
Interaction Techniques for Selecting and

Manipulating Subgraphs in Network Visualizations

Michael J. McGuffin, Member, IEEE, and Igor Jurisica

Abstract—We present a novel and extensible set of interaction techniques for manipulating visualizations of networks by selecting
subgraphs and then applying various commands to modify their layout or graphical properties. Our techniques integrate traditional
rectangle and lasso selection, and also support selecting a node’s neighbourhood by dragging out its radius (in edges) using a novel
kind of radial menu. Commands for translation, rotation, scaling, or modifying graphical properties (such as opacity) and layout
patterns can be performed by using a hotbox (a transiently popped-up, semi-transparent set of widgets) that has been extended in
novel ways to integrate specification of commands with 1D or 2D arguments. Our techniques require only one mouse button and
one keyboard key, and are designed for fast, gestural, in-place interaction. We present the design and integration of these interaction
techniques, and illustrate their use in interactive graph visualization. Our techniques are implemented in NAViGaTOR, a software
package for visualizing and analyzing biological networks. An initial usability study is also reported.

Index Terms—Interactive graph drawing, network layout, radial menus, marking menus, hotbox, biological networks.

1 INTRODUCTION

Despite a growing number of algorithms (e.g. [5]) available for com-
puting the layout of graphs, there remains a significant need for users
to be able to interactively manipulate such graphs, to manually ad-
just their layout or to change the display options (colours, labels, node
shapes, etc.) associated with subsets of nodes. For example, in bioin-
formatics, different researchers looking at the same biological net-
work are often interested in emphasizing different nodes and pathways
within the network, in applying different layout constraints to subsets
of nodes, and in using different mappings for colours and other graph-
ical attributes. Users may also want to adjust the layout of a network
opportunistically as they explore it. Thus, fully automated algorithms
for graph layout cannot offer a complete solution for the visualization
needs of users.

In addition, there is a trend toward larger networks, as well as in-
creasingly feature-rich, complex software packages [18]. As networks
become larger, manual adjustment of their layout becomes more dif-
ficult, and as software becomes more complex, there tend to be more
menu items, dialog boxes, widgets, and modes that the user must nav-
igate, ultimately slowing down the user, consuming screen space, and
creating opportunities for mode errors [17].

Within the human-computer interaction (HCI) community, several
advanced popup or gestural interaction techniques have been proposed
(e.g. marking menus [11], hotbox [12], Control Menus [15], Flow
Menus [7], FaST Sliders [13]) to enable rapid access to a large num-
ber of functions, reducing screen space usage, and eliminating mode
errors. However, these techniques have so far seen little application
within the visualization community, particularly to the problem of in-
teractive graph layout and manipulation. This paper presents an in-
tegrated set of advanced interaction techniques inspired by previous
approaches, designed for selecting subgraphs within a network and
invoking commands on the selected subgraph to change layout or dis-
play options. Our work introduces novel extensions to radial menus
as well as extensions to Kurtenbach et al.’s hotbox [12]. Our interac-
tion techniques support multiple selection methods, including rectan-
gle and lasso selection, and a novel selection method based on the net-

• Michael J. McGuffin is with École de technologie supérieure, Montreal,

Canada, E-mail: michael.mcguffin@etsmtl.ca.

• Igor Jurisica is with Ontario Cancer Institute, PMH/UHN, Toronto,

Canada, E-mail: juris@ai.utoronto.ca.

Manuscript received 31 March 2009; accepted 27 July 2009; posted online

11 October 2009; mailed on 5 October 2009.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org .

work’s edge-connectivity. Our hotbox allows commands to be selected
with simultaneous specification of 1D or 2D arguments, as required by
commands such as “move” or “adjust opacity” (of the selected nodes).
Our techniques have been prototyped in NAViGaTOR [9], a software
package for visualizing biological networks1. Although our work is
motivated by its application within bioinformatics, our techniques are
general and could be applied in many situations involving interactive
manipulation of graphs.

The contributions of our work are (1) novel variants on marking
menus and hotbox widgets that could be applied to domains other than
graph visualization; (2) a new technique for quickly selecting neigh-
bourhoods of nodes of arbitrary radius based on edge-connectivity,
with a single drag; (3) a tight integration of interaction techniques al-
lowing the user to quickly select subgraphs (using rectangle, lasso,
neighbourhood-radius, and set operations) and invoke multiple com-
mands (some of which may involve 1D or 2D arguments) using just
1 keyboard key and 1 mouse button, while avoiding persistent modes;
(4) a demonstration of how simple layout patterns coupled with trans-
late, rotate, and scale operations can be applied to subgraphs to quickly
customize the layout of a graph; and (5) the results of an initial usabil-
ity study.

2 REQUIRED FUNCTIONALITY

This section gives an overview of the kinds of functions that we require
our interaction techniques to support. The details of how these func-
tions will be invoked (i.e. with a particular button, gesture, or widget)
is the topic of subsequent sections.

Our work was motivated by a desire to improve the user interface
in NAViGaTOR [9], a freely-downloadable software package for vi-
sualizing and analyzing biological networks, such as protein-protein
interaction networks. The data sets visualized in NAViGaTOR usu-
ally comprise a few dozen to tens of thousands of nodes, where each
node usually represents a protein, and edges between them represent
interactions. Typically, a force-directed layout algorithm is used to
establish an initial layout of the network. The user may also adjust
the layout of the network by selecting one or more nodes and chang-
ing their position, optionally fixing them in place so the force-directed
layout will not subsequently change their positions. If desired, such
manual adjustment of the layout can be done with the force-directed
layout running in the background on the other nodes, incrementally
updating their positions over time, as the user repositions fixed nodes.
Nodes and edges have several graphical attributes including their la-
bel, shape, colour, and opacity, and these can be manually modified or

1Readers may also experience a small Java applet demonstration of our in-

terface at http://profs.logti.etsmtl.ca/mmcguffin/research/hotterBox/



automatically chosen based on metadata associated with the nodes and
edges.

A first set of functions to which we wish to give easy access are
related to selection of subgraphs. In particular, we want the user to be
able to easily select (or deselect) individual nodes, as well as perform
selections by dragging out a rectangle or by drawing a lasso curve
around nodes. We would also like to facilitate selection based on the
edge-connectivity within the network, for example, to make it easy to
select the neighbours of one or more nodes.

