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ABSTRACT
We instrumented an immersive VR platform with physiological
(heart rate and electrodermal activity) sensors to investigate the
use of movement data and physiological data to automatically de-
tect changes in affect (emotional state). 12 users were asked to
complete four blocks of tasks requiring them to hit moving tar-
gets while standing and moving about. One of the four blocks (in
counterbalanced order) was designed to be stressful (S), while the
other blocks were designed to be calm (C). The motions required
of the users were the same in both conditions; only the visual and
audio feedback were different across the S and C conditions. Users’
self-scored arousal in the S condition was significantly higher. We
analyzed the recorded motions by segmenting out 2747 “fast mo-
tions”, i.e., intervals of time where the sum of the speed of the
hands was above a threshold. A simple machine learning algorithm
(a decision tree) could learn to classify these fast motions as either
calm or stressed, with ≈80% accuracy, using only two features: the
maximum speed achieved during the motion, and the heart rate
at the moment of maximum speed, where both features were nor-
malized. If only the maximum speed feature is used (i.e., with no
physiological data), ≈70% accuracy is achieved.
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1 INTRODUCTION
Virtual reality (VR) applications offer a wide variety of experiences,
eliciting a range of emotional responses. One of the main uses of
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VR is the simulation of scenarios that are sometimes stressful, such
as military battles, emergency response training, and games. When
a user is under stress, they are less able to tell the system explicitly
what to do through traditional interaction techniques.

Automatic detection of the user’s affect (such as stress) could be
useful for (1) triggering automatic offers of help, (2) throttling task
difficulty in games or simulations to avoid user frustration, and (3)
measuring user response, as a complement to other metrics (like
task time, errors, subjective ratings) to evaluate VR scenarios.

Certain changes in the user’s emotions might be detectable by
merely analyzing the movements of head and hands, using infor-
mation already available from standard VR hardware. However,
there is little previous work on affect detection in immersive VR
(i.e., using a head-mounted display), and it is unclear how much
information can be gleaned from the motion of head and hands.

We had users undergo two experimental conditions in VR, one
of which was designed to induce stress. Self-assessment question-
naires found significantly different levels of arousal between the
two conditions. Arm motions were often faster in the “stressed”
condition, and heart rate was often higher. A machine learning
algorithm could correctly classify arm motions into one of the two
conditions with 70% accuracy when only using information about
arm speed. When also using heart rate information, accuracy was
80%.We report additional features computed frommotion that were
not useful for classification, to inform future designers.

2 BACKGROUND
2.1 Presence
VR experiences can be characterized by the degree of presence felt
by the user [39], which can influence emotional state. A virtual
environment that produces a heightened feeling of presence should
be able to elicit emotional responses and behavioral changes [35].
Presence can be measured with subjective, behavioral and physi-
ological methods [14, 38, 42]. Our experiment collected all three
kinds of information.

Subjective measures rely on post-experiment questionnaires,
such as the widely used Witmer and Singer questionnaire [41, 42],
which we also used in our study. Kober and Neuper [22] review
additional questionnaires.

Previous studies have found a strong relationship between user
behavior and perceived level of presence [15, 27]. The more a par-
ticipant feels present, the more their behavioral response to virtual
stimuli resembles behavior in a real environment. For example, the
more present a user feels, the more likely they are to duck to avoid
virtual objects hitting them.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Physiological responses can also reveal emotional states [24, 28].
For example, heart rate and EDA (electrodermal activity) increase
when a person is under stress. Wiederhold et al. [40] found a corre-
lation between physiological measures (heart rate and EDA) and
presence as measured with questionnaires. Meehan et al. [28] used
a virtual elevated environment to induce vertigo and stress in par-
ticipants while measuring heart rate, EDA, and skin temperature,
and demonstrated that heart rate serves as a measure of presence.

Unlike previous work, our study found an association between
affect-arousal, heart rate, and motion when using a VR HMD (head-
mounted display) while standing.

2.2 Affective Computing
Affect has been estimated using keyboard and mouse event data
[23], a modified keyboard and mouse that detect pressure [13],
and various physiological signals (EEG, heart rate, EDA, eye gaze)
[7, 9, 25, 30–32]. Several surveys exist [4, 10, 12, 18, 19, 43].

Our work is more closely related to the detection of affect from
body postures and movements. Some previous work has involved
asking actors (such as dancers) to enact different poses and move-
ments that exemplify various emotional states [1, 5, 17, 21, 33, 34].
Once such postures or movements are captured, algorithms can
be trained to recognize them. Our work instead used real users
performing spontaneous movements.

Other previous work has leveraged information from head move-
ments [6, 11, 29] or the sitting posture of a user’s back [36].

