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ABSTRACT

Visualization of multiple time series often suffers from overplot-
ting, making it difficult to read the values of curves that are hid-
den by other curves. We present techniques for horizontally dis-
placing the endpoints of line segments in discrete time series data
that (1) enable the depiction of subsets of data and (2) reduce oc-
clusion of endpoints. Because endpoints are not displaced verti-
cally, their y values can still be read and compared. Unlike small
multiples, our techniques do not move points with the same x or
y values far from each other, making some comparison tasks eas-
ier. We present three novel techniques: compressed-superposed,
compressed-juxtaposed, and shifted layers. One limitation of our
techniques is that they work best when there is only a small num-
ber of x values being visualized, and additionally, one of them
(compressed-superposed) modifies the slopes of curves in a way
that makes the slopes incomparable. Our experimental comparison
with three status quo techniques (conventional overlaid, vertically-
stacked small multiples, and horizontally-stacked small multiples)
shows that our proposed techniques are competitive with status quo
techniques and in some cases superior.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1 INTRODUCTION

A common problem with time-series visualizations [2] is the oc-
clusion of curves when visualizing many time-series (Figure 1A).
Partitioning the data into multiple panes or windows (or “small
multiples” [38]) would reduce the amount of data shown in each
pane, but would also reduce the amount of space available for each
time-series and prevent both axes from being shared across all data
curves. This means that the user’s eyes must move a longer distance
to compare points with either the same x or y values.

Another way to depict distinct subsets of curves is to somehow
display multiple layers of data in the visualization. In a 2D visual-
ization of time-series, layers might be depicted using color coding
(e.g., one subset of data curves in red, another in green), or using
different curve thicknesses, or different levels of blur (one subset
of curves blurred, another subset shown in sharp focus [27]), or by
using movement (one subset of curves not moving, another subset
vibrating [3]). Each of these approaches, however, either does not
reduce occlusion of data, or does reduce the spatial resolution avail-
able for the visualization, or both. There are also interactive tech-
niques available for temporarily reducing occlusion and/or making
layers more apparent, however these require a time investment on
the part of the user to move a cursor or otherwise provide input.

Jitter, i.e., the repositioning of points or endpoints of line seg-
ment by small (sometimes random) displacements, is a technique
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Figure 1: A: in this conventional overlaid view, time series curves are
colored by group: black, red, or orange. B: with these compressed-
superposed layers, the red and orange curves have been com-
pressed horizontally to reduce occlusion of endpoints of line seg-
ments.

sometimes used to reduce occlusion in scatterplots (Figure 1 of [5])
and parallel coordinates (Figure 4 of [13]). Jitter could plausibly
be used in time series visualizations, to avoid overplotting where
multiple time series achieve the same value. However, displace-
ments in the vertical direction could make it impossible for the user
to accurately read the values of time series data. Small horizontal
displacements, however, would avoid such a problem.

We observe that in discrete time series, if there is only a small
number of x values to display (less than 20), the space between
consecutive time steps may be underutilized. We investigate the
use of horizontal offsets of different types to make subsets (layers)



of curves more apparent. Figure 1B shows one of three approaches
we have developed: To make layers of curves appear on top of a
lower layer, each interval is compressed horizontally, resulting in
a compressed-superposed layer. This compression changes the ap-
parent slopes of the curve segments, but does not change the vertical
positions of endpoints (meaning that values can still be compared
within and between groups), and reduces occlusion with no loss in
the spatial resolution in y. It also allows the same x- and y-axes to
be shared by all groups of curves, meaning that comparing points
with similar x or y values will still involve small eye movements.
Layer compression can also be used as a focus+context technique
[7], where the context is given by a background layer, and the focus
is shown by a foreground (compressed) layer, as shown on Fig-
ure 2. This technique enables the display of additional contextual
information without creating occlusion of the original values.

Figure 2: A compressed-superposed layer provides details of fi-
nancial data. Blue curves show performance of major Canadian
S&P/TSX indexes over four days. The user has selected a single
index (highlighted in orange), for which the constituent companies
are shown in a compressed layer (in red).

As presented later, we also propose two other techniques that
horizontally displace endpoints: compressed-juxtaposed layers,
and shifted layers. Table 1 compares techniques for separating sub-
sets of curves, with our proposed techniques appearing as the three
right-most columns. Our techniques are the only ones to satisfy all
of the first five criteria, warranting further investigation. Note that
our proposed compressed and shifted layers may not be best as a
replacement for other techniques, but might be combined synergis-
tically with other techniques using interaction.

