree.

Finally, we note that there is no need to consider any explicit metrics
of size or aspect ratio of nodes, because these are both implicitly taken
into account when evaluating the size of labels.

7 RECTIFIED TREEMAPS

Thinking about the 3rd design guideline in Section 6.2 led us to create
a variant of squarified treemaps that increases the size of labels. The
idea is that, rather than “squarifying” nodes to give them an aspect
ratio closer to 1, we “rectify” them (i.e. make them into rectangles) to
give them an aspect ratio closer to the aspect ratio of their labels. We
implemented this idea with a simple change to the layout algorithm
described in Section 3.2 of [6]. Let R be a list of rectangles that are
tiled together to form a single row of total length w and total area s,
and let r(i) be the area of the ith rectangle in R. The row has thickness
s/w, hence the ith rectangle has dimensions wr(i)/s and s/w, and has

aspect ratio λ (w2r(i)/s2) ≥ 1 where we define the function λ (x) =
max(x,1/x)≥ 1 to always have aspect ratios greater than or equal to 1.
As defined in [6], the worst (i.e. largest) aspect ratio of the rectangles
in the row is

worst(R) = max
i

λ (w2r(i)/s2)

The function worst is used within the algorithm in [6] to generate a
squarified layout. Our one modification to the algorithm is to change
the function to

worst(R)= max
i

{

λ (λ (w2r(i)/s2)/L(i)), ith rectangle is a leaf node

λ (w2r(i)/s2) , otherwise

where L(i) ≥ 1 is the aspect ratio of the label on the ith rectangle.
In other words, the effective aspect ratio of leaf nodes is relative to
the aspect ratio L(i) of their labels. Bringing this relative aspect ratio
closer to 1, as the squarified layout algorithm does, results in nodes
that better match their label’s aspect ratio.

Figures 16 and 17 show the output before and after this change, for
a randomly generated tree with random labels. In both cases, each leaf
node was given equal weight for the treemap algorithm. As can be
seen, the nodes in Figure 16 are often more squarish and contain much
unused space, especially when they contain a long label.

Figure 18 shows the output after a 2nd minor change, whereby leaf
nodes are given weight proportional to the number of characters in

Fig. 17. A “rectified” treemap of the same tree in Figure 16, where leaf
nodes are made to more closely match the aspect ratio of their labels.

their label, to give the same weight to each character. The goal, in this
case, is to make each label as legible as possible. However, it would
also be possible to give leaf nodes a different weight that is a function
of some “size” attribute of the nodes (such as file size), and in general,
the rectified treemap will have larger, more legible labels than those in
a normal squarified treemap. (However, such rectified treemaps with
a weighted partitioning will also have a disadvantage: the skinnier the
labels are, the skinnier the nodes will be, and hence the more difficult
it will be for a user to accurately compare the areas of nodes. So there
is a tradeoff between label size and comparability of node areas.)

The following statistics show that our modifications yield an im-
provement over Figure 16 in all the label-oriented metrics. Comparing
Figures 17 and 18, we see that although Figure 18 has smaller aver-
age leaf label height, it also has larger minimum leaf label height, and
a smaller standard deviation of leaf label height, i.e. the heights are
more consistent.

Figure 16 17 18

Total area A of nodes 1.000 1.000 1.000

Mean area exponent ρ 0.811 0.811 0.799

Average area of leaf nodes 0.00688 0.00688 0.00671

Total area Al of labels 0.331 0.396 0.402

Mean area exponent ρl for labels 0.657 0.540 0.496

Average area of leaf labels 0.00244 0.00375 0.00342

Average leaf label height 0.0238 0.0297 0.0265

Minimum leaf label height 0.0105 0.0112 0.0172

Standard deviation of leaf label height 0.0115 0.0115 0.00598

8 CONCLUSIONS

We have presented a rigorous, quantitative analysis and comparison of
the space-efficiency of several 2D graphical representations of trees,
including most of the basic kinds found in the information visualiza-
tion literature (or, at least, simplified versions of them). We are un-
aware of any previous similar analysis performed of any single tree
representation, let alone all the ones considered here collectively. Our
analysis makes clear the relative space-efficiency of each representa-
tion with respect to various metrics. This allows us to rank the tree rep-
resentations, which is important for enabling designers to choose the
most space-efficient possibility among those not eliminated by various
design constraints. One theoretically interesting result of our work is



Fig. 18. The same as Figure 17, but now with each leaf node given
weight proportional to the number of characters in its label, to give equal
priority to each character.

that even treemaps (as modeled in Figure 9) are suboptimal with re-
spect to certain metrics, having Al,∞ < 3/4 for example.