A second set of functions are used to perform operations (i.e. com-
mands) on the selected nodes. These include commands to change
the displayed shape (circle, diamond, square, triangle) of the selected
nodes; to adjust their opacity; to show or hide their labels; to “fix” their
positions so nodes remain anchored in place during force-directed lay-
out, or “unfix” them to let them move freely; to adjust per-node force
parameters or weights; to collapse or expand meta-nodes; to translate,
rotate, or scale2 the positions of the selected nodes; to “linearize” or
“circularize” the positions of the selected nodes (explained below);
or to delete the selected nodes. Examples of the application of these
commands are in Figure 1.

The “linearize” and “circularize” commands, which were devel-
oped during our research, are examples of commands that apply a
layout pattern to the selected nodes. When the linearize command
is invoked, a straight line that fits the initial positions of the nodes is
found using Principle Component Analysis (PCA). The positions of
the nodes are then projected onto this line, and shifted to be evenly
spaced. The circularize command similarly projects the positions of
nodes onto a circle whose centre is the centroid of the initial node po-
sitions, and whose radius is the average distance between the centroid
and the initial node positions. The user may precede either of these
commands with a command to fix the positions of the nodes, so that
the node positions will not be disturbed during force-directed layout.
The user may also then apply any combination of translation, rotation,
and scaling to change the positioning of nodes, while preserving their
layout along a line or circle. Note that neither linearize nor circular-
ize creates an explicitly-stored constraint on the node positions; they
simply change the positions of nodes into a pattern that is naturally
preserved during translation, rotation, and scaling of the set of nodes.
We found these commands to be quite useful for customizing the lay-
out of subgraphs (Figure 10 shows another example).

A third set of functions could be described as “global” functions,
since they do not operate specifically on the selected subset of nodes.
These include functions to select all nodes, to deselect all nodes, to
invert the set of selected nodes, and to turn the force-directed layout on
or off. (An “undo” function would also fall in this category, although
our prototype does not currently support undo.)

As new functions have been added to NAViGaTOR, we found that
an increasing number of widgets (such as menu items) and keyboard
shortcuts were cropping up in the interface, and there was tempta-
tion to add toolbar buttons that would introduce (persistent) modes.
A standard point of view within the HCI community is that persis-
tent modes, that involve no kinesthetic feedback and little or no visual
feedback (beyond perhaps a change in mouse cursor shape, or some
text in a status bar), are to be avoided, because they create opportuni-
ties for mode errors [17]. Examples of persistent modes are the various
drawing tools often found in bitmap editing programs, and in the clas-
sic text editor vi, in which users frequently become confused as to
which mode they are in, and even expert users have a habit of hitting
the Escape key more than necessary to ensure they are in one mode
rather than another. Far preferable are interfaces that are sometimes
called modeless, i.e. that involve only transient modes (also known
as quasi-modes, spring-loaded modes, or kinesthetically-held modes)
where there is strong visual or kinesthetic feedback that the user is in a
special, temporary mode. Examples of transient modes include when
a popup menu is popped up, or when the user must hold down a spe-
cial key to remain in a temporary mode (in which the mouse performs

2Note that rotation and scaling are with respect to the centroid of a set of

selected nodes, and have no effect if there is only one node selected.

Fig. 1. Individual steps in some modifications of a network visualization.
A: Beginning with this network, the user performs several operations
within the shaded area, shown in the subsequent steps. B: After se-
lecting 8 nodes of interest, the user turns on the displaying of labels for
those nodes. C: The shape of the selected nodes is set to diamonds.
D: The users inverts the selection (to select all other nodes), reduces
the opacity of these other nodes, and inverts the selection a 2nd time to
result in the 8 original nodes again being selected. E: The 8 nodes are
“linearized”, i.e. their positions are changed to fall at evenly-space posi-
tions along a straight line. F: The positions of the nodes are translated,
rotated, and scaled, to avoid occluding the rest of the network. G: Node
shapes are changed back to circles, and positions are again scaled and
rotated slightly. H: The nodes are “circularized”. I: Nodes collapsed to a
single meta-node.

some special function) and returns to their initial mode as soon as the
key is released.

We avoided persistent modes in versions 1.1 and 1.2 of NA-



Fig. 2. Integrated rectangle/lasso selection. Left: The user begins drag-
ging; an ink trail and a rubber-band rectangle are both displayed. If the
user releases while both are displayed, the drag is interpreted as a rect-
angle selection. Right: The user drags back toward the starting point
until the ink trail exceeds some threshold measure of “closure”. The
system ceases to display the rectangle, and draws a line segment from
the cursor position to the starting position to show how the lasso would
be completed. The user may continue to drag to specify the remaining
part of the lasso curve, and may release at any time to finish the lasso
selection.

ViGaTOR by adding several keyboard modifier key + mouse but-
ton combinations to invoke transient, kinesthetically-held modes for
mouse input, including rectangle selection, lasso selection, and trans-
lation/rotation/scaling of selected nodes. Keyboard shortcuts and mod-
ifier key + mouse button combinations are useful to expert users for
quickly invoking special functions; however, novice users must first
learn them before using them, and they do not scale up to a large
number of functions since we eventually run out of keys and buttons.
Hence, for an improved interface, we wanted to enable fast access to
functions in a manner that would scale up to a large number of func-
tions, while avoiding persistent modes (e.g. modal toolbar buttons),
and without forcing the user to frequently move their cursor between
the network they are visualizing and various menus or panels to access
functions.

The solution described in this paper involves designing techniques
around popup widgets. Popup widgets, invoked with kinesthetic ten-
sion (i.e. by holding down a button or stylus tip), have the well known
advantages of saving screen space when not in use, of “bringing the in-
terface to the user” so the pointing device does not need to travel as far
to access controls, and of resulting in a transient mode when the wid-
get is popped up. Popup widgets can be used in an “object-oriented”
manner, where the widget is invoked over a “noun” (selected data) and
used to specify a “verb” (command), sometimes in a single phrase with
kinesthetic tension throughout [4]. Popup widgets have been proposed
that enable fast, gestural input [11] and in some cases also allow 1D or
2D arguments to be specified [15, 7, 13] with a command, or can scale
up to hundreds of commands or more [12].