The most relevant previous works we are aware of are [20, 37],
which are also the only works we know that detect affect from
full body posture or motion, without actors. Kleinsmith et al. [20]
classified affective states from static postures, while Savva et al.
[37] classified affective states from movements over time. In both
works, data was captured from users standing and playing video
games with a Nintendo Wii, and the input features to the learn-
ing algorithm were joint angles (and quantities related to these,
such as angular speed) that had been captured with a full-body mo-
cap (motion capture) system. Users experienced different affective
states throughout the gameplay in an uncontrolled manner, and
these were extracted and labelled by human judges. Kleinsmith et
al. trained a Multilayer Perceptron (MLP) to classify the affective
states, achieving an overall accuracy of ≈60%, while Savva et al.
trained a Recurrent Neural Net (RNN), achieving an overall accu-
racy of ≈61%. Both works made clever use of human judges to
establish a benchmark accuracy rate, showing that the accuracy of
the machine algorithms was comparable to human judges. In our
work, by contrast, our data is labelled by the different gameplay
conditions under which the data were collected, without human
judgment, establishing a ground truth.

We are aware of no previous work that attempts to detect affect
from body motion while the user is wearing an HMD. Compared
to previous work, our present study is the only one that makes use
of a VR system with HMD and hand-held controllers, obviating the
need for full-body mocap. In addition, ours is the only study that
captured body motion along with physiological data (heart rate and
EDA).

Other related work includes FACETEQ [26], a facial expression
and emotion recognition device made for VR headsets.

3 EXPERIMENT
3.1 Apparatus
We used an HTC Vive virtual reality system, which includes a head-
mounted display (HMD) and two hand-held controllers, along with
three extra Vive Trackers. The Vive Trackers were attached to a
belt around the user’s pelvis and to the shoe laces of the user’s
shoes. We wanted to capture an approximation of full body motion,
because we were unsure which motion data would be useful. The
3D position, orientation, linear and angular velocity of the HMD, of
each hand and foot, and of the pelvis were captured at 100 Hz. The
Vive was connected to a desktop PC with a 3.4 GHz i7-2600K CPU,
and Nvidia GTX 970 graphics card, running Microsoft Windows
10 (64 bits). Output was rendered at ≈60 fps, as estimated by Unity
5.51. Users stood and moved within a 2.5×2.5 meter area. The Vive
provides a “chaperone” feature that fades in virtual walls (in the
form of vertical blue grids) when the user comes too close to the
boundary of the square area.

Heart rate was measured with a Polar H10 belt2 at ≈60 Hz. Elec-
trodermal Activity (EDA), also called Galvanic Skin Response (GSR)
or skin conductance, was captured with a Shimmer Consensys
GSR3 connected to the index and middle fingers of the user’s non-
dominant hand. EDA values were measured at ≈50 Hz.

3.2 Participants
12 users (6 women, 6 men), aged 20-30 years (average 25.2, standard
deviation (s.d.) 3.1) were recruited. All were right-handed and had
previous experience with VR. None reported any vision, muscular
or cardiovascular disorders.

Before donning the HMD or other equipment, each user was
given a Titmus stereo acuity test to evaluate their depth perception.
The test involves looking at 13 sets of shapes and judging which
shape is at a different depth from the other shapes. The difficulty of
the test increases which each set of shapes, with disparity varying
from 400 arc seconds to 20 arc seconds. On average, users completed
11.75 (out of 13) sets successfully (s.d. 2.26).

3.3 Experimental Design
After the stereo acuity test, users put on the HMD and other equip-
ment and underwent a calibration procedure. Each user then un-
derwent several blocks of tasks, involving fast, swatting motions
through the air to hit moving targets with virtual tennis rackets.

The experiment involved two conditions (Figure 1), a “calm” con-
dition C, and a “stressed” condition S designed to induce stress
and/or fear. Each user completed four blocks of tasks, where three
of the blocks were calm, and one was stressed. The ordering of
conditions was counter-balanced, with one quarter of users under-
going the ordering (C,C,C,S), another quarter undergoing (C,C,S,C),
another (C,S,C,C), and another (S,C,C,C). Users were not told about
the stressed condition beforehand, so it occurred as a surprise.

Blocks were separated by breaks of several minutes during which
the user would sit down to answer a questionnaire about the block
they had just experienced, and allowing the user’s heart rate to
return to normal. Each user’s heart rate was monitored during each
1https://unity3d.com/unity
2https://www.polar.com/ca-en/products/accessories/h10_heart_rate_sensor
3http://www.shimmersensing.com/products/gsr-optical-pulse-development-kit
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Figure 1: Left: in condition C (calm), users were asked to hit
blue butterflies in a forest in daylight. Right: In condition
S (stressed), users were asked to hit bees in a forest at night
surrounded by monsters.