Our analysis is performed in terms of both node size and label size,
and investigates multiple facets of space-efficiency — a list of six
kinds of metrics is given in Section 3.7. We have demonstrated that
metrics which do not take into account label size can be misleading;
for example, concentric circle representations were shown to be more
space-efficient (in terms of leaf label size) than icicle diagrams, con-
trary to what would be expected from simply comparing their total
area A. Fortunately, simply evaluating the area of labels can be done
without separately evaluating the size or aspect ratio of nodes, since
the latter two are both implicitly taken into account in analyzing the
size of labels. Hence, we recommend using label-oriented metrics for
evaluating representations. We propose that future work in this area
go beyond claiming that a new representation is “space-filling” merely
because of the total area A that is occupied, and that researchers ap-
ply the recommendations in Section 6.3 to evaluate the performance
of new tree representations.

We have also presented a novel metric, the mean area exponent
ρ , that quantifies the distribution of area in a representation, i.e. that
quantifies the tradeoff between shallow and deep nodes. This metric
can be calculated for both homogeneous and heterogeneous tree repre-
sentations. We have also applied variants of the metric (ρl and its limit
ρl,∞) in our analysis of label areas, and discussed how certain values
are associated with highly space-efficient representations (ρl,∞ close
to, or slightly greater than, 1). These metrics could be used to clas-
sify representations (for example, ρl,∞ could be a dimension within a
taxonomy of representations), or could be used as tools to summarize
and better understand the performance of a representation, or as input
parameters for tuning a given representation (e.g. Figure 13). Finally,
the definition of ρ is not arbitrary, but affords multiple interpretations
(Sections 3.3 and 3.6) that we find fairly compelling.

For designers, we have presented the most immediately applica-
ble practical results of our work in Section 6, which includes a set of
design guidelines and an example decision procedure for choosing a
representation.

Finally, we have shown that our work has generative power, in the
novel tree representations developed through this work: concentric

squares (Figure 8), asymmetrical concentric circles (Figure 11), a hy-
brid of indented outline and classical layered (Figure 12), and the rec-
tified treemap (Figures 17 and 18). The concentric squares represen-
tation is more space-efficient than many commonly used representa-
tions, such as classical layered and concentric circles, and the rectified
treemap improves the legibility of labels on status quo treemaps.

9 FUTURE DIRECTIONS

Future work could perform further analytical or numerical evaluation
of the metrics, possibly on a corpus of real-world trees, and/or on
other tree representations we have not considered such as the “space-
optimized” representation of Nguyen and Huang [19] or hybrid mix-
tures of representations [32] or 3-dimensional representations such as
cone trees [24].

Representations with greater space-efficiency might also be useful
to develop, such as treemaps with margins that do not have the lim-
itation of Al,∞ < 3/4 of representation 9 (probably by placing some
nodes to the right of their parent’s label), or a variation on Figure 10
that generalizes to B 6= 8. It is also possible that the efficiency of con-
centric squares (Figure 8) could be improved by laying out leaf nodes
along a curve whose length is greater than 4, perhaps even along a
space-filling curve. (Interestingly, space-filling curves have recently
been used for graph layout [18].)

A significant issue for future metrics of tree representations is to
take into account human perceptual abilities and/or how well various
user tasks, such as those described in [29], are supported by each repre-
sentation. For example, with a classical layout (1A) it is easier to esti-
mate the distance between two nodes and easier to see if two nodes are
on the same level than in a treemap — this is ignored by our metrics.
As more experimental data emerges from researchers about user per-
formance at various tasks with various tree representations, it would
probably be reasonable to extend Table 2 with additional rows indicat-
ing the relative support for different tasks, and to refine the decision
procedure in Section 6.2.

Our metrics also assume that there is no value in whitespace,
whereas in practice whitespace can be very valuable in making group-
ings of elements easier to perceive. It may be possible to develop new
metrics that weigh the value of label size along with the value of some
whitespace to aid in the perception of structure and groupings.

Another issue not yet addressed by the metrics presented is how
to model interactive displays that change over time, where nodes and
labels may appear, move, change in size, or be elided, depending on
the user’s input.
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