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Figure 1: A taxonomy of overlapping categories. Each category contains all systems that have at least the indicated architec-
tural features. The lower-right category (BVP) is the most restrictive, requiring the most features. Input can be Textual (T),
Direct Manipulation (D), or either (*), and input is used to define Content (C) or Instructions (I).

ABSTRACT
Recent innovations in visual programming and the use of direct
manipulation for programming have demonstrated promise, but
also raise questions about how far these approaches can be general-
ized. To clarify these issues, we present a categorization of systems
for visual programming, programming-by-example, and similar
systems. By examining each category, we elucidate the advantages,
limitations, and ways to extend systems in each category. Our work
makes it easier for researchers and designers to understand how
visual programming languages (VPLs) and similar systems relate
to each other, and how to extend them. We also indicate directions
for future research.

CCS CONCEPTS
• Software and its engineering→ Visual languages; Patterns;
• Human-centered computing→ Graphical user interfaces.
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1 INTRODUCTION
Visual programming languages (VPLs) and end-user programming
systems have been in development for decades. Contemporary
examples deployed for real-world applications include Scratch [25]
and related systems [2, 33, 40], ‘visual scripting’ with Bolt [24] in the
Unity game engine, and PureData [34] for music. VPLs often consist
of either instruction blocks (that are dragged and snapped together
into sequences), orflow networks (blocks that are connected together
as nodes in a directed graph or dataflow diagram [16]). Recently,
other experimental systems have been proposed that allow a user
to program through variations of direct manipulation, drawing,
or sketching. However, these systems are not based on the more
common paradigms of instruction blocks nor flow networks. Some
of these have been described as “programming by example” [39] or
“output-directed programming” [11].
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These VPLs and related systems often make it easier for begin-
ners to program, and some can also ease the work of experts. VPLs
also often appear to have limitations, e.g., only working for the
limited domain for which they were designed, with no obvious way
to extend them. In this sense, they appear incomplete as languages.

We present a way to categorize and relate these different sys-
tems. We start with the dichotomy of a program’s instructions and
data, which can often be understood as instructions and content,
where content could be a 2D or 3D scene, or a document, etc. We
then consider the different ways that content and instructions can
each be specified by a user, through direct manipulation or other
means, and how content and instructions can affect each other in a
given system. This leads to a taxonomy (Figure 1) of 8 overlapping
categories of systems. By examining each category, we elucidate
the advantages, limitations, and ways to extend systems in each
category. Our work makes it easier for researchers and designers
to understand how VPLs and related systems pertain to each other,
and how to extend them.

2 MOTIVATING EXAMPLES
Figures 2-4 show a few examples of recent work. These motivate
some questions that our paper will answer.

Figure 2: In Scratch [25], users create sprites on a stage (top
right). Behaviors are programmed by dragging together in-
structions resembling jigsaw puzzle pieces (left).

In Scratch (Figure 2), the user populates a stagewith one or more
sprites. Sprites can be directly manipulated to give them an initial
position. The user also assembles sequences of instructions that are
executed in response to events (such as keyboard or mouse events).
These instructions implement behaviors of the sprites, enabling the
user to animate a story or program an interactive game.

Sketch-n-sketch (Figure 3) produces a static vector drawing as
output which can be created and modified through direct manipu-
lation. Textual source code is also shown that generates the same
output. Modifying either the textual code or the graphical output
causes the other to update.

Victor [39] has demonstrated a tool for ‘drawing’ visualizations
through direct manipulation. Each manipulation of the drawing by
the user causes an instruction to be generated. The user can thus
build up an algorithm, instruction-by-instruction, mostly through
direct manipulations (as well as occasional modifications to instruc-
tions by dragging in parameters or typing in expressions). The

Figure 3: A user of Sketch-n-sketch [5, 11] creates an SVG
figure using textual source code (left) or directmanipulation
of the SVG output (right). Changes to either representation
cause the other to update, maintaining synchronization.

Figure 4: In Victor’s system [39], the user directly manipu-
lates the desired output (right). Each manipulation causes
a corresponding instruction to be generated (left). Instruc-
tions can be enclosed in a loop, causing them to execute on
all tuples in a dataset, generating a visualization of the data.

algorithm thus defined can then be executed on different datasets,
causing the output visualization to update.