Figure 2: The butterfly in the calm condition (a), the bee in
the stressed condition (b), and the bee in its angry state (c).

break to ensure that it had returned to a baseline level before the
user was allowed to proceed with the next block.

3.4 Condition C: calm
In condition C, users were placed in a virtual forest in daylight
with wind and bird sounds. Users were asked to hit 50 moving
targets (flying in place with some random deviation) represented
by blue butterflies (Figure 2, a) making a smashing sound when
hit. Each target appeared in a predefined place around the user. At
first, targets appeared one-by-one, each one appearing after the
previous target had been hit. After hitting 25 targets, subsequent
targets appeared in pairs simultaneously. After 40 targets were hit,
targets appeared in triplets simultaneously until all 50 targets are
spawned.

3.5 Condition S: stressed
In condition S, users were placed in the same virtual forest but
at night. An audio track played strange noises, howling wolves,
and people screaming in the distance. Also, monsters appeared
in the distance looking directly at the user and then disappeared
without making noise when the user looked away. As the condition
progressed, a monster appeared closer and closer to the user, closing
in. The user did not need to interact with the monsters; they were
only present to induce fear.

Again, the user had to swat at 50 moving targets, but now they
were represented as virtual bees making buzzing noises, with two
possible states: when a bee was yellow (Figure 2, b), she was harm-
less, but after 3 seconds, the bee would switch to an angry state

Condition Valence Arousal Dominance
Calm 7.16 (1.46) 3.86 (2.37) 5.66 (2.16)

Stressed 6.66 (2.18) 6.25 (2.67) 5.16 (2.41)
Table 1: Means (standard deviations) rating of the affective
dimensions of valence, arousal and dominance on a 9-point
Likert scale.

Realism 5.63 (0.42)
Ability to act 5.83 (0.58)
Interface quality 5.97 (0.90)
Ability to examine 5.58 (0.71)
Self-evaluation of performance 6.33 (0.55)
Audio fidelity 5.72 (0.95)
Haptic fidelity 3.46 (1.96)
Overall presence 5.59 (0.41)

Table 2: Means (standard deviations) for the 7 categories of
questions used tomeasure presence on a 7-point Likert scale,
across both conditions

(Figure 2, c) with a red color, shooting stingers toward the user. If the
user was hit by a stinger, the user’s entire field-of-view would flash
with a transparent red color that dissolved away over 0.5 seconds.
See the companion video for a demonstration of the stimuli.

The number and distribution of insects, and the movements
required of the user to swat and eliminate the insects, was the same
in both conditions, with the same algorithm used to position insects.
Only the audio and visual feedback was different between the two
conditions, with the intention of making condition S more stressful.

4 RESULTS
4.1 Subjective Impressions
During the pauses between blocks, users answered a Self-Assessment
Manikin 9 scales test [3] used to rate the affective dimensions of
valence, arousal and dominance (Table 1). (To illustrate these di-
mensions with some examples, pleasure is associated with positive
valence, boredom with low arousal, fear with negative valence and
low dominance, anger with negative valence and high dominance.)
Likert scores were analyzed using t-tests. Arousal varied signifi-
cantly (t(11) = 2.93, p = 0.00521) between the two conditions, but
the other dimensions did not (p > 0.05).

After completing all blocks, users completed the standard Wit-
mer and Singer presence questionnaire [41, 42], translated to French4.
Overall, the level of presence (Table 2) was greater than the middle
of the range, suggesting that our experiment should be able to elicit
emotional and behavioral changes [15, 27].

4.2 Movement and Physiological Data
We sought a way to automatically detect changes in affect from
only the movement data and/or physiological data. We conjectured
that, under condition S, users might exhibit moments of backing
up or other hesitant motions, frantic head rotation, trembling, or

4French version: http://w3.uqo.ca/cyberpsy/docs/qaires/pres/QEP_vf.pdf
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Figure 3: The fast motions for one user. The vertical axis is
the sum of the speeds of the hands (prior to normalizing),
and the horizontal axis is the time since the start of each
fast motion. Blue is calm, orange is stressed.

Figure 4: Superimposed histograms of max speed of the
hands. The vertical axis is the number of fast motions ex-
tracted, and the horizontal axis is the normalizedmax speed
of each fast motion. Blue is calm, orange is stressed.

