
Multitouch Radial Menu Integrating Command Selection
and Control of Arguments with up to 4 Degrees of Freedom

Shrey Gupta
École de technologie supérieure

Montreal, Canada
shrey.gupta.1@ens.etsmtl.ca

Michael J. McGuf�n
École de technologie supérieure

Montreal, Canada
michael.mcguf�n@etsmtl.ca

ABSTRACT
We design and evaluate a multitouch radial menu for large
screens with two desirable properties. First, it allows a si ngle
gesture to select a command and then continuously control
arguments for that command with unbroken kinesthetic ten-
sion. Second, arguments are controlled with 1 or 2 �ngers for
up to 4 degrees of freedom (DoF). For example, the user may
select one command for 4 DoF direct manipulation (transla-
tion + scaling + rotation), or another command for 3 DoF
camera operations (pan + zoom), using the same two-�nger
pinch gesture, but with di�erent initial orientations of th e
gesture to disambiguate. We present a taxonomy to classify
previous menuing techniques sharing the �rst property, and
discuss how very few techniques have both of these proper-
ties. Our work also extends previous work by Banovic et al.
in the following ways: our menu supports submenus and a
fast default command, and we experimentally evaluate the
e�ect of varying the number of rings in the menu, the sym-
metry of the menu, and the use of one hand vs. two hands
vs. a stylus and hand.

CCS Concepts
� Human-centered computing ! Gestural input;

Keywords
multitouch; popup menu; direct manipulation; pen; stylus

1. INTRODUCTION
Popup menus for invoking commands have several advan-

tages over toolbars, pulldown menus, or tool palettes: they
require no screen space when not in use; they eliminate back-
and-forth motion between the main work area and widgets
located in the periphery (which is important on large displa y
surfaces); and they can be designed to only remain open if a
�nger, button, keyboard key, or stylus tip is held down, cre-
ating kinesthetic feedback. The resulting kinesthetically-held
mode (also called spring-loaded mode or quasimode [26]) can

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

AVI 2016 June 7–10, 2016, Bari, Italy
c 2016 ACM. ISBN 978-1-4503-4131-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2909132.2909266

help a user remember which command mode they are in, re-
ducing rates of mode errors [27]. A subset of menuing tech-
niques (e.g., [25, 12]) also allow the user to specify an object,
command, and arguments, all in a single drag. For exam-
ple, a user might press down on an object to be modi�ed,
causing the menu to pop open; then the user drags through
the menu to select a command; and then somehow transi-
tions to dragging out the arguments for that command. In
a 2D drawing application, a \Move" command would have a
2 DoF (degrees of freedom) argument, whereas a \Rotate"
command would have a 1 DoF argument.

Unfortunately, most previous menuing techniques have a
limited compatibility with two-�nger pinch gestures in mul -
titouch interfaces. For example, with MultiTouch Menu [1],
HandyWidgets [29], SPad [8], and Pin-and-Cross [22], the
pinch gesture \coexists" with the menu widget and is in-
voked separately, outside the menu. Such a singular pinch-
controlled command can be invoked as a special case when-
ever two �ngers touch the screen, however a problem arises
if more than one command requires pinch-controlled argu-
ments with 3 or 4 DoF. In a 2D application, the user may
sometimes want to invoke 4 DoF direct manipulation (trans-
lation + scaling + rotation), and other times invoke 3 DoF
camera operations (pan + zoom), or even change RGB or
RGBA colors using the same two-�nger pinch gesture. Frisch
et al. [9] found that users suggested the same (ambiguous)
pinch gesture for \Scale size of node" and \Zoom whole dia-
gram"commands. Similarly, in a 3D application, there could
be multiple commands for camera and object transforma-
tions, each with more than 2 DoF, and each controlled with
two �ngers. How can such commands be disambiguated?
One approach would be to use a toolbar or menu to en-
ter a mode (e.g., [13]), but this lacks the advantages listed
earlier of popup menus and unbroken kinesthetic feedback.
Another approach would be to invoke direct manipulation
whenever the user presses their �ngers down on an object,
and invoke camera operations when the �ngers press down
on empty space. However, this only allows for two pinch
commands, and if the user zooms in on a single object that
�lls the viewport, then empty space is no longer accessible
to invoke camera operations.