Several observations can be made. First, in each of the preceding
three examples, we can see a separation between instructions in one
part of the window, and content in the other. Second, in the case of
Scratch, the instructions (blocks) and content (sprites) play different
roles: the instructions define the behavior of the content. However,
in the other two examples, the instructions and content play the
same role, as they each define the same thing using different repre-
sentations. Third, once defined, the content can be either dynamic
(Scratch) or static (the other two examples). Fourth, programming
can be done by editing instructions (either through text editing, as
in the case of Sketch-n-sketch, or through direct manipulation, as in
Scratch) or by directly manipulating content. In the case of Scratch,
a typical programming session involves changing both instructions
and content; however in the other two systems, it is possible to
program almost entirely by editing just content.

Several questions arise. Are each of these systems limited to
one application domain? For example, can Sketch-n-sketch or Vic-
tor’s system be extended to allow a user to program interactive
behaviors? How could a user ‘draw’ interactive behavior? Are any
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of these systems “Turing complete”? 1 Can they be extended for
general purpose programming?What are the pros and cons of these
different approaches to programming? Our paper answers these
questions, by classifying systems such as these, and by pointing out
the limitations and possibilities within each category of systems.

3 TAXONOMY
VPLs and related systems often involve sequences of instructions
(I ) as well as content (C).

By content, we mean part of the data used by a program. It is
sometimes called “resources” or “assets”, with examples including
2D figures or images, 3D scenes, and documents. In some cases,
people instead speak of the program’s “output”: for example, in a 3D
maze game, the 3D scene could be thought of as output; however,
we will refer to it as content. In many cases, content can be created
or edited by the programmer through direct manipulation (D) (often
via a mouse), and we indicate this with D → C .

Instructions are often specified through textual (T ) input, i.e.,
primarily through a keyboard, and we can indicate this with the
formula T → I . Some systems (like Scratch) allow instructions
to be specified through direct manipulation (D → I ). To indicate
the more general idea that instructions are specified through some
means of input, we can write ∗ → I , where ∗ indicatesT or D. As a
matter of convention, we will usually write these formulas in the
opposite direction (I ← T , I ← D or I ← ∗), because this will make
it easier to include them in larger formulas later. However, this does
not change their meaning.

These tiny formulas are highly simplified models of the archi-
tecture of the systems in question. In some systems, I or C can
have effects on each other, which can also be indicated with arrows,
as we explain later. We have catalogued such simple architectural
models to derive the taxonomy of categories shown in Figure 1.
In the following sections, we discuss each category, starting with
General Programming (GP) and Content Creation Tools (CCT). The
other categories in Figure 1 require additional features, and are
incrementally more restrictive than GP or CCT.

3.1 GP (General Programming) and
GUI-completeness

GP is the set of all systems allowing the programmer to create or
edit instructions (I ← ∗), including through the use of text input
(I ← T ). For simplicity, we focus on instructions in imperative
programming languages.

It is well known that for an imperative programming language
to be Turing complete, i.e., able to express any algorithm, it must
support conditional branching (or ‘while’ loops) and be able to
access an arbitrary amount of memory. It is reasonable to expect
that any language designed for general use would also support:
‘for’ loops; a few basic datatypes (numeric and string types, as well
as lists or arrays) and operations on them; the ability to dynami-
cally (i.e., at runtime) create, modify, and destroy instances of these
datatypes; and some mechanism for defining subroutines to allow

1A researcher and game designer posed this question online in 2015: “Have there been
any breakthroughs in Turing complete visual languages for games so gamers can add
their own modes, levels, objects, etc.? I am particularly interested in visual languages
where the visual program looks a lot like what the game looks like.”[28]

the reuse of sequences of instructions. We are furthermore inter-
ested in making programs that accept input from common devices
(mouse, keyboard, touch ...), and this is often possible in impera-
tive programming by defining events of different types (keypress
event, mouse motion event, etc.) that each trigger some subset of
instructions. Finally, we are interested in making programs that can
display arbitrary visual output, either in the form of vector graphics
or bitmaps, that can change as a function of time and also as a func-
tion of input events. Such time-dependent visual output is normally
supported in a language by giving the programmer an API to create
or draw graphical primitives, as well as some mechanism to control
the timing of output (e.g., via timer events, and/or a way to ‘sleep’
for a desired time interval). We propose the term GUI-complete
to describe programming languages that support all these features,
since they can be used to implement any GUI (Graphical User In-
terface). More formally, let F be a computable function that maps
a memory state Mt−1 at time t − 1 to a new memory state Mt
and to visual output V , i.e., (Mt ,V ) = F (Mt−1, E), where E is the
set of input events that have occurred over the (t − 1)th unit of
time, and the units of t appear psychologically ‘small’ to a human
user (e.g., milliseconds). We say that a programming language or
programming system is GUI-complete if and only if, for any such
F , the language allows a program to be defined that captures E
and displays V , at each time step. This implies that the program
computes F and storesMt .