In our application domain, the “noun” is a subgraph that the user
selects, and the “verb” is a command to be applied to the noun. Both
the noun and verb can have arguments associated with them, such as
the position and dimensions of a selection rectangle, or the change in
opacity or translation vector to be applied to the subgraph. In con-
sidering interaction techniques for selection and manipulation of sub-
graphs, we found that the previously proposed popup widgets were
insufficient for our purposes, and thus we developed the novel exten-
sions described in the next sections of this paper.

3 TECHNIQUES FOR SELECTION

We used a technique from [16] to combine rectangle and lasso selec-
tion, eliminating the need for two separate modes, keys, or buttons.
The idea is to use the shape of the stroke dragged out by the user to
determine whether to interpret it as a rectangle or a lasso (Figure 2).
During dragging, the system keeps track of the length of the stroke
along the stroke, as well as the distance between the starting cursor
location and current cursor location. If the ratio of these two numbers
exceeds some threshold (e.g. ≈ 2.5), then the stroke is interpreted as
“mostly closed” and hence a lasso, otherwise it is “mostly straight”
and so interpreted as (the diagonal of) a rectangle.

We also wished to support an additional selection method that
would depend on the structure or connectivity of the network. Given

Fig. 3. The node-specific menu, which is invoked over a given node
(Upper Right). For clarity we also show it with no data behind it (Upper
Left). The centre and north items co-hilite, indicating that the default
action is to toggle the node’s selection state, which can be achieved by
quickly press-releasing over a node (the press invokes the menu, the
release selects the centre). Dragging east specifies a neighbourhood
of a given radius (Lower Left), during which nodes hilite to give a pre-
view of the specified neighbourhood; a release completes the selection.
Flicking west (Lower Right) is a shortcut for the entire connected com-
ponent, as indicated by the co-hiliting of the west item and the east-most
“5” item. Flicking north-west is a shortcut to select only the given node
and deselect all others.

any node, the user may wish to select (or deselect) all neighbouring
nodes out to some number of edges. We envisaged a selection tech-
nique where the user could perform neighbourhood-radius selection,
dragging out the desired radius (in edges) of a neighbourhood within a
kind of popup slider. This idea was partly inspired by the subtree-drag-
out widget in [14]. We then realized that the direction of dragging to
specify a radius might be only one of several possible directions within
a kind of radial menu containing additional functionality. The result is
the node-specific radial menu shown in Figure 3, which contains addi-
tional functionality beyond neighbourhood-radius selection. To select
an entire connected component, the user may either drag all the way to
the east-most radius menu item, or quickly flick westward to the (con-
nected) “Component” item as a shortcut. As shown in Figure 3 (lower
right), these two items co-hilite when the cursor is over either of them,
to indicate to the user that they perform the same function. We have
found neighbourhood-radius selection to be very useful in situations
where the visual depiction of the network is so dense that the user can-
not easily point at, or even see, which nodes are the neighbours of a
given node, and/or the user wishes to quickly “grab” a node and its
closest neighbours, e.g., to move them somewhere else.

There are two other items in the node-specific menu that co-hilite:
the north “Toggle Node” item that toggles the selection state of the
node, and the center of the menu. This is because the north item is the
default item, selected either with a flick to the north, or by releasing
over the center of the menu. Thus, this item can be selected simply by
pressing the mouse button to invoke the menu, and then immediately
releasing the button. (If the user invokes the menu and decides they do
not want to select anything, they must drag southward to the “Cancel”
item.)

Finally, the user may also drag north-west to the “Select Only This
Node” item, to select this node and deselect all other nodes.

As is well known within the HCI community, the items within ra-
dial menus and marking menus (which are equivalent techniques when
only 1 level deep) can normally be selected ballistically with rapid
flick motions, often much faster than in status quo linear menus. Al-
though some menu items may have small labels, the user simply needs
to flick in the appropriate direction within a 45 degree sector, and does
not need to stop their cursor on the label. In the case of the linear
arrangement of neighbourhood radius menu items, the user does ac-
tually need to point at the appropriate menu label, but the pointing
performance required in that case is the same as would be required in



a 1D slider, with the advantage that the radial menu pops up wherever
the user’s cursor currently is.

To allow the user to invoke all of the above selection techniques
with just one mouse button, the interface makes use of the information
in the position of the press down event. If the user presses down over
whitespace and starts dragging, they invoke rectangle/lasso selection.
If instead they press down over a node, they invoke the node-specific
menu in Figure 3. If they quickly press-release over a node, the node-
specific menu is popped up for only a fraction of a second, and the
node’s selection state is toggled, by virtue of this being the default
item in the radial menu.

To further enable selection based on edge-connectivity, we also im-
plemented two additional functions: one to “grow” the selection by 1
edge, and another to “shrink” the selection by 1 edge. Growing in-
volves adding to the selected set all nodes that are adjacent to at least
one selected node. Shrinking involves removing from the selected set
all nodes that are adjacent to at least one non-selected node. (These
two operations turn out to not, in general, be the inverse of each other,
but can still be useful.) These operations can be invoked from the hot-
box, described in the next section.

4 AN ENHANCED HOTBOX FOR INVOKING COMMANDS

The original hotbox [12] is a semi-transparent widget in the Maya
3D graphics software package that is popped up by holding down the
spacebar with the non-preferred hand (NPH). The hotbox in Maya is
essentially a 2D menu; once popped up, the preferred hand (PH) can
then use the mouse to point at menu labels in the hotbox and popup
smaller menus (such as marking menus). So long as the spacebar is
held down by the NPH, the hotbox remains popped up, and the PH
can invoke multiple commands. When the spacebar is released, the
hotbox is dismissed. An important feature of the hotbox is that when
it is popped up, it is centred around the cursor’s current position, al-
lowing the user to learn a mapping between relative movements of the
mouse and corresponding menus. The main purpose of the hotbox
in Maya is to enable menuing techniques to scale up to thousands of
commands. The hotbox presented in [12], however, only contains (lin-
ear or marking) popup menus, and arguments to commands can only
be specified through a disconnected mechanism such as a dialog box.