In this work, we analyze design choices related to horizontal
displacement of end points for the purpose of displaying multiple
layers, yielding three novel techniques: two kinds of compressed
layers (superposed and juxtaposed), and shifted layers. We also re-
port an experimental comparison of our three techniques with three
status quo techniques (conventional overlaid, horizontally-stacked
small multiples, and vertically-stacked small multiples), over four
tasks and visualizing hundreds of curves at a time. Results show
that our techniques are competitive with the status quo, and in
some cases superior. In two of the tested tasks (Tasks 2 and 3),
users were asked to estimate y ranges. In terms of the accuracy of
their estimations (denoted ∆y), our three proposed techniques were
never significantly worse than other techniques, and one of them
(compressed-juxtaposed) was significantly better in Task 2 while

another (compressed-superposed) was significantly better in Task
3. In terms of the time required to complete Tasks 2, 3, and 4, two
of our techniques (compressed-juxtaposed and shifted) were never
significantly worse than other techniques. Compressed-juxtaposed
and compressed-superposed were also given the highest subjective
ratings in 4 out of 5 criteria. As an overall summary, compressed-
superposed was better for perceiving entire groups of curves (Tasks
3 and 4) whereas compressed-juxtaposed was better for perceiving
individual curves (Task 2).

An interactive demonstration of all six tech-
niques, and a video of all six, are available at
http://www.michaelmcguffin.com/research/layers/

2 RELATED WORK

Visualization of time series data [2] is a challenging topic, partly
due to the long time spans involved, and due to the large number
of curves that may need to be visualized, causing occlusion. Re-
searchers have proposed collapsing curves to single rows of pixels
[25] to eliminate occlusion, using interactive filtering [20] to reduce
the number of curves to display, as well as other feature-rich inter-
active systems [24, 41, 42]. Our proposed technique is not interac-
tive, and could be combined with ideas in these other works. Also,
because we do not collapse curves into rows of pixels as in Kincaid
and Lam [25], the original shape of the curves remains visible.

Recent innovations in time series visualization include horizon
graphs [34, 18] and braided graphs [22]. These techniques can im-
prove the legibility and presentation of relatively small collections
of curves. For example, horizon graphs reduce the vertical space
necessary to show a single curve, thereby enabling small multiples
to use space more efficiently. In contrast, our work enables the vi-
sualization and comparison of hundreds of curves sharing the same
axes.

Our work is based on the idea of partitioning a set of curves into
subsets, and showing each subset on a different layer. Layers are a
common theme in information visualization, and can be depicted in
many ways. Layers can be embedded in a 3D space [8, 37] or can
even be physically realized with special display equipment [1]. We
seek an effective way of showing layers that will make individual
subsets of curves easier to read, without requiring additional inter-
action, or the complexity of 3D navigation, or specialized hardware.

Macroscope [28, 29], transparent menus [15, 16], Multiblending
[4], and free-space transparency [21] are all ways of using trans-
parency to show multiple images at the same time. This general
idea could also be applied to time-series visualizations, but could
be confusing when curves are dense. The use of transparency can
also come at the cost of some spatial resolution, or creates many
possible mixtures of alpha-blended colors that are difficult to distin-
guish (for example, 4 different original colors can produce at least
42

− 1 = 15 different mixtures, not counting different orderings of
colors).

Several interactive techniques can be used to more effectively
browse through time-series data or other visualizations involving
thin curves. These include user-initiated deformation [40, 33],
user-initiated vibration [32, 39], interactive displacement of layers
with a 2.5D orthographic projection [32, 30], lens-based techniques
[20, 11, 31, 9], as well as more general techniques like search and
filtering. All of these can make visualizations more effective, but
always at the cost of some investment in input on the part of the
user. Because our proposed compressed layers have no required
interactive techniques, they could be combined with many of these
previous techniques to make them more powerful. The scope of our
current work, however, is to study compressed layers in their static
form.

The visualization of financial data has been a topic of growing
interest, as shown by several recent works [23, 36, 43, 35, 10, 26],
some of which have proposed techniques for aggregating curves,



using small multiples, or using color coding to enable the compari-
son of a single time series curve with a market’s performance. Our
work is complementary to this previous work, as we propose a way
of making multiple groups of curves visible simultaneously.

More generally, our work can be seen as another way of reducing
occlusion in data visualizations [12]. In particular, our techniques
might be applied to parallel coordinate plots [19], which have also
seen techniques applied to reduce occlusion [11], and recently have
even been integrated with time series [14]. However, applying our
techniques to parallel coordinates is beyond the scope of the current
work.

3 DESIGNS TO DISPLAY LAYERS

The partitioning of data into layers is particularly useful for tasks
where the user must distinguish different types of curves. As shown
in Figure 1A, the use of color is insufficient to clearly separate
overlapping curves. Our techniques allow each group to be dis-
tinguished, with no occlusion of the endpoints of line segments.

3.1 Application Domain

Our research was motivated by challenges in visualizing financial
data. We identified several situations where datasets containing
many financial time series must be compared. For example, it might
be useful to compare the historical prices of securities between mul-
tiple industries, sectors, or asset classes to visually detect trends and
anomalies. Such comparisons might be used to create a more diver-
sified portfolio with uncorrelated assets from different markets. In
our visualizations, each layer might correspond to one industry or
sector (Figure 3). We solicited feedback from workers in the finan-
cial industry to inform our design choices and also to later inform
the choice of tasks used for experimental comparison.