Additional features can be imagined to make a programming
language more useful and usable, such as: an API for file i/o, or for
network communication, or syntax-related features such as object-
oriented constructs, etc. The point is that the above set of features
already allows a programming system to express any interactive
front-end, and once these basic features are supported, it is easy to
add additional features of the kind just mentioned, either with an
API or new syntactical elements.

3.2 CCT (Content-Creation Tools) and Direct
Manipulation

CCT contains systems for creating content, such as 2D paint pro-
grams, or software for creating animations, 3D scenes, etc. These
systems normally allow the user to manipulate content through
direct manipulation [37, 38], which can be defined as the use of
continuous physical motions (of one’s hand) to interactively manip-
ulate persistent visual representations of objects, with continuously
updated feedback, and with the ability to undo actions by simply
reversing physical motions. Examples include using a mouse to
“drag and drop” an icon to move it from one place to another, or
dragging an object or part of an object to move or resize it. We
indicate such systems in CCT with the formula D → C .

Systems in CCT are not limited to static content, and it is instruc-
tive to consider the ways in which dynamic content (i.e., animations)
can be created with tools in CCT. One method, common in anima-
tion software, allows the user to directly manipulate curves repre-
senting motion paths, or curves in spacetime, to define movements
over time. Such curves can also be implied through interpolation
of ‘keyframes’ at different moments in time where the user has
fixed the position and state of each object. Another method is to
have objects with built-in dynamic behaviors (e.g., moving under
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the effect of forces, or reacting to collisions, or reacting with pre-
programmed behaviors), allowing the user to assemble them and
to launch a simulation [1]. These built-in behaviors were defined
by some prior programmer, and there may be parameters exposed
to the content creator to modify these behaviors; however there is
no requirement for a system in CCT to allow the content creator
to re-program such behaviors: CCT is merely defined to contain
systems that allow a content creator to directly manipulate the
content.

Using the methods just considered, any animation (i.e., any
fixed sequence of images) can be created, and indeed these meth-
ods are routinely used to create animated feature films. However,
these methods are not GUI-complete. Given any particular content-
creation toolT that only supports high-level pre-defined behaviors,
it is easy to imagine an interactive program P whose dynamic output
depends in a complicated algorithmic way on a user’s moment-to-
moment input (from a mouse or other device), such that there is no
way to define P using T .

As we will see, it turns out that some systems in CCT can achieve
GUI-completeness, if the step-by-step manipulations of content
performed by the user imply instructions of a sufficient flexibility.
This is explained later in our discussion of the BP category, a subset
of CCT.

One theme in research on content-creation systems has been
the use of pen input to enable a user to sketch content [1, 41].
This has the advantages of better leveraging the fine motor control
afforded by fingers; of encouraging a less formal, more creative way
of working; and of allowing the user to fluidly intermix inking and
command gestures while avoiding explicit mode changes. Recent
systems allow animations [18, 42] and even interactive illustrations
[17] to be defined through sketch-based input, but without being
GUI-complete.

3.3 VP (Visual Programming)
VP is a subset of GP where the primary means to define instructions
is through direct manipulation (I ← D) rather than text input. This
includes Blockly [33] which is similar to the way instructions are
assembled in Scratch (Figure 2). VP also includes programming
systems where the user constructs a control-flow diagram, such as
in Lego Mindstorms EV3, and data-flow diagrams [8, 9, 13, 34].

Figure 5: Left: textual instructions. Right: equivalent in-
structions in Blockly [33].

There is an obvious mapping between text-based source code
and VPLs in the style of Blockly (Figure 5). This makes it clear how
to make such a VPL GUI-complete, simply by ensuring that all the
necessary features (dynamic creation of variables, support for input

events, ability to draw arbitrary visual feedback,...) are available to
the programmer. GUI-completeness may not be desirable, however,
if the VPL is designed for teaching programming and should be
kept simple.