The hotbox used in our interface (Figure 4) is also semi-transparent
and is invoked using a NPH keyboard key, but unlike [12], our hot-
box contains additional kinds of widgets. Widgets are grouped partly
according to function, and partly to have more commonly accessed
commands near the centre and/or larger and easier to point to. Our
current hotbox only contains ≈ 30 commands, so there is no need
to nest any of them within submenus (though this could be done if
more commands were added). In addition to standard push buttons
and checkbox items, our hotbox also contains 1D and 2D “sliders”,
i.e. widgets the user presses down on and then drags on to specify a
1D or 2D argument, releasing to complete the command. These ex-
tend the hotbox in [12] by integrating specification of commands with
their arguments. During dragging, the sliders do not show feedback
in the form of a traditional slider’s wiper; instead, the hotbox is tem-
porarily ghosted out (Figure 5) and feedback is visible as the network
is immediately updated during dragging.

Because the hotbox is always popped up centred at the cursor’s cur-
rent position, the 2D “Move” slider in the centre of the hotbox is the
easiest to invoke, and translates all selected nodes. To the west, north,
and east of it are large rectangular 2D sliders that extend to the edge
of the screen so they can be aimed at ballistically like items in a ra-
dial menu. “Scale and Rotate”, to the west, uniformly scales the po-
sitions of selected nodes around their centroid in response to vertical
dragging, and rotates selected nodes around their centroid in response
to horizontal dragging. “Scale”, to the north, performs non-uniform
scaling. “Move and Rotate”, to the east, allows selected nodes to be
translated and rotated around their centroid in a manner similar to the
way that windows can be dragged and rotated in [1, Fig. 4 (left)].

The 1D sliders in the hotbox include one to adjust the opacity of
selected nodes, another to adjust a per-node force parameter associated
with nodes, and a third slider to customize the hotbox’s own opacity

Fig. 4. When the hotbox is popped up, the cursor is initially in the central
“Move” region, a 2D slider, shown here with its border hilited. To the left,
the right, and above this region, are other (large and easily selectable)
2D sliders for moving, rotating, and scaling the selected nodes in vari-
ous ways. The grey rectangles are buttons, checkbox items, or (if they
contain arrow-shaped icons) 1D sliders.

Fig. 5. The user selects a set of nodes and then invokes the hotbox
(Top) which has a certain opacity, allowing some of the network to be
visible through the controls. The user then presses the mouse button
on the “Move” 2D slider causing the hotbox to automatically decrease its
opacity, and the user drags left to translate the selected nodes (Bottom).
After releasing the mouse button, the hotbox’s opacity returns to normal,
and the user can invoke some other widget within it. This continues until
the user dismisses the hotbox by releasing the Ctrl key.

according to the user’s taste. There is also a checkbox button to turn
on or off tooltips within the hotbox.

The remaining buttons in the hotbox allow the other commands
listed in §2 to be invoked, including global functions (e.g. the “In-
vert Selection” push button, and the “Layout Using Forces” checkbox
to toggle force directed layout) and commands to change the shape
of nodes (e.g. “Triangle”, “Diamond”, etc.) or apply layout patterns
(“Linearize”, “Circularize”). Using the layout pattern push buttons, in
combination with the 2D sliders for translation, rotation and scaling,
the user can flexibly and quickly change the layout of a network, as
demonstrated in the video accompanying this paper.

Rather than use the spacebar with the NPH as in [12], we chose
the Control (Ctrl) key for invoking the hotbox, because it is more fa-
miliar to users as a modifier key. An additional difference with our
hotbox is the use of an activation circle during invocation (Figure 6),
to enable shortcuts to the two most commonly used commands: mov-
ing a single node, and moving all selected nodes. Placing the cursor
over a node, pressing Ctrl, and press-dragging the mouse moves the
one node under the cursor without affecting the position or selection
state of any other nodes (and, so long as Ctrl is held down, the user
may release the mouse button and subsequently move other individual
nodes). Doing the same over whitespace moves all the selected nodes.



Fig. 6. Pressing the Ctrl key causes an activation circle to appear cen-
tred at the cursor’s current position (Left). This circle does not follow
the cursor if the cursor is moved (Middle). If the user presses and holds
the mouse button while inside the circle, the circle disappears and the
user enters a special “move” mode where dragging will move all se-
lected nodes (or move just one node, if the cursor was initially over a
single node). If, instead, the user moves the cursor all the way outside
the circle without dragging, then the circle disappears and the hotbox is
popped up (Right), with the cursor initially inside the “Move” 2D slider,
afterwhich the user may press and optionally drag on any controls in the
hotbox. In either case, releasing the Ctrl key (without holding down the
mouse button) returns the user to their initial state, with neither circle
nor hotbox displayed.

However, pressing Ctrl and moving outside the activation circle that
appears (Figure 6), before dragging, causes the hotbox to popup. Hav-
ing the “Move” slider in the centre of the hotbox, and hence under the
cursor initially, reinforces the association between it and the shortcut
of Ctrl-dragging without the hotbox (and also forces novice users who
popup the hotbox to rehearse a close approximation of the shortcut).
As for all the other widgets in the hotbox, getting to them requires
an initial movement away from the centre anyway. So, although our
mechanism for popping up the hotbox is different from Kurtenbach et
al.’s original, there is essentially no cost incurred for expert users in
supporting the shortcuts.

5 TIGHT INTEGRATION OF THE INTERACTION TECHNIQUES

The interaction techniques described so far only use one keyboard key
(the Ctrl key) and one mouse button. We considered how to minimize
the number of user actions necessary to get to various functions, as
well as how to pack the most utility into these two buttons, to achieve
a tight integration of interaction techniques. We noticed that, when
performing rectangle/lasso selection, the user always presses down on
whitespace and then begins to drag, which implies that press-releasing
over whitespace (with no intervening drag) could be mapped to some
other action or widget. We chose to map press-releasing over white-
space to a radial menu containing global selection functions (“Invert
Selection”, “Select All”, “Deselect All”). Although these functions
are already available in the hotbox, they are so frequently used that it
seemed reasonable to offer a shortcut to them via this mapping.