Instead, we propose disambiguating the command by mak-
ing use of (1) the initial orientation of the two �ngers when
they both press down, and also (2) the order in which the
�ngers press down and (3) the distance between the �n-
gers. The command set is displayed as a multi-ring pie
menu, similar to Banovic et al.'s 3-ring pie menu [3]. We
extend Banovic et al.'s work by (1) allowing the number of

rings to be varied, (2) allowing the use of both hands and
therefore all directions (sectors) in the menu, (3) support -
ing submenus and a quickly-accessible default command in
the center of the menu, (4) allowing command arguments to
be provided immediately after the �ngers touch and before
they release, to maintain kinesthetic tension. We also exper-
imentally compared variants of our menu, including version s
with a single ring and/or a symmetrical layout, allowing the
user to make faster selections but at the cost of having fewer
commands accessible in the top level of the menu.

2. BACKGROUND
The previous work on menus can be divided into four sub-

sets. The �rst contains menus that require multiple clicks
or actions to select a command, such as bezel swipes on a
tablet, or right-click menus where the user click-releases to
open the menu and then click-releases to select a command.

The second subset, which has the potential to be faster,
contains menus where a command (and possibly an object)
are selected with a single press-release or press-drag-release
gesture involving one or more �ngers (with contact main-
tained by at least one �nger throughout the gesture). These
include traditional toolbars, as well as Marking menus [18],
FaST Sliders [23], multitouch marking menus [21], Banovic
et al.'s 3-ring menu [3], Kin et al.'s two-handed marking
menus [17], HandyWidgets [29], Arp�ege [10], and FastTap
[13]. The selected command in these menus may switch the
user into a command mode, afterwhich a second press-drag-
release can be used to provide arguments for the command.
However, with such a design, the user may be sometimes
be confused about the mode they are in [26], because they
may lose track or be distracted in between gestures. Such
mode errors have been shown to be reduced when kinesthetic
tension is maintained [27]. On the positive side, most of
the menus within this second subset are popup menus, and
therefore eliminate back-and-forth movements and do not
appear unless needed. Many of them are also designed to be
operated with gestures that can be performed with little or
no visual attention once the gestures have been learned. To
make it easier for novice users to learn these gestures, the
menus provide visual feedback to guide their use, easing the
transition from novice to expert use. The gestures are thus
self-revealing and ideally lead to eyes-freeoperation.

The third subset builds on the second subset with menus
that allow command, arguments, and possibly an object to
all be selected with a single gesture (using one or more �n-
gers) with uninterrupted kinesthetic tension. These menus
are classi�ed and compared in the taxonomy in Figure 1.
This group includes Control Menu [25], FlowMenu [12], Scri-
boli's menu [14], Springboard [15], Tracking menu [6], Hover
widgets [11], PieCursor [7], MultiTouch Menu [1], SPad [8],
and Pin-and-Cross [22]. Also in this group is the hotbox as
described in [24] which extends [20] to enable the speci�ca-
tion of arguments with a command in a single drag. We also
include the \bimanual marking menu" as described by Chen
et al. [5], where the non-dominant hand performs a marking
menu gesture to select a command while the dominant hand
controls the argument to provide with the command.

The remaining menus in Figure 1 make up the fourth and
�nal subset of menus, which again builds on the properties
of the previous subset. These menus allow for object, com-
mand, and 4 DoF arguments to be speci�ed without break-
ing kinesthetic tension. They are the Toolglass, Finger-

Count menu, and the Multitouch Radial Menu proposed in
the current work (last column of Figure 1). We discuss these
menus more at the end of this section.

Returning to Figure 1, the form of the taxonomy was set-
tled on after several iterations of organizing previous work.
Columns are grouped according to the hardware platform
necessary for each technique. Thus, a designer might look-
up the available techniques for a given target hardware plat-
form. Rows correspond to criteria by which techniques could
be evaluated or chosen. These criteria were carefully cho-
sen to be as objective as possible, while covering a range of
design issues. All of these criteria are phrased in apositive
way, so that satisfying more criteria is desirable or at least
neutral. For example, the 2nd last row is labelled \Hard-
ware detection of hover is optional"; techniques that satisf y
this criteria don't require hover detection and therefore work
on a wider variety of hardware platforms. Cells containing
the word \Yes" are colored green to show that a criterion is
satis�ed. Some cells only partially satisfy a criterion; th ese
are partially shaded green. Notice that no single technique
satis�es all criteria: there are many tradeo�s.