The main advantage of a VPL is ease-of-use, especially for begin-
ner programmers. With traditional textual source code, program-
mers often need to have a precise idea of what to type as they
enter each part of the program. In a VPL, however, there is often a
menu of possible blocks that programmers can choose from. This
ensures visible affordances, meaning programmers can depend more
on recognition rather than recall to determine what block to use
next. The shape or color of the blocks can also give some indication
of how to use them with other blocks, sometimes through the use
ofmetaphors (e.g., jigsaw puzzle pieces with matching contours). In
addition, some VPLs (e.g., Figure 6) use curves or line segments to
connect blocks, and these connections may be equivalent to using
temporary variables in a text-based language to store input and
output values. The ability to connect one block’s output to another
block’s input, without choosing an explicit name for a temporary
variable, is another advantage with VPLs. Disadvantages of VPLs in-
clude being slower to input instructions than typing, requiringmore
screen space that textual instructions, and the potential for large
numbers of criss-crossing lines [36] (however this can be mitigated
by allowing the user to define variables and refer to them by name
rather than always connecting them with explicit lines, and also
allowing for some kind of encapsulation similar to subroutines).

With some VPLs, it is less obvious if, and how, it is possible
to achieve GUI-completeness. Purely dataflow-based VPLs oper-
ating on a limited amount of data, or supporting no conditional
branching or loops [29], cannot be Turing complete, and there-
fore neither GUI-complete. VPLs like Blueprints in Unreal Engine
and Bolt [24] in Unity, interestingly, use a mix of control-flow and
data-flow diagrams. Figure 6(top) shows one such diagram which
looks very similar to the abstract syntax tree of the instructions
in Figure 5. Next, Figure 6(bottom) shows how duplicate subtrees
in Figure 6(top) can be used multiple times, resulting in a more
compact diagram. This kind of VPL nevertheless directly maps
back to the instructions in Figure 5, and therefore can be made
GUI-complete in the same way.

3.4 PBE (Programming-By-Example)
We define PBE as the subset of CCT containing systems where
the user directly manipulates content, and this somehow implies
instructions that can later be executed. There is no requirement
for the user to have direct access to modify the instructions, so we
model PBE with the formulaD → C ↔ I . The double-headed arrow
between C and I indicates that instructions are implied by changes
to content (C → I ), and that when instructions are executed they
have read/write access to content (C ← I ).

Viscuit (Figure 7) is an instructive example of the kind of system
found in PBE. One paper on Viscuit [10] describes it as a “visual
langauge” in which “programs are written”; however, we do not
consider it a member of our VP nor even GP categories, because
users have no way to directly edit instructions. Instead, users only
interact with content in Viscuit. They do this by drawing sprites,
and also by defining “rewriting” rules. When a Viscuit program
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Figure 6: In each of the above Bolt ‘visual scripts’ [24], the 5 nodes running along the top contour (connected by white arrows)
map to the instructions in Figure 5, and the remaining nodes serve to evaluate expressions. Top: the tree structure of this
visual script maps to the abstract syntax tree for the instructions in Figure 5. Bottom: this has an equivalent structure, but
duplicate expression subtrees (such as j*j) have been collapsed.

Figure 7: In Viscuit [10], the user defines rewriting rules for
sprites. In this example, the rewriting rules react to touch
events on each side of a sprite, causing the sprite to move.

is run, at each time step, the rewriting rules determine how the
simulation advances, causing sprites to move, rotate, change, or re-
spond to touch input. Animations and games of a surprising variety
can be created with Viscuit, with the user only ever manipulating
representations that resemble pieces of the program’s final output.

However, Viscuit, and systems like it, cannot be GUI-complete. The
limitation stems from users having no (direct nor indirect) way
to create instructions corresponding to loops, nor instructions for
reading/writing arbitrary amounts of memory, nor ways to draw
arbitrary visual feedback. The functionality that can be accessed
through interaction with the content is similar to the functional-
ity available with a fixed high-level API: although the API makes
it easy to define certain animations and games, because there is
no way to access lower-level primitives, the user can never break
out of the limits of the higher-level functionality that is “baked-in”
(predefined).

One advantage of PBE is that programming by manipulating
content reduces the representational gap between the target applica-
tion domain and the input. Other examples in PBE include systems
for defining prototypes of GUIs [23] and of websites [32], and for
defining visualizations [31, 35].

3.5 COP (Content-Oriented Programming) and
COVP (Content-Oriented Visual
Programming)

It is now common for programming systems to involve both in-
structions and content of some kind, each of which can be edited
separately. We define COP as the set of such systems, which we
model with D → C ← I ← ∗. The C ← I means that, when
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instructions are executed, they can read and write to the content,
modifying it, inserting/deleting parts, etc.