Specifically, when the user press-releases over whitespace, the
global menu in Figure 7 appears attached to the cursor, and follows
the cursor until the user presses down a second time, at which point the
menu locks in place and the user may then drag within the menu and
release to complete a selection. Having the menu follow the cursor af-
ter the first press-release allows the user to comfortably reposition the
menu if necessary, and also provides a strong visual cue (due to the
menu’s size and the movement created when the cursor is moved) to
the user that they are in a special mode, and that they must press-drag-
release to complete the action. A similar technique is used in [13] to
create “visual tension” across two separate drags, when maintaining
kinesthetic tension is not possible. Once the user is familiar with this
global menu, they can, for example, quickly invert the set of selected
nodes with a rapid press-release-press-flick down and to the right (in
other words, a “click-and-a-half” + drag down and right).

Table 1 summarizes the actions in the interface.
To further increase the power of our interaction techniques, we con-

sidered how to allow users to build up selections incrementally. For ex-
ample, many interfaces in other software allow users to select multiple
objects by clicking on the first object, and then Ctrl-clicking on addi-
tional objects to add them to the selection. In such interfaces, acciden-
tally clicking on an object without the Ctrl modifier key will deselect

Fig. 7. The global menu, invoked by press-releasing over whitespace,
can be used to change the selection state of all nodes at once. The
default item is to cancel, so this menu can be easily dismissed with a 2nd
press-release in case the user accidentally invokes the menu. Invoking
this menu and then selecting a non-default item involves press-releasing
over whitespace and then press-drag-releasing, which together feels
like a “double-click-drag”.

Left-press-release on node: toggle selection state of node

Left-press on node: popup node-specific radial menu

(then drag-release to select item,

or release in centre of menu to select default item)

Left-press-release on whitespace: popup global radial menu

(then press-drag-release to select item,

or press-release in centre of menu to select default item)

Left-press-drag on whitespace: rectangle/lasso selection

(then release to complete)

Ctrl-Left-press-drag on node: select and move one node

(other nodes already selected remain selected but are not affected)

Ctrl-Left-press-drag on whitespace: move all selected nodes

Ctrl-move: popup hotbox

Table 1. Seven key actions in the new user interface. Only one mouse
button, and one keyboard key, are used. The first four use all combina-
tions of {press-release, press-drag}×{on whitespace, on a node}.

all other selected objects, which can be a nuisance. In NAViGaTOR,
there may be hundreds or thousands of nodes, each of which is small
and may require careful work to identify and select, so such accidental
deselection of nodes is not acceptable. Thus, selection and deselection
of nodes should be invoked using distinct actions. At the same time,
we want to provide users with the ability to build up selections incre-
mentally, for example, using first a lasso curve to initially select one
subset of nodes, and then a rectangle selection to add another subset of
nodes, and then perhaps a neighbourhood-radius selection to remove
all nodes within a given number of edges of some node. Essentially,
we want the user to be able to combine selections using set operations
such as union, set difference, and perhaps other operators.

To support this, whenever the user completes a rectangle, lasso, or
neighbourhood-radius selection by releasing the mouse button, a set
operation menu (Figure 8) then appears attached to the cursor (creat-
ing the same visual tension as used by the global menu). The user then
presses, optionally drags, and releases to select a set operation within
this menu, completing the interaction. For example, if the previously
existing selection of nodes is S, and the user drags out a rectangle
containing a set S′ of nodes, then the set operation menu allows the
user to “Add to Current Selection” (S← S∪ S′), or “Deselect This”
(S← S \ S′), or “Select Only This” (S← S′). The first option is the
default, corresponding to the menu’s centre, and can be selected with
a very fast press-release within the menu. The other two options can
be selected with sideways flicks that can be performed almost as fast.

Figure 9 shows a state-transition for our set of interaction tech-
niques. We note that there are two kinds of commands that can be
invoked multiple times without having to start over at the initial state
each time. The first are the commands in the hotbox: once the hotbox
is popped up, the user may use the mouse to invoke several commands
in succession by simply holding the Ctrl key down to keep the hot-
box popped up. The second is the command to move individual nodes
(corresponding to the “move one node” state in Figure 9). Once the
user has applied this command on one node, they may continue to hold
down the Ctrl key to move other nodes individually, without changing
the set of currently selected nodes. This is useful for quickly adjusting
the positions of a few nodes before returning to manipulation of the
selected set of nodes.



Fig. 8. The set operation menu. This menu appears immediately af-
ter a rectangle, lasso, or neighbourhood-radius has been input, effec-
tively asking the user “what to do” with the nodes they’ve just specified.
North, west, and east correspond to set union, set difference, and as-
signment, respectively. As with the other radial menus, the centre item
corresponds to a default menu item, in this case the north item as indi-
cated the co-hiliting of north and centre. So, flicking up has the same
effect as releasing over the centre with no dragging (Top). Flicking in
other directions causes the centre to un-hilite (Bottom).

Fig. 9. A state-transition diagram of the integrated set of interaction
techniques. L and C refer to the Left mouse button and the Ctrl key,
respectively, and the symbols ↓ and ↑ refer to press and release events.
The shaded rectangles correspond to the hotbox and each of the radial
menus. The terminal state symbol ⊗ simply means that the user returns
to the “start” state. Black nodes are where neither button is being held
down; in the case of the two black nodes within menus, there is visual
tension to compensate for the lack of kinesthetic tension.

Finally, we note that although all our interaction techniques can
be invoked with just one mouse button and one keyboard key, there is
nothing preventing a designer (or user) from adding additional hotkeys
to quickly access functions to which they want the fastest possible
shortcuts. For example, some users may like having Ctrl-A and Ctrl-D
mapped to selecting all nodes and deselecting all nodes, in addition to
having these functions in a menu or the hotbox.

6 RELATION TO PREVIOUS WORK

The previous work on the hotbox technique [12] only uses it to invoke
menu items. Our hotbox is novel in supporting 1D and 2D sliders so
that the specification of 1D and 2D arguments is integrated with the
invocation of commands. In addition, when these arguments are spec-
ified during dragging, the hotbox automatically fades out so the user
can easily see the immediate effect on the data being manipulated. Our
hotbox is also novel in the activation circle it uses, allowing shortcuts
to additional actions to be mapped to the Ctrl key.