Figure 3: Daily changes in stock values in 3 sectors of the NASDAQ,
with each sector on a different layer.

3.2 Compressed-Superposed vs Masked-Superposed

Consider the consecutive time steps xi and xi+1 in a time series. In
a visualization of the time series, there is normally no data to show
between these values, and the consecutive points (xi,y), (xi+1,y)
are connected by a straight line segment. This segment could be
transformed, in theory, with no loss of information, as long as the
user can still ascertain the original x and y values. We first consider
two transformations that might allow the original values to be read,
while also reducing occlusion between layers.

First, each line segment could be compressed (Figure 4A) hori-
zontally. This changes the horizontal positions of the endpoints, and
also changes the apparent slope. However, because it is the vertical
position of each endpoint that shows its y value, these values can
still be read with no occlusion from other layers.

Second, each line segment could be masked (Figure 4B). This
has the advantage of preserving the original slope, but erases the
original endpoints, requiring the user to imagine where a vertical

Figure 4: Approaches for separating the line segments of time series
curves into layers: (A) compression and (B) masking.

line would intersect the segment if it were extended. Such mask-
ing is comparable to the effect of window blinds, picket fences, or
bezels in tiled displays, and for certain tasks has been shown to not
be detrimental [6].

We implemented both the compressed and masked approaches
for showing layers. In both cases, layers were superposed. Our
informal testing found that masked-superposed time series were
much more difficult to interpret, since it was typically unclear
where the imaginary intersection points were, especially with line
segments having a large slope, and especially with many lay-
ers present (causing incrementally more masking of the top-most
layer).

We showed both approaches to 5 financial experts. With the
compressed-superposed approach, all of them found the distortion
of slopes to be initially somewhat confusing, but after an explana-
tion were comfortable with it. In contrast, all 5 of them found the
masked-superposed approach to be much too difficult to interpret.

We decided that it was more important to faithfully show the
original y values of the time series than to preserve slopes. This
is partly justified by the fact that, to estimate the rate of change
of a curve over a range of x values, a user can imagine a secant
line (i.e., a line of average slope) passing through the first and last
points in the series, and need not pay attention to the slopes of
line segments between consecutive x values. We therefore dropped
the masked approach and retained the compressed-superposed ap-
proach (shown in Figures 1B, 2, 3, 6B) for further evaluation.

We also considered whether compression could be scaled up to
large numbers of x values. Figure 5 sketches out a possible way
to do this. Such a view might make sense for visualizing daily
stock prices grouped by financial sector: each compressed interval
might be one day of activity, thus reducing occlusion of the prices
at the start and end of each day, and intermediate points could show
“intraday” prices (these intraday values, however, would still suffer
from just as much occlusion as without compression). It is unclear
how widely applicable this approach is; it seems that compression
is still best used when there are only a small number of x values
under consideration.

Figure 5: Compressed-superposed layers where there are three in-
tervals along x that are compressed, but many intermediate x values
within each interval.



Figure 6: Layout styles for 3 layers (red, orange and blue). A: conven-
tional overlaid with only color coding. B: compressed-superposed. C:
compressed-juxtaposed. D: shifted layers.

3.3 Compressed-Juxtaposed and Shifted

We subsequently developed two more designs involving horizon-
tal displacement of endpoints. After compressing layers, rather

than superposing them, the layers could be juxtaposed (Figure 6C).
This has the disadvantage of requiring each compressed interval
to be more narrow than with superposition, but the benefit that now
slopes can be compared since the segments of all layers have under-
gone the same (non-uniform) scaling transformation. Note that this
also makes the slopes appear more extreme, however small mul-
tiples (Figure 7) also make slopes appear either more extreme or
closer to zero.

Another possibility is to shift entire layers of curves to the right
without introducing any gaps nor changes to slopes. In Figure 6D,
the orange layer has been shifted to the right by one third of a
month, and the red layer has been shifted two thirds. Shifted end-
points are always associated with the x value of the previous black
vertical line, marking the month. In this shifted layer view, we
smoothly vary the opacity of each curve, so that the curve is fully
opaque at its segment endpoints, but transparent in between these
to allow the endpoints of other layers to show through. In the
experiment we report later on, the opacity of shifted curves var-
ied smoothly between 100% at endpoints to 10% midway between
them.

3.4 Comparison and Limitations

Table 1 gives a theoretical comparison of competing techniques
with our proposed designs. As seen in the first five rows of the table,
our techniques reduce occlusion without sacrificing spatial resolu-
tion in y, and (unlike small multiples) keep the x and y values of all
groups close together, which could theoretically ease certain kinds
of comparisons. For example, with horizontally-stacked small mul-
tiples, a given x value in different groups will correspond to differ-
ent horizontal positions, requiring larger eye movements than with
our techniques, which may make certain comparisons more diffi-
cult.