Some of the previously published techniques could be mod-
i�ed to change their properties. For example, Tracking menus
could be enhanced with a button for the non-dominant hand
allowing the user to \escape" from the menu and access a
default command, or SPad could tradeo� eyes-free selection
of commands to allow for more menu items. Also, Biman-
ual marking menus [5], MultiTouch menu [1], SPad [8], and
Pin-and-Cross [22] could all be modi�ed to allow for multi-
ple commands with 4 DoF arguments, but this is not how
they were presented in previous work. For simplicity, we
populated Figure 1 with the menu techniques as they were
presented in the literature.

[[Some cells in Figure 1 are numbered for detailed notes,
provided here. Readers may skip these. Note 1: a typical
way to invoke a Control Menu or FlowMenu is over an ob-
ject, in which case the selected command operates on that
object. This requires �rst pointing at that object, incurrin g
some temporal cost. The same press event over empty space
could be used in two ways: �rst, as a faster way to open the
menu (possibly to select a command with global scope, or to
apply a command to a previously selected object), or second,
as a way to invoke some default command (such as lasso se-
lection, inking, object creation, or camera operations) wit h-
out going through the menu. It is not possible to allow
for both of these with Control Menu nor FlowMenu without
using additional hardware buttons. However, many other
menuing techniques do allow for both, such as the Scriboli
menu, which can be opened over empty space with a pigtail
gesture, and which also allows for a default command by
simply pressing down on empty space and dragging. Note
2: Scriboli is exceptional in that two default commands can
be executed without the menu simply by dragging, and by
terminating either with a pigtail gesture (for lasso) or not
(for ink). Note 3: eyes-free targeting can be performed if
the target is in the center of the hotbox, or in one of the 4
cardinal directions, enabling a ballistic motion before cl ick-
ing. Note 4: SPad, as presented in [8], is limited to 4
submenus � 3 items/submenu = 12 commands in total.]]

In general, Figure 1 could be used by designers to choose
an appropriate popup menu technique based on their hard-
ware constraints (e.g., is hover detected on the target plat -
form?) and/or based on other criteria (the rows).

Figure 1: Menuing techniques (columns) compared according to multiple criteria (rows). Green cells show
desirable properties, and partially ful�lled criteria are shaded. See main text for Notes 1 - 4.

Returning now to the few menus with 4 DoF in the last
row of the taxonomy, we �rst have Toolglass [4, 19]. Tool-
glass is a two-point bimanual technique, usually implemente d
with two mice or similar devices, that allows for simultane-
ous selection of object and command by clicking through a
command onto an object or location. This has been shown
to be either faster [16] or slower [5] than other menus, de-
pending on conditions. We found that there were problems
with adapting the Toolglass to a multitouch surface (more
on this in section 6), motivating the current work.

Second is Finger-Count [2], which involves placing N �n-
gers of the non-dominant hand (NDH) followed by M �ngers
of the dominant hand (DH) to select the M th item of the
N th submenu. This is easily understood by novice users,
and integrates nicely with a single 4 DoF command like di-
rect manipulation if this command is the 1st item of the
1st submenu. For other commands, however, more than
2 �ngers must be placed, which limits precise positioning.
The menu also requires the use of both hands, whereas users
sometimes wish to be more relaxed and use a single hand.

Our proposed menu enables a unique tradeo� in design
options. Unlike Finger-Count menu, ours can optionally be
used with one hand to access the most frequent commands in
the top level, and does not require more than two �ngers to
control arguments. And unlike the other multitouch menus
in the taxonomy, we support submenus with unconstrained
layout of items, and explicitly designed for multiple 4 DoF
commands. The next section presents our design.