Our node-specific radial menu (Figure 3) is novel in its use of a lin-
ear arrangement of menu items for specifying a discrete argument (the
neighbourhood radius). In previous work, control menus [15] allow
adjusting continuous parameters in a (transient) mode that is separate
from menuing mode, and do not offer the values of the parameter as
menu items. “Overflow” marking menu items [10] and the sectors
within bullseye menus [6] contain linear arrangements of items but do
not use them for controlling parameters. Our radial menus are also
novel in having a default item associated with the centre of the menu

that can be invoked with a shortcut single click, and in their use of
co-hiliting of equivalent menu items. Finally, as a selection technique,
dragging to select the radius of a neighbourhood of nodes (Figure 3)
is novel, and because we have integrated it within a menu, alternative
functionality can be accessed with the same invocation.

In our early design stages, we considered using bimanual (2-
handed) input methods [3, 2] involving 2 pointing devices, since they
allow for rich input phrasings allowing simultaneous specification of
nouns and verbs. However, to facilitate deployment of the NAViGa-
TOR software, we wanted to assume only status-quo input devices,
i.e., one pointing device and a keyboard. (Interestingly, CPN/Tools [2]
has dropped support for multiple pointing devices as of version 2.0, in
part due to technical difficulties in supporting bimanual input.) It is
interesting that the hotbox is not just effective at scaling up to a large
number of commands as shown in [12], but is also a compromise “poor
man’s” bimanual interface, where the 2nd hand (NPH) uses a status-
quo keyboard. Although the 2nd hand cannot be used for pointing, the
use of a NPH key creates kinesthetic feedback, which is critically im-
portant for avoiding persistent modes even when the PH is performing
multiple drags. We also note that many pen-based interfaces assume at
least one hardware button that can be operated by the NPH to augment
pen input with the PH (e.g. [8]).

We designed our techniques to provide kinesthetic feedback (i.e.
by requiring that the user hold down the Ctrl key and/or Left mouse
button) as much as possible throughout each input phrasing, to avoid
persistent modes. There are only two modes in Figure 9 where neither
the Ctrl key nor the Left mouse button are held down, corresponding to
two of the radial menus. As already mentioned, to compensate for the
lack of kinesthetic feedback in these two states, we provide visual ten-
sion by attaching the menu to the cursor until the user presses down
again. We also considered using techniques that allow for a single,
unbroken drag to specify a noun and verb (or arguments) for input,
maintaining kinesthetic tension across the entire phrasing. For exam-
ple, during an unbroken drag to select nodes, a transition from lasso to
specifying a set operation (or vice versa) could be induced by a cross-
ing event, such as with a pigtail gesture [8], or by having a Control
Menu [15] or FlowMenu [7] at the beginning of the drag gesture to
select the set operation. Unfortunately, because nodes in the network
can be densely packed, the user needs to be able to position the cursor
precisely at the start and end of the lasso curve. This could be difficult
to do if a pigtail had to be drawn immediately before or after, and us-
ing a Control Menu or FlowMenu at the start of the drag gesture would
mean the cursor position would have changed by the time the user left
the menu. We therefore decided it would be cleaner to break the input
into multiple drags where necessary, linking the drags together with
visual tension.

7 EXTENSIBILITY OF THE INTERACTION TECHNIQUES

There is much room to add additional functionality to our interaction
techniques without requiring any extra hardware keys or buttons. For
example, many new commands could be added to the hotbox. Sliders
could be added for panning and zooming the viewport. Thousands of
additional commands could be added to the hotbox by nesting them
within marking menus, as in [12]. Any of these menu items could
be invoked with 1D or 2D arguments, by performing a marking menu
stroke to select the item, then releasing (causing some visual tension
to be engaged), and then press-dragging to specify the argument.

Our radial menus (Figures 3, 7, 8) could be made into marking
menus with submenus containing dozens to hundreds of menu items
each. (Note that we have referred to our menus as radial menus be-
cause they are single-level menus, and it is only in multi-level menus
that marking menus’ scale-invariant interpretation of mark shapes re-
ally distinguishes them from radial menus.) For example, the set op-
eration menu (Figure 8) could have items added to it to support set
intersection and symmetric difference (XOR) [19].

Additional layout patterns beyond linearize and circularize could
be added to the hotbox, some of which could use 1D or 2D arguments
to specify the layout. For example, we have added a 1D slider to the
hotbox for creating a layout of concentric circles. When the user clicks



Fig. 10. A sample layout produced using our interface. 6 hub nodes
were identified and “circularized” to form a hexagon. Groups of nodes
adjacent to hubs were “linearized” and positioned to the right, making
it easy to see that the nodes within each group share the same neigh-
bours. The set of currently selected nodes (hilited in red on the left) are
all nodes at least 6 edges away from any of the 6 hubs; this set of nodes
was easily found by selecting the entire graph and then deselecting the
neighbourhood of radius 5 centred at each hub. The hotbox (barely
visible due to automatic fading) has been popped up and the user is
currently dragging on the “Spread Neighbours” 1D slider, causing suc-
cessive concentric circles of nodes to be laid out around the currently
selected nodes.

down on this slider, the selected nodes are circularized, and as the
user drags toward the right, additional circles of nodes that are 1, 2, or
more edges away are added, in proportion to the distance dragged. The
positions of nodes are smoothly interpolated toward circles as the user
drags, and the user can reverse the direction of their drag to “backup”
before releasing (Figure 10).

8 INITIAL USER TESTING

To evaluate our design, we performed an initial round of qualitative
user testing. Our goals were to investigate how easy the interface is
to learn, how well users are able to operate it, what problems become
apparent, and to solicit opinions and feedback. Eight participants (4
female; 7 right-handed; 1 user a regular user of NAViGaTOR with its
v1.1 interface; 5 engineers/computer scientists, 3 biologists; all daily
users of computers; ranging in age from 26 to 61 (median 33)) tested
the interface in individual sessions that lasted approximately 2 hours
each, with audio recorded to capture verbal comments. None of the
users had had any prior exposure to the new user interface.