Disadvantages with our techniques are seen in the last four
rows. Compressed-superposed is the only technique that applies
a different scale factor to each layer, making slopes incomparable.
Compressed-juxtaposed (along with small multiples) modifies the
angles of curves, but this is done by applying the same scale factor
to all layers, meaning that slopes can still be compared. Both of our
compression techniques introduce discontinuous gaps in the x di-
rection, which violates the gestalt principle of continuity, making it
difficult to perceive each curve as a single object. It is also doubtful
that our techniques can scale to large numbers of x values, though
Figure 5 shows that it might be possible in limited cases involving
compression.

Although not mentioned in the table, none of the techniques (pre-
vious or new) scale up to a large number of layers. Our proposed
techniques work best with 2 to 4 layers.

4 EXPERIMENTAL STUDY

Conventional layers suffer from overplotting, sometimes making it
impossible to perceive the locations of endpoints or even hiding
entire curves. Small multiples, on the other hand, have the disad-
vantage of not sharing either x- or y-axes, which might increase the
amount of eye motions when comparing curves of different groups.
Our proposed techniques based on compression and shifting are not
familiar to users, and may incur costs beyond the theoretical ones
identified in Table 1. An experiment is thus required.

Six techniques were compared (Figures 6 and 7): three sta-
tus quo techniques (conventional overlaid, horizontally-stacked
small multiples (HSM), and vertically-stacked small multi-
ples (VSM)) and our three proposed techniques (compressed-
superposed, compressed-juxtaposed, and shifted).

4.1 Tasks

From a theoretical perspective, tasks with time series data could
involve any of the following aspects: comparisons of x values or



Table 1: Each row is phrased as a positive quality, so that satisfying more criteria (shown in green) is desirable. The three right-most columns
show that our proposed techniques are the only ones satisfying all of the first five rows. This comes at the cost, however, of disadvantages in
the lower rows.

Figure 7: A: Horizontally-stacked Small Multiples (HSM). B:
Vertically-stacked Small Multiples (VSM).

y values, single values or ranges of values (in both x and y), rates
of change (i.e., slopes), and either individual curves or groups of
curves. We chose four tasks that (1) touch on each of the theoretical
aspects just mentioned, and that also (2) correspond to real-world
tasks in our target application domain of financial data analysis.

Task 1 (“compare highlighted curves”) asked the user to com-
pare y values at a given x value, with no significant occlusion. One
curve in each group was highlighted (by drawing it thicker and with

a white outline surrounding it, and drawing it on top of the other
curves). The three highlighted curves were not occluded, but there
were hundreds of other curves displayed behind them. The user
was asked two questions: During the month of [month], which of
the three highlighted curves performed the best, and which one per-
formed the worst? The user answered the first question by selecting
one of 3 radio buttons, and answered the second by selecting one
among another set of 3 radio buttons.

Task 2 (“compare maximal curves”) asked the user to compare y
values at a given x value, and to estimate the magnitude of a range in
y. No curves were highlighted, and the curves identified in the ques-
tions were partially occluded. However, the questions in this task
concerned curves of maximal y value at a given x value, i.e., curves
that are locally outliers and thus suffer from less occlusion. The
user was asked: In which group do we find the curve that performed
the best during the month of [month]? Next, estimate the vertical
range covered by the 3 top performing curves (one from each group)
during that month. For example, if one group’s top curve had a y
value of 100%, another group’s top curve had a value of 90%, and
another was 105%, the range covered would be 105%−90%=15%.
The user answered the first question by selecting one of 3 radio but-
tons, and answered the second by entering the numeric range in a
text field. The difference between the y range entered and the true
range is called ∆y in our results, providing a measure of accuracy.

Task 3 (“compare groups”) asked the user to compare ranges of y
values at a given x value, and to estimate the magnitude of a range in
y. In this task, no curves were highlighted, and the user was asked:
Which group exhibits the lowest volatility (smallest vertical range)
during the month of [month]? Estimate the vertical range covered
by that group in that month. Notice that the group in these questions
has the smallest vertical range, meaning that it tends to suffer more
from occlusion than the other groups at the given month. The user
answered the first question by selecting one of 3 radio buttons, and
answered the second by entering the numeric range in a text field.
Again, our results report the ∆y measure of accuracy of the range
entered by the user.



Task 4 (“compare slopes”) required the user to compare slopes
over a range of x values. In this task, no curves were highlighted,
and the user was asked: Which group increased the most over the
time range from [month1] to [month2]? This required the user to
look at each group as an aggregate of curves, and estimate the av-
erage slope of the group over the given time span to select the one
with the greatest slope. The user answered by selecting one of 3
radio buttons. In 50% of the trials for this task, the range in x was
only one month long (e.g., “from March to April”). In 25% of the
trials, the range was three months long, and in 25% of the trials, the
range was five months long.

In all of these tasks, the “groups” can be thought of as represent-
ing financial sectors, such as health care, technology, and energy;
and the curves can be thought of as equities such as stocks. Tasks
1, 2 and 3 displayed curves showing the percentage of change in
value from one month to the next for each curve. These percent-
ages could be positive or negative from one month to the next, and
tended to cluster around y= 0. Task 4, however, showed cumulative
curves, which could represent the current value of various equities
from month to month, meaning that the slope of these curves was
meaningful, and also allowing the curves to stray more and more
from the y = 0 baseline as we move right along the x axis.