COP includes IDEs (IntegratedDevelopment Environments) where
images (such as icons) can be edited through direct manipulation,
possibly in another program and then imported (as “assets” or “re-
sources”) into the IDE, and then the source code instructions can
load this content and use it, render it, or transform it at runtime.
Another example in COP is web programming, where an HTML
document can be created through a direct manipulation tool, and
then JavaScript instructions are written to modify the HTML doc-
ument. A third example is found in the Unity game engine: a 3D
scene is created through direct manipulation, and C# instructions
can modify this scene at runtime or add behavior.

COVP is the more restrictive category of systems where both
content and instructions are modified through direct manipulation
(D → C ← I ← D). Examples include Scratch, AppInventor [40]
(for mobile apps), Alice [7] (for 3D scenes), and MaggLite [15].

Systems in COP and COVP can be made GUI-complete simply by
ensuring their instruction set covers all the necessary functionality
for this.

3.6 BP (Bidirectional Programming)
The set BP is the intersection of COP and PBE, combining aspects
of each. In BP, instructions can be edited directly, or implied by the
editing of content. In addition, instructions act on content when
they are executed. This is expressed by D → C ↔ I ← ∗. Our use
of the term “bidirectional programming” is inspired by its use to
describe Sketch-n-sketch [4]; however, here we mean it in a larger
sense, as will become clear with the examples we now give.

A first example of systems in BP are “GUI builders” or “GUI
designers” that allow a programmer to build a front-end through
direct manipulation, e.g., dragging-and-dropping widgets into place
on a window. Some of these tools then generate source code that can
be executed to instantiate the same window and widgets. If we view
the GUI as content, then direct manipulation of the content implies
instructions (D → C → I ), and these instructions (1) recreate the
same content, and (2) the instructions can be further edited by the
programmer to modify the content or add behavior (event-triggered
subroutines) to the content (C ← I ← ∗).

A second example: Autodesk Maya is a highly customizable
3D modeling and animation software package. 3D content can be
created through direct manipulation, and also created programmat-
ically through a scripting language. Maya has a feature called “echo
all commands”. When activated, every direct manipulation of the
3D scene causes an equivalent script command to be printed to a
terminal. These can then be saved as part of a script, and optionally
further edited. When this script is executed, it can recreate the same
modifications to the 3D scene.

As a third example, consider Victor’s work [39] (Figure 4), where
each direct manipulation of 2D content generates another instruc-
tion, and these instructions set the position, size, or other attributes
of 2D shapes. Some instructions contain parameters which the
programmer can change by typing in expressions or dragging-and-
dropping arguments into the parameters. To create a loop, the
programmer selects a contiguous set of instructions and presses
a keyboard shortcut (“L”). The system also maintains a sequence

of thumbnails, in chronological order, showing the result of each
direct manipulation. This allows the user to go back to any previous
step and change it or insert new steps.

Sketch-n-sketch is a fourth example in the BP category, and it
maintains a fairly strict synchronization between the instructions
and 2D content, when either are edited.

One advantage of these bidirectional programming systems is
allowing the programmer to switch between two different repre-
sentations of the program, according to whichever representation
is easier to work with.

In the four examples given above, notice that the content is either
static (Victor’s work and Sketch-n-sketch) or else interactive be-
haviors can only be defined with instructions (GUI builders, Maya).
It is not obvious how direct manipulation of content can be used
to generate instructions that define interactive behavior, or how
abstract data can be directly manipulated. However, by extending
the scheme in Victor’s system, we can outline a strategy for this.

Figure 8 shows the strategy. If the objects that the program-
mer needs to manipulate are visible as part of the content, the
programmer can use these as handles to access commands (i.e.,
verbs) associated with them. For some applications, it makes sense
for the position or size of the object’s visible form to map to data
values in the program, in which case directly manipulating the
position or size can generate corresponding instructions (this hap-
pens in Victor’s work, in Sketch-n-sketch, and in Figure 8, upper
right). However, for objects and/or verbs that are abstract, sim-
ply making the object visible in the content, and listing verbs in a
menu, is sufficient to generate corresponding instructions. Gener-
ating instructions involving multiple objects could be done with
drag-and-drop actions, lasso/multiple selections, or with additional
menus (Figure 8, lower left).