Each session began with a pre-questionnaire, after which the user
was shown the software displaying a network, was given a brief de-
scription of the force-directed layout, and was told there is some
method to select nodes and move them around. The user was then
asked to play with the interface while thinking aloud, during a 5 minute
discovery phase, using only the left mouse button and the Ctrl key, to
try to discover how to operate it. Next was an instructional phase,
where the user was given a hardcopy list of the 7 actions that can be
performed with the interface (Table 1), and each action was explained
and demonstrated to the user who then practiced it. After the instruc-
tional phase, the user performed between 4 and 6 layout tasks (5 of
the users performed all 6 tasks, but 2 users chose to stop after 5 tasks
and 1 user chose to stop after 4, due to constraints in the participants’
personal schedules). Finally, all users completed a post-questionnaire.

For each layout task, a network was loaded into the software and
was given some initial layout by the force-directed layout algorithm,
and a 2nd window displayed a static image showing the target layout
to be achieved by the user by interacting with the software in the 1st
window (Figure 11). Laying out each network required selection of
subgraphs, rotation and translation of selections, use of “Circularize”
and “Linearize”, and/or fixing some or all nodes in place.

In each task, the network consisted of 4 connected components,
each of which had to be laid out according to the target layout (so,
users laid out between 16 and 24 components each, with most users

Fig. 11. Upper and lower left: initial layout of the network in tasks #3
and #4, respectively, as determined by force-directed layout. Upper and
lower right: target layout that users had to achieve, in the same tasks.

completing all 24). Each network was made of a mixture of large and
small components. The size of the networks in the 6 tasks were 30,
43, 55, 90, 67, and 111 nodes respectively, and the size of components
varied between 3 and 59 nodes.

During the first two tasks, users were given many hints as to the se-
quence of actions they could take to lay out each component, and even
after correctly laying out a component they were sometimes shown
alternative techniques (e.g. alternative ways of selecting groups of
nodes) to achieve the same result. This was done to expose the user
to as many uses of the interaction techniques as possible. The fact
that many valid strategies could be adopted by the user, with no sin-
gle “correct way”, was emphasized. During the later tasks, users were
given many fewer hints, but were still allowed to ask questions if they
wished, and were given hints if they were performing the layout in a
clearly inefficient way such as manually moving nodes one-by-one.

8.1 Results

As expected, users were able to operate the interface successfully and
complete the tasks they set out to perform. However, the interface took
a non-negligible amount of time to learn, and we suspect the users did
not have time within a 2-hour session to converge to expert-level per-
formance. Users found the interface only somewhat “intuitive” (av-
erage: 3 out of 5), and by the end of the session only partially felt
they could “operate the user interface quickly” (3.5/5). The instruc-
tional phase alone of the session took between approximately 15 and
45 minutes (median: 23), and the total time for the instructional phase
together with the first two tasks (during which many hints were given)
was approximately 30 to 60 minutes. The total time to perform tasks
#3 and #4, when far fewer hints were given, was between 20 and 25
minutes for half the users, but two users took 50 minutes to complete
these same two tasks (note that the slowest users are such that there
is no clear suggestion of a correlation with gender, background, or
age group). In contrast, the first author, who has extensive experience
with the interface, can perform the same tasks #3 and #4 in a total
of under 6 minutes, suggesting that participants had not converged to
expert-level performance. User comments also suggest this: at the end
of the session, one user stated “I’m not yet really comfortable using
the interface... cuz I think there was a lot to grasp, but at the same
time... I don’t worry about it, cuz it is self-explanatory, given the few
fundamentals... explained to me... I know how to get the hotbox and
everything so... I’m happy... I think if I were to repeat these tasks, it
would go way faster, but already, it feels good.” Similarly, another user
stated “I’d have to practice it a lot more I think... on the other hand,
I don’t know how you would actually make it easier because really it
does a lot of things”

When asked what aspect (from a list of suggestions) of the tasks
was most difficult, the most common responses were “remembering
how to operate the user interface” (3 users) and “mentally matching
elements of the network to the target layout” (3 users), suggesting that



the cognitive load on the users was due not only to learning and re-
membering the new interface, but also due to the inherent difficultly
of the task. (Interestingly, none of the users referred to the hardcopy
sheet of paper listing the 7 actions available to them, despite it being
within easy reach throughout the tasks.) We suspect that a more real-
istic free-form browsing task, where the user is exploring the network
and choosing a desired layout incrementally and opportunistically as
they go, and also not switching attention between two windows, would
be easier and allow for better performance.

Despite the above evidence for a non-negligible learning curve in-
volved with the interface, users rated the interface as “easy to learn”
(4.3/5), were “able to accomplish what [they] were trying to do”
(4.2/5), felt “comfortable using the interface” (4.1/5), found “the user
interface easy to operate” (4.1/5), were “satisfied” with the user inter-
face (4.1/5), found the interface “fluid” (4.1/5), and liked the interface
(4.4/5). All 8 users said they would want to use the same interface if
they had to perform additional tasks of a similar nature.

Following are some comments made during the sessions.
Some of these were made partly in response to the sugges-
tion that an alternative interface might use pull-down menus
and/or hotkeys, however the users were not “led on” in their
opinions by suggesting what tradeoffs such alternatives might
have. Each of these comments was made by a different user.

“I really like [the hotbox]”

“[the interface is] fun to learn”

“It’s pretty complete from what I can see... I just found that not having to go any-

where else than on the [main workspace] was pretty convenient”

“I find the things [in the hotbox] easy to select... I think this [new interface is] easier

to use... than a pull-down menu for example... at first I’m not sure how to do this but

once I know how to select those things it becomes very easy... I like this hotbox”

“This is fun... I think the thing that I really like about it is that, you don’t have to use

the keys, except for the Control key... because it’s faster, you don’t have to remember

various shortcuts... I like the fact that there are no pull-down menus; it makes it

faster after the initial learning phase... It’s a cool interface!”

“[It’s a] refreshing experience... I like that [in] the hotbox... all the buttons stay

up, cuz, the first thing I’ll wanna do is say linearize this selection, and then rotate

it, and then move it to just the right spot, and I like that I can just move the mouse

cursor back, just over to the button [in the hotbox] instead of having to re-navigate

some popup and then navigate some menu that disappears between [invocations]...