Notice that Tasks 1 and 2 required comparison of individual
curves, whereas Tasks 3 and 4 required comparing entire groups
of curves.

All four tasks have analogs in financial data analysis: Task 1
asks the user to compare three particular equities that have been
somehow selected a priori, and are thus highlighted visually. Task 2
asks the user to identify the equities which performed the best (and
are therefore not yet selected nor highlighted) and also estimate how
much better the best performed compared to the worst of the three.
Task 3 asks which sector is the least volatile, which is important
for reducing financial risk. Task 4 asks which sector performed the
best over a given period.

Notice that none of our tasks involve intra-group comparisons,
nor questions about a single group. This is because such tasks are
probably best done by first filtering out or hiding the other groups,
to reduce the number of curves and complexity of layout, in which
case there is only one group left to display, and there are no interest-
ing differences between the various layout techniques we consider
if there is only one group to display.

4.2 Hypotheses

Task 1 asks the user to compare 3 curves that are highlighted and
not occluded, but that are drawn on top of hundreds of other curves
in the background. Such background noise might distract the user,
however we expect the conventional overlaid technique to perform
best at this task, thanks to its familiarity and other strengths and the
lack of occlusion in the curves of interest. We posit hypothesis H1:

the conventional overlaid technique will yield the best performance
in Task 1.

Task 2 involves comparing y values at a given x value for curves
that are only partially occluded. Because small multiples cause
points of different groups with the same x and y values to appear
far from each other, we expect H2: HSM and VSM will yield the
worst performance in Task 2.

Task 3 asks the user to identify the group with the most narrow
vertical range, and to estimate the magnitude of this range. Because
such a group is more likely to be occluded than the other groups, we
posit H3: the conventional overlaid technique will yield the worst
performance in Task 3.

Task 4 involves comparing average slopes over a range of 1, 3,
or 5 months. Because compressed-superposed is the only technique
that scales each layer by a different factor, making slopes incompa-
rable, we expect H4: compressed-superposed will give the worst
performance in Task 4, especially over ranges of 1 month.

4.3 Data sets

The sets of curves used in the experiment were obtained by ran-
domly choosing stocks from actual historical financial data. For
Tasks 1, 2, and 3, the curves showed monthly fluctuations in per-
centage, displayed on a y-axis scaled to show all the y values (typ-
ically from −80% to +80%), with most y values clustered close to
0%. For Task 4, the curves showed cumulative changes in value
(computed by multiplying the changes in percentage together),
again with the y axis scaled (typically showing from −100% to
+200%), and in this case the curves could stray increasingly away
from y = 0% over time. In all trials, there were 3 groups (or 3 layers)
of curves, always color-coded with the same 3 colors. The x-axis
always had 12 x values: 12 tick marks labelled with the months
January to December. (As explained earlier, our techniques do not
scale to large numbers of x values, but appear reasonably legible
with 12 x values when displayed full-screen.)

Each of the 3 groups of curves corresponded to an actual finan-
cial sector that had been randomly sampled for stocks, thus curves
within the same group tended to be correlated over time. The total
number of curves over the 3 groups was 300 in half of the trials, and
1000 in the other half of trials. This total number was not evenly
split between the 3 groups: because of the way the historical data
was randomly sampled, sectors with more stocks yielded groups
with more curves. This increases the realism of the dataset.

Supplementary materials accompanying this paper (
http://www.michaelmcguffin.com/research/layers/ ) show typ-
ical screenshots for each task and each technique.

4.4 Participants

Twelve volunteers (2 women, 10 men) participated, ranging in age
from 19 to 43 (average 30.5, median 32). All were right-handed
and controlled the mouse with their right hand. None reported hav-
ing physical handicaps, and none were color-blind. All participants
were employees of Croesus Finansoft.

4.5 Apparatus

The experiment was conducted on a laptop running Microsoft Win-
dows 7 with a 2.3 GHz Quad Core Intel i7-2820 CPU, 8GB RAM,
and an nVidia Quadro 2000 GPU, connected to an external 24 inch
1920×1080 pixel LCD display. Participants used an external USB
mouse and keyboard. Mouse acceleration was disabled.

4.6 Experimental Design

Each participant performed all tasks using all techniques. The or-
der of presentation of tasks was fixed, and the order of presenta-
tion of techniques was counterbalanced with a 6×6 Latin square.
There were 12 participants × 6 techniques × 4 tasks × 4 trials =
1152 trials in total. There were also two warm-up trials for each
task-technique combination, for which data were not recorded. The
session for each user lasted approximately one hour, and users were
allowed to take breaks.