3. MULTITOUCH RADIAL MENU

In designing our menu, we sought a way to enable the user
to, �rst, select a command, and subsequently, provide an ar-
gument for that command using 1 or 2 �ngers (for up to 4
DoF), all with a single drag (i.e., with unbroken kinesthetic
feedback). The transition from the �rst stage (command se-
lection) to the second (argument control) could be triggere d
by various means, such as a drag distance threshold (as in
Control Menus [25]), or a pigtail gesture (as in Scriboli [14]),
or a timeout, or a release-and-repress event, however all of
these incur some temporal cost, and the last one breaks the
kinesthetic feedback. We realized that if the user is plan-
ning to use two �ngers in the second stage anyway, as soon
as they touch both �ngers on the screen, and just before
they start to drag, the relative positions of the �ngers al-
ready provides some information to the system that could
be used to select the command and complete the �rst stage.
If the user can learn to plan the initial positioning of their
�ngers to properly select the desired command, this could
theoretically be performed very quickly (as �ngers could be
prepared \on their way" to the screen), with the transition
to the second stage occurring \for free" as the user starts to
drag. Taking inspiration from Marking Menus, the easiest
relative positions to learn and remember are probably based
on angles: two �nger tips can lie on a horizontal, vertical,
or diagonal line. In addition to this, the order in which the
two �ngers arrive on the screen, and the distance between
them, could also disambiguate commands. (This distance
between �ngers will be used to select among di�erent rings
of a pie menu, whereas orientation and touch order are used
to select a sector of the menu.)

We also sought to preserve the ability to have one (2 DoF)
default command accessible with a single �nger, and to make
this command as easy as possible to get to, since it is proba-
bly the most frequently used. Depending on the application,
this default command might be lasso selection, or inking, or
object creation, or camera pan / 2D scroll. We realized that
this would be easy to allow: when the system sees a sin-
gle �nger press, it waits to see if a second �nger will touch
(causing some non-default command to be selected) or if,
instead, the �rst �nger starts to drag (causing the default
command to execute).

Figure 2: Using the multitouch radial menu.

These ideas led to the variants illustrated in Figure 2. Fig-
ure 2a shows one way of selecting a (non-default) command:
the left hand presses to open the menu, and then the right
hand presses on item C to select it and drag to provide a
2 DoF argument with it. Item C could be, for example,
a command to translate a previously selected shape in 2D.
Note that as soon as the right hand begins to drag, it is no
longer necessary for the left hand to hold the menu open,
since the right hand is providing kinesthetic tension.

Figure 2b shows that this could also be done with a hand

and a stylus. If the hardware can distinguish between �nger
and stylus, this opens the possibility to having two di�erent
menus: one opened when a �nger �rst presses, and another
opened when a stylus �rst presses. We evaluated this possi-
bility in our experiment, discussed later.

Figure 2c shows how to operate the same command with
a single hand. First, the index �nger opens the menu, then
the middle �nger selects the command C, then the user is
free to use either �nger to drag out the 2 DoF argument for
the command, lifting up the other �nger in the process .

Figure 2d shows the use of a single hand to select a com-
mand and control a 3 or 4 DoF argument. The thumb �rst
opens the menu, then the index �nger selects command A,
then both �ngers drag out the argument. Command A could
be, for example, a 2D camera control, allowing simultane-
ous pan and zoom. Alternatively, in a 3D application, com-
mand A could be for translation up/down, left/right, for-
ward/backward (controlled by pinch distance), as well as
camera roll (controlled by pinch angle), for a total of 4 DoF.

A rotation of the hand enables the same kind of interac-
tion for command B (Figure 2e). In Figures 2e and f, the
menu is now symmetrical : the items A, B, C, and D are
repeated. This allows the user to select any of these 4 com-
mands without paying attention to the order in which their
two �ngers touch the screen. For example, command B is
selected whether the thumb touches �rst (Figure 2e) or the
index does (2f).

Some items may open up submenus. Figure 2g shows item
H doing this: the submenu is held open with the left hand,
allowing the right hand to select one or more commands in
the submenu. In the �gure, the right hand selects command
J and then drags out a 1 or 2 DoF argument. For example,
command J might control the opacity or color component of
a selected object. This could be followed by multiple other
command invocations within the submenu, all operating on
the same previously selected object, while the left hand con-
tinues to hold the submenu open. This idea for a submenu
was inspired by the way the hotbox [20, 24] works, where the
NDH holds down a physical keyboard key to keep a virtual
menu open and accessible to the DH's pointing device. Like
the hotbox, this kind of submenu in our multitouch radial
menu increases the scalability of our technique, especially
since the submenu is not constrained to a radial layout and
may contain several rows and columns of commands.