This strategy allows a programmer to generate sequences of
instructions, involving arbitrary sets of objects and verbs, just by
manipulating content. Different sequences of instructions could
be triggered by different input events, to allow the programmer
to define interactive behavior. If, in addition, some mechanism is
provided to define loops, conditionals, and subroutines (such as
the selection of multiple instructions followed by hitting a key-
board shortcut in Victor’s work), then this strategy, of program-
ming (mostly) through direct manipulation of content, can be made
GUI-complete.

Other examples of previous work approach the strategy just
outlined. Greenfoot [12] is a Java development environment that
facilitates the creation of visual microworlds. It makes use of the
same live interaction of Java objects seen in BlueJ [22]. Both Green-
foot and BlueJ allow methods to be invoked on objects through
popup menus on the visual representation of objects. BlueJ also
has a feature to facilitate creating JUnit tests, by recording the in-
teractions with Java objects, similar to how macros record steps
in other environments. They can be replayed later, as regression
tests. This could also be viewed as a way to create instructions by
visually interacting with live objects.

Generating instructions via content (D → C → I ) would be
even more useful if there were better ways to show data structures
(arrays, lists, trees, networks, ...) as visual content that could be
directly manipulated. Imagine if the programmer could indicate,
in a visual representation of a list, where to move or insert a new
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Figure 8: Direct manipulation of content generating instruc-
tions, step-by-step. Upper left: dragging the slider sets ob-
ject1’s value. Upper right: dragging object2 to the right
aligns it with object3. Lower left: right-clicking on object4
pops up a menu of verbs on that object, with a submenu to
select an argument to the verb. Lower right: the instructions
generated by these actions.

item, without the danger of one-off indexing errors that are com-
mon when editing textual source code. Some previous work has
demonstrated direct manipulation of data structures that generates
instructions, for binary trees [27], for arrays [14] and for red-black
trees [26], but a more general approach for a larger variety of data
structures has not been demonstrated to our knowledge.

Taking a step back, we can broadly distinguish 3 ways of pro-
gramming: (1) textual input of instructions (I ← T ), (2) VPL-style
direct manipulation of instructions (I ← D), and (3) direct manip-
ulation of content implying instructions with perhaps additional
editing directly of instructions (D → C ↔ I ← ∗). Each of these
approaches can be made GUI-complete, and each has its advantages.
The first approach can work well for expert programmers, as they
can type quickly if they know what they should type, and also gives
them access to a large scope of possible objects and verbs. An IDE
can help by popping up a menu of possible text auto-completions as
the user types. The second approach can make programming easier
for a beginner, by offering menus of possible verbs and objects,
enabling the programmer to rely more on recognizing what they
need rather than recalling. In the third approach (Figure 8), any
object that is visible in the content can be manipulated, which can
be easier to understand, especially if the content is presented in a
way that makes it easier to understand the relationships between
objects. However, this approach may not scale as well to a large
number of objects.

3.7 BVP (Bidirectional Visual Programming)
The category BVP is a straightforward specialization of BP where
instructions are directly manipulated (D → C ↔ I ← D). Such

Figure 9: Leogo [6] supports three kinds of input: an “iconic
language for graphical programming”, direct manipulation
of content, and textual input of instructions.

systems could offer two kinds of advantages to beginner program-
mers: easier manipulation of instructions (I ← D), as well as direct
manipulation of visual representations of data (D → C → I ). The
only example we found of a system in BVP is Leogo [6] (Figure 9).

4 PREVIOUS WORK
Among previous work on VPLs, the most recent taxonomies we
could find are at least 15 years old [3, 19, 30]. Ko et al.’s survey [21] is
more recent but does not present a taxonomy of VPLs based on their
syntax or visual form. We found no previous taxonomies based on
the architecture of the programming system as our paper presents.
The only work we found that discusses Turing completeness of
VPLs is Kiper et al. [20], but their work does not give strategies for
achieving completeness; instead they propose completeness as one
of several criteria for evaluating VPLs.

5 FUTURE DIRECTIONS
The tradeoffs between different representations and approaches to
programming suggests that there is no single best way to program.
An intriguing vision for the future is to have an IDE where the pro-
grammer is free to define multiple portions of the source code that
are each related (with bidirectional updating) to alternative visual
representations that are most appropriate for each portion of code.
The programmer would be free to switch between representations,
or define new representations, according to their needs. This could
combine the advantages of projectional editors (such as JetBrains
MPS2) with bidirectional programming.

2https://youtu.be/iN2PflvXUqQ
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