Time series curves were generated by randomly sampling por-
tions of actual historical financial data, yielding enough data to
show a different set of curves in each of the trials seen by a single
user. This collection of data was partitioned into 6 smaller datasets
that were manually checked to be similar to each other, and then
randomly assigned to the six techniques, still with a different set of
curves shown in each of the trials of a single user. Due to a bug, the
same (random) technique-dataset assignment was used from one
user to the next. (In future work, it would of course be better to have
a different random assignment of dataset-to-technique for each new
user.)

In all tasks, at the start of each trial, the user was shown the
visualization of curves, immediately below which was the question,
along with radio buttons and (in the cases of Tasks 2 and 3) a text
field. After selecting a radio button and possibly entering a range



in the text field, the user clicked on a “Next” button to complete the
trial and move on to the next trial.

To increase control over the experimental conditions, there was
no way to interact with the visualizations, e.g., no interactive selec-
tion or highlighting of curves, no brushing and linking, and no inter-
active highlighting of specific x or y values. However, in Task 1, to
make it easier to communicate the task to the user, we highlighted
the curves to be compared. This simulates a scenario where the
curves have been selected by the user through some other means,
and can therefore be shown highlighted and on top of the other data,
with essentially no occlusion.

4.7 Results

The radio button selections in each question were used to compute
a success rate for each task, which was analyzed using a chi-square
test of independence. Times and ∆y values were log-transformed
and analyzed with ANOVA. When ANOVA yielded p < 0.05, we
also performed a pairwise t-test with Bonferroni correction.

Table 2: Results of Task 1 (“compare highlighted curves”). Green
arcs indicate times that are not significantly different; other pairs of
times are significantly different (p < 0.05).

Table 3: Results of Task 2 (“compare maximal curves”). Average ∆y

is a measure of accuracy, with smaller values being better. Red arcs
indicate ∆y values and times that are significantly different (p < 0.05);
other pairs are not significantly different.

Table 4: Results of Task 3 (“compare groups”).

4.7.1 Task 1: “compare highlighted curves”

Table 2 presents the results. There was a significant relation be-
tween technique and success rate (χ2(d f = 5) = 64.19, p < 0.001).
Technique had a significant effect on time (F5 = 21.48, p < 0.001).
The green arcs in Table 2 show the results of pairwise t-tests:
a green arc indicates that the pair is not significantly different,
whereas pairs without an arc are significantly different. We see that
conventional overlaid was significantly faster than all other tech-
niques, and had the highest success rate, confirming hypothesis H1.

Table 5: Results of Task 4 (“compare slopes”)

Table 6: Task 4 success rates broken down by different x-intervals

Table 7: Overall statistics

Table 8: Overall subjective ratings on a 1-5 Likert scale. In all cases,
a higher score is better.

Both small multiples techniques were significantly slower than
conventional overlaid (p < 0.001) and yielded more errors, espe-
cially VSM. All participants rated VSM as the worst technique for
this task. Since VSM uses a different y axis for each layer, partic-
ipants have to read y values for each layer and compare the results
mentally. They also found it more difficult to read y values because
of the reduced spatial resolution in y with VSM.

5 out of the 12 participants preferred conventional overlaid for
this task, and 5/12 preferred compressed-superposed. The prefer-
ence by many users for compressed-superposed is surprising since
occlusion was not a major problem in this task. However, exam-
ination of the data revealed that, because the highlighted curves
were drawn with a thick stroke and a white contour, some occlu-
sion between the highlighted curves could appear when curves were
close enough. Compressed-superposed avoids such occlusion of
endpoints entirely.

4.7.2 Task 2: “compare maximal curves”

Table 3 shows the results. There was no significant relation between
technique and success rate (p > 0.1). Technique had a significant
effect on ∆y (F5 = 15.13, p < 0.001), and also on time (F5 = 2.56,



p < 0.05). The red arcs in Table 3 show the results of pairwise
t-tests: a red arc indicates that the pair is significantly different,
whereas pairs without an arc are not significantly different. We see
that compressed-juxtaposed yielded a significantly smaller ∆y than
other techniques (p < 0.001), and the times for conventional over-
laid, compressed-juxtaposed, and shifted were significantly smaller
than for the other techniques.

We suspect that compressed-juxtaposed did well because, by not
overlaying groups of curves, it made it easier for users to see the
highest curve in a given group without visual interference from
other layers. In certain cases, participants missed the maximal
curve on the inner layers of compressed-superposed, shifted and
conventional overlaid because they were hidden in the background
noise, resulting in large estimate errors. Layers are also presented
close to each other using juxtaposed, which also helps comparing
the values.

Hypothesis H2 is only partially confirmed. HSM and VSM did
perform poorly, but were not the worst two techniques. Instead,
HSM was worst in terms of ∆y, VSM was worst in terms of time,
and neither was significantly better than the other by either metric.

Most techniques yielded success rates similar to those in Task 1,
except VSM. One participant gave us a hint as to the reason why:
“I felt that VSM was less painful [in Task 2 than in Task 1] since
I already had to measure the Y values for the second part of the
question.” Since participants were forced to measure the values,
they did not try to guess the answer simply by looking at the curves.