Figure 2h shows that the center of our menu contains a
default command Z that the user can invoke very easily by
simply touching and dragging with a single �nger. Note that
this requires the menu to have a spatial threshold de�ned:
if the user presses down with 1 �nger and moves less than
this threshold, the menu awaits a 2nd �nger, but if the 1st
�nger moves more than this threshold, the center command
is invoked. In a 2D application, a typical default command
Z might be to pan or to draw ink; and in a 3D application,
a plausible default command Z might be to \orbit" (rotate)
the 3D camera (these examples all require 2 DoF each).

Figure 2i shows a 3-ring variant of the menu. Having
more rings allows for more commands in the root level of
the menu, but may slow down the user by requiring more
precise positioning of the �ngers.

We thus have three ways to increase the breadth of the top
level of our menu: by using asymmetry rather than symme-
try, by using more rings, or by using a stylus that opens up
a menu di�erent from the one opened by the �nger. These

will all presumably slow down the user, thus an experimen-
tal comparison is needed to reveal which of these incurs the
smallest temporal cost.

4. EXPERIMENTAL EVALUATION
Banovic et al. [3] proposed an earlier 3-ring menu for use

with a single hand, and experimentally compared variants
of their own menu against each other. However, their de-
sign did not consider controlling arguments with unbroken
kinesthetic tension, nor how to integrate a default command,
nor submenus. The experimental evaluation of their menu
also did not test all 8 directions, nor did it vary the num-
ber of rings, use of symmetry, use of a stylus or 2nd hand.
We therefore performed our own experimental comparison of
menu variants. Another di�erence between our experiment
and Banovic et al.'s is that we did not have users wear cots
on their �ngertips, and we allowed users to use whichever �n-
gers they wanted to, making our experiment less controlled
but more realistic, at the risk of su�ering higher error rate s
due to inadvertent touch events. The goals of our experi-
ment are to (1) determine which factor for increasing menu
breadth incurs the smallest cost in time, be it number of
rings, asymmetry, or stylus; (2) determine which sector or
direction within the menu is slowest or most error prone,
and therefore best suited for use as a submenu rather than
as a frequently-accessed top-level command; and (3) check
if the error rates of the user are within reasonable bounds.

We used a Wacom Cintiq 24HD touch display (hereafter
simply \Cintiq") with 1920 � 1200 pixels, 94 dpi, supporting
10 �nger multitouch and simultaneous stylus input. Source
code was written in Java (using usb4java/libusb to read data
from the Cintiq) and ran on a Dell Precision M4700 laptop
running Linux. The user was allowed to incline and adjust
the level of the Cintiq for comfort.

The task was to select a target menu item as fast as pos-
sible from a multitouch radial menu. Users did not provide
any subsequent arguments for the command in the form of
a drag. We also did not use any submenus nor any central
default menu item in the experiment. For each trial, the
system �rst displayed a scaled-down duplicate of the menu
at the top of the screen with the target item highlighted in
orange. A square selection area in the center of the screen
was also highlighted in orange. The user then had to place
their �nger(s) (and possibly stylus) in octagon-shaped star t-
ing positions (60 pixel radius) (Figure 3), and hold them
there on the display for a randomly chosen foreperiod last-
ing between 500 and 900 ms | this prevented the user from
anticipating when the trial would begin. Then the highlight -
ing color changed to green, signaling the start of the trial,
afterwhich the user had to move their �nger(s) (and possibly
stylus) into the square selection area to invoke the menu and
select the target item as quickly and as accurately as possi-
ble. Because users had to move from the starting positions
to the square selection area, the distance to travel with the
hands was always the same. Every target item required two
contacts: one �nger or stylus to open the menu, followed by
one �nger or stylus to select the menu item.

If the user lifted a �nger or stylus before the end of the
foreperiod, the foreperiod had to be restarted. Users were
instructed to keep �ngers/stylus inside the square selection
area to complete the trial. If a �nger/stylus touched outside ,
the input was ignored.

The time taken to complete each trial was measured from

Figure 3: The display, before the start of a trial.

the start of the green highlighting to the time that the par-
ticipant had put