Figure 5: Superimposed histograms of heart rates. The verti-
cal axis is the number of fast motions extracted, and the hor-
izontal axis is the normalized heart rate at the max speed of
each fast motion. Blue is calm, orange stressed.

inefficient limb motions. We watched replays of the captured move-
ments animating a stick figure avatar for clues of differences be-
tween behavior in the C and S conditions. One of us watched these
animations while trying to guess if they had been recorded in the

Figure 6: Superimposed parametric plots of the evolution of
fast motions over time. Each block of each user is plotted as
a polygonal curve, where each fast motion is a single point.
The vertical axis is normalizedmax speed of the fast motion,
and the horizontal axis is the normalized heart rate at max
speed. Blue is calm, orange stressed.

Figure 7: Confusion matrices. Left: when using the two fea-
tures normalized max speed and normalized heart rate at
max speed, the accuracy is 81.1%. Right: when only using the
first feature (i.e., no physiological data), accuracy is 71.4%.

C or the S conditions. The only difference we noticed was possibly
faster hand motion in the S condition.

To investigate further, we segmented out intervals of time where
the sum of the speed of the hands was above a threshold of 4
meters/second, and called these intervals fast motions. 2747 such
motions were extracted over all users. The motions of one user are
shown in Figure 3. We used the sum of the speed of the hands so
that either user’s hand could trigger the start of a fast motion. We
computed several features of each fast motion: the maximum speed
achieved during the motion, the maximum acceleration achieved,
the heart rate at the moment of maximum speed, the duration of
the motion, and the curviness of the motion which we defined as
the ratio of the total distance traveled during the motion divided
by the straight-line distance from the starting point to the ending
point of the motion. (Our intuition was that curviness would serve
as a measure of inefficiency, and that users might have less efficient
movements when stressed.)

EDA values were found to be useless for distinguishing con-
ditions. With three of the users, EDA was usually higher in the
stressed condition; with four of the users, our instrument had failed
to capture a useful EDA signal; and with the five other users, the
EDA values were neither consistently higher nor consistently lower
in the stressed condition.
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We visualized the features of the fast motions in a variety of
ways and, using the Accord.NET 3.85 C# library, we trained deci-
sion trees on various subsets of features. We found that the most
promising features for classifying fast motions were max speed and
heart rate. We then normalized these by dividing by the maximum
values for each user across that user’s three calm blocks. (Note that,
by definition, the normalized max speed and normalized heart rate
cannot exceed 1.0 in the calm conditions; they can only exceed 1.0
in the stressed conditions. In a practical application, such a normal-
ization that is tailored to each user could be done if a sample is first
collected of the user’s “typical” calm motions. If it is not feasible
to collect a sample of the particular user, then the normalization
could be based on a threshold averaged over several users who
were tested prior to deploying the software.)

We found that training a decision tree with just these two nor-
malized features resulted in a tree containing only 2 thresholds (one
for each feature) and yielded encouraging accuracy. The results in
Figure 7 were obtained by training a decision tree on a random 50%
of the fast motions and testing on the remaining 50%, repeating this
10 times and averaging. We note that, even without physiological
data, using only the motion of the hands (which is already avail-
able on any VR platform with controllers) enables a recognition
accuracy above 70%. We also note that Figure 7 shows the rates
of false positives (calm motions misclassified as stressed) to be be-
low 3%, meaning that the classification is conservative: responding
to a user under stress would only be triggered if the algorithm is
confident that the user is stressed. In a real-world implementation,
our use of decision trees could be replaced with easy-to-implement
thresholding heuristics.

5 CONCLUSION AND FUTURE DIRECTIONS
We have demonstrated that the maximum speed achieved by arm
movements in VR can provide a reliable signal that a user is in a
state of increased arousal, which could be useful in future affective
computing scenarios. If available, heart rate data can also be used
to increase accuracy.

Many possibilities remain for future work. As is visible in Fig-
ure 3, many of the fast motions contain multiple peaks and could be
further segmented into finer grain motions. Literature on analysis
of motion capture data [2, 8] could provide ideas for better ways
to segment and classify the motion data into meaningful intervals.
Tasks that require more complicated sequences of motions, such
as the game Beat Saber where users must hit multiple blocks in
mid-air using different slicing directions, might elicit signatures
of stress beyond those found in our study. These signatures could
include multiple closely-spaced movements of short duration (pos-
sibly indicating jerking or rapidly changing directions), or longer
intervals of low speed separated by bursts of quick movements
(indicating hesitation prior to executing motions, whereas a more
relaxed user could be expected to more gradually prepare each
successive stroke). More advanced ways to visualize the motion
data [16] could also lead to new insights on how to analyze it. A
larger motion dataset might allow machine learning algorithms
to be tuned to recognize hesitant movements (backing up), head
shaking, trembling, or other signatures of stress. Finally, future VR

5http://accord-framework.net/

headsets may be equipped with the ability to measure pupil size;
pupillary analysis could therefore be used to increase the accuracy
of automatic affect detection.
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