5/12 participants preferred compressed-juxtaposed for Task 2,
and 5/12 preferred compressed-superposed. Users preferred juxta-
posed because of the complete separation of layers, and superposed
because layers are positioned closer to each other. Although the re-
sults for VSM were much better than in Task 1, 10/12 participants
still selected VSM as the worst technique for Task 2. The other 2
participants chose conventional overlaid and HSM, respectively, as
the worst techniques for Task 2.

4.7.3 Task 3: “compare groups”

Table 4 presents the results. There was a significant relation be-
tween technique and success rate (χ2(d f = 5) = 27.32, p < 0.001).
Technique had no significant effect on time (p > 0.05), but did have
a significant effect on ∆y (F5 = 2.84, p < 0.05).

Hypothesis H3 is partially confirmed. Conventional overlaid
yielded the worst time and 2nd worst ∆y, but certain other tech-
niques were not significantly better, and some techniques yielded a
worse success rate than conventional overlaid.

Compressed-superposed and compressed-juxtaposed yielded the
worst success rates. Some people found compressed-juxtaposed
especially difficult when the layers were not vertically aligned (i.e.,
similar ranges in y but with different minima and maxima in y).

Subjective opinion for this task is much more divided than for
the previous tasks, with preferences split between compressed-
juxtaposed (4/12 users), compressed-superposed (3/12 votes),
shifted (3/12 votes) and VSM (2/12 votes). Shifted performed quite
well in this task, although some participants complained that it was
difficult to interpret when the number of curves was unevenly dis-
tributed between layers. Many participants mentioned that VSM
was the easiest technique for finding the least volatile sector, but
was harder to use when estimating the y range (this is reflected
in VSM having the best time but the worst ∆y). Because VSM
“squashes” curves vertically, there is less spatial resolution in y
with which to judge the thickness of a group of curves. Finally,
compressed-juxtaposed was especially appreciated by users for the
first part of the task.

7/12 participants chose conventional overlaid as the worst tech-
nique since occlusion made it difficult to answer the task questions.
In several trials, participants simply guessed that one layer was the
smallest since they could barely see it. VSM (3/12 users) and HSM

(2/12 users) were judged as the worst techniques by the remaining
users.

4.7.4 Task 4: “compare slopes”

Table 5 presents the results. There was no significant relation be-
tween technique and success rate (p > 0.1). Technique had no sig-
nificant effect on time (p > 0.1).

Recall that Task 4 involved estimating average slopes, and our
hypothesis H4 that compressed-superposed would yield the worst
performance. Despite how compressed-superposed introduces dis-
continuous gaps in x and scales each layer by a different factor, this
technique achieved the best success rate! We thus reject H4. 4/12
users even preferred compressed-superposed for Task 4. We sus-
pect that, when users were estimating the average slope of groups
of curves, they were able to attend to each of the colored layers in
turn and see it as a whole, with compressed-superposed reducing
occlusion enough to help but without distorting slopes as much as
compressed-juxtaposed, HSM, or VSM.

Curiously, VSM was also preferred by 4 users, while yielding
the worst success rate. Some participants commented that VSM
gave them the best picture to guess the average slopes, but users
ended up giving invalid answers in many cases. Because of the
small space available for each layer vertically, VSM curves appear
flattened with slopes that were difficult to interpret.

Half of the trials involved a single-month interval, and the other
half involved multiple months. Table 6 reports success rates for
the two cases. Interpreting trends over multiple months was clearly
more difficult. But surprisingly, despite discontinuous gaps and dis-
torted slopes, compressed-superposed and compressed-juxtaposed
yielded the best two success rates in trials involving multiple
months. By contrast, shifted layers, which were proposed to avoid
gaps and changes to slopes, did poorly in trials involving multiple
months.

4.7.5 Overall

Table 7 summarizes over all tasks. Technique had a signifi-
cant effect on ∆y (F5 = 8.31, p < 0.001). Although conven-
tional overlaid yielded a better success rate than our proposed
techniques, our techniques yielded better ∆y values than the state
of the art. Compressed-juxtaposed performed significantly better
than all other techniques overall (p < 0.001). Our proposed tech-
niques were also preferred by users overall: 6/12 for compressed-
superposed, 4/12 for compressed-juxtaposed, and 2/12 for shifted.
Compressed-superposed received the highest subjective scores in 4
out of 5 criteria (Table 8).

5 DISCUSSION

Because Task 1 displays the curves of interest highlighted and in
the foreground, in a real scenario this would require the user to
somehow first select these curves. The experiment results, show-
ing that conventional overlaid was best in this task, confirm that
conventional overlaid works well when there is little or no occlu-
sion, despite the background visual noise of hundreds of irrelevant
curves. It also suggests that, in a real user interface, if a user selects
individual curves for further examination, they should be displayed
conventionally without compression.

In each of the 4 tasks, there is at least one criterion (success
rate, time, or ∆y) by which VSM or HSM or both are the worst
techniques. For example, in Task 2, HSM is worst as judged by
∆y, and VSM is worst as judged by time. This is explained by the
cost of the user having to move their eyes a greater distance than in
the other techniques to compare points with the same x or y values.
This also suggests that our proposed techniques actually do benefit
from always having a shared x and y axis for all groups.

Despite how compressed-superposed applies a different scale
factor to each layer, theoretically making their slopes incompara-



ble, this technique resulted in the best success rate in Task 4 where
users had to compare slopes. This may be because users were com-
paring the average slopes of entire groups of curves, and in some
cases slopes over multiple months (which require the user to imag-
ine a secant line rather than pay attention to slopes of individual
line segments). If, instead, the task had been to compare slopes of
individual curves over a single time step, compressed-superposed
might have fared poorly.

Shifted layers were designed to avoid the problems of discon-
tinuous gaps in x and changes to slopes, but performed relatively
poorly in our experiment. Many users found the use of opacity (al-
pha blending) to be visually noisy and difficult to understand.

To summarize our results in a single sentence, it seems that
compressed-superposed was better for perceiving entire groups of
curves (Tasks 3 and 4) whereas compressed-juxtaposed was better
for perceiving individual curves (Task 2). Task 2 asked the user
to compare individual curves from different groups at a given x
value, and compressed-juxtaposed may have performed best here
because it reduces occlusion of individual curves even more than
compressed-superposed.

It is possible that other variants of our designs could do even
better in certain cases. Figure 8(bottom) shows a variant of
compressed-juxtaposed where slopes are not shown, thereby pre-
venting the user from following any curve from one x value to the
next, but perhaps making it easier to compare ranges in y and trends
of entire groups over many x values. For tasks involving the percep-
tion of groups of curves, the variant shown might help the user by
not distracting them with irrelevant details about slopes at each x
value.

Figure 8: Top: Compressed-juxtaposed layers. Bottom: An alter-
native design, where short horizontal strokes show y values with no
slope.

6 CONCLUSION

We have presented three novel techniques for reducing occlusion in
time series visualizations, that can be applied when there is only a
small number (≈ 12) of x values to visualize. We also presented the
design rationale behind these techniques, and demonstrated exper-
imentally that they can facilitate tasks involving hundreds of time
series curves. In terms of ∆y (error in estimated vertical range), our
three proposed techniques were never significantly worse than other
techniques, and one of them (compressed-juxtaposed) was signifi-
cantly better in Task 2 while another (compressed-superposed) was
significantly better in Task 3. In terms of the time required to
complete Tasks 2, 3, and 4, two of our techniques (compressed-
juxtaposed and shifted) were never significantly worse than other
techniques. Compressed-superposed also achieved the highest suc-

cess rate in Task 4. Compressed-juxtaposed and compressed-
superposed were also given the highest subjective ratings in 4 out
of 5 criteria.

We were also surprised that the compressed-superposed tech-
nique yielded the highest success rate in Task 4, a task requir-
ing users to estimate slopes, despite the fact that compressed-
superposed distorts slopes with a different x/y scale for each group
of curves. Although there is no single “winner” across all tasks, we
have established that the status quo techniques are sometimes not
best, and that further investigation into these or hybrid techniques
is warranted.

Figure 9: Conventional overlaid with opacity of 100% (Top), 50%
(Middle), 25% (Bottom). Future work could compare these experi-
mentally.

7 FUTURE WORK

We were surprised that shifted layers did not perform better in our
experiment, given the theoretical advantages they have of preserv-
ing slopes and of introducing no gaps. Perhaps, by using different
opacity levels or gradient patterns, they could be made easier to in-
terpret. The design in Figure 8(bottom) could also be investigated,
perhaps combining it with additional (semi-transparent) strokes to
indicate slope at each x value.

Although this work has focused on time series, the idea of com-
pression to reduce occlusion might also be applied to parallel co-
ordinate plots, when the data can be partitioned into meaningful
layers or subsets.



Many of the display parameters in our techniques could be tested
to find their optimal values. For example, we would like to investi-
gate the effect of different curve thicknesses, and perhaps develop a
rule of thumb or algorithm for automatically choosing curve thick-
ness that increases visibility without aggravating occlusion. We
could also investigate the effect of aspect ratio of charts on dif-
ferent tasks. For example, one rule of thumb [17] states that line
graphs have a scale chosen so that the average slope of curves is 45
degrees. We suspect that changing the aspect ratio of charts could
have an effect on tasks like Tasks 3 and 4.

Transparency is another parameter to explore experimentally.
Table 1 suggests that transparency has many theoretical benefits (its
column is the “most green”). Figure 9 shows examples of applying
it to our data.

Finally, interactive techniques could be evaluated, like brushing
and linking, animated transitions between the different techniques,
and filtering.
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back, and to our reviewers for their suggestions. This research was
supported by an IIS grant from NSERC, by FRQNT, by Croesus

Finansoft, and by a scholarship from ÉTS.
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