[In other software] I’m constantly going back to [a menu]... and that’s annoying”

During the discovery phase, no user was able to discover all 7 ac-
tions in Table 1 within the allotted 5 minutes. 7 of the 8 users success-
fully popped up the hotbox, however some users tried to click through
the hotbox onto nodes underneath it; at least one user found the ac-
tivation circle in Figure 6 too small and hence too sensitive; and two
users did not realize that the hotbox was popped up by moving their
cursor outside the activation circle—instead they hypothesized that the
hotbox was being popped up after a temporal delay.

To aid in learning the interaction techniques, and to address the
previous paragraph, we suggest the following adjustments: making
the activation circle larger (hence less sensitive) by default (but allow-
ing subsequent customization of its size), popping up an instructional
tooltip if the user lingers in the activation circle for a relatively long
period without moving, drawing attention to the circle by displaying
an animated hilite when the cursor nears or crosses the circumference,
popping up an error message if the user tries to click through the hot-
box in an invalid region of it, and occasionally popping up tips (similar
to a “Tip of the Day”) that remind the user of actions in Table 1 that
have not been used for a long time.

Subsequent to the above initial evaluation, a 9th user already famil-
iar with the interaction techniques was observed for approximately 2
hours while using them to layout and analyze a real data set in a self-
directed task. The user stated that, initially, the interaction techniques
require practice, however he likes the hotbox, finds it handy to have all
things in one “menu”, says it saves him time (over traditional menus),
and he wants to see it in future versions of the software.

9 CONCLUSIONS AND FUTURE DIRECTIONS

We have presented an integrated set of interaction techniques, using
only one keyboard key and one mouse button, that allow for flexi-

ble selection and manipulation of subgraphs. The novel aspects of
this work are the neighbourhood-radius selection method performed
by dragging, that is integrated within a modified radial menu (Fig-
ure 3), and an enhanced hotbox that integrates selection of commands
with specification of 1D or 2D arguments and that is popped up using
an activation circle to provide shortcuts to additional functions.

For future work, we are also interested in exploring related tech-
niques for easing selection, especially those that use a network’s struc-
ture to constrain and guide selection, and new methods for changing
the network’s layout with little effort, possibly using a kind intelligent
“auto-completion” to facilitate input. We are also interested in ap-
plying our interaction techniques in domains beyond interactive graph
layout. For example, in a 3D scene, the 1D and 2D sliders in a hotbox
could be used to control parameters of a camera (position, orientation,
field-of-view) or of selected objects (position, orientation, scale, color,
alpha, material).

ACKNOWLEDGMENTS

Thanks to Bowen Hui and Gord Kurtenbach for feedback; Michael
Tsang, Aaron Hertzmann, and Patricio Simari for implementation tips;
our users; and members of Jurisica Lab. This work was supported by
funding from Genome Canada through the Ontario Genomics Insti-
tute, US Army DOD #W81XWH-05-1-0104, and IBM.

REFERENCES

[1] M. Beaudouin-Lafon. Novel interaction techniques for overlapping win-

dows. In Proc. ACM UIST, 2001.

[2] M. Beaudouin-Lafon and et al. CPN/Tools: A post-WIMP interface for

editing and simulating coloured petri nets. In Proc. Int. Conf. on Appli-

cation and Theory of Petri Nets (ICATPN), pages 71–80, 2001.

[3] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Toolglass

and magic lenses: The see-through interface. In Proc. SIGGRAPH, 1993.

[4] W. Buxton. Chunking and phrasing and the design of human-computer di-

alogues. In Proc. IFIP World Computer Congress, pages 475–480, 1986.

[5] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:

Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

[6] N. Friedlander, K. Schlueter, and M. Mantei. Bullseye! when Fitts’ law

doesn’t fit. In Proc. ACM CHI, 1998.

[7] F. Guimbretière and T. Winograd. FlowMenu: Combining command,

text, and data entry. In Proc. ACM UIST, pages 213–216, 2000.

[8] K. Hinckley, F. Guimbretière, M. Agrawala, G. Apitz, and N. Chen.

Phrasing techniques for multi-stroke selection gestures. In Proc. Graph-

ics Interface (GI), 2006.

[9] Jurisica Lab. Network Analysis, Visualization, & Graphing TORonto

(NAViGaTOR). http://ophid.utoronto.ca/navigator/.

[10] G. Kurtenbach. Methods and system of controlling menus with radial and

linear portions. U.S. Patent #5689667. 1997 (filed 1995).

[11] G. Kurtenbach and W. Buxton. The limits of expert performance using

hierarchic marking menus. In Proc. ACM CHI, pages 482–487, 1993.

[12] G. Kurtenbach, G. Fitzmaurice, R. Owen, and T. Baudel. The Hotbox:

Efficient access to a large number of menu-items. In Proc. ACM CHI,

1999.

[13] M. McGuffin, N. Burtnyk, and G. Kurtenbach. FaST Sliders: Integrat-

ing Marking Menus and the Adjustment of Continuous Values. In Proc.

Graphics Interface (GI), pages 35–41, 2002.

[14] M. J. McGuffin and R. Balakrishnan. Interactive visualization of ge-

nealogical graphs. In Proc. IEEE InfoVis, pages 17–24, 2005.

[15] S. Pook, E. Lecolinet, G. Vaysseix, and E. Barillot. Control menus: Ex-

cecution and control in a single interactor. In Extended abstracts of CHI,

2000.

[16] E. Saund, D. Fleet, D. Larner, and J. Mahoney. Perceptually-supported

image editing of text and graphics. In Proc. ACM UIST, 2003.

[17] A. J. Sellen, G. P. Kurtenbach, and W. A. S. Buxton. The prevention of

mode errors through sensory feedback. Human Computer Interaction,

7(2), 1992.

[18] M. Suderman and M. Hallett. Tools for visually exploring biological

networks. Bioinformatics, 23(20):2651–2659, 2007.

[19] G. J. Wills. Selection: 524,288 ways to say “this is interesting”. In Proc.

IEEE InfoVis, pages 54–60, 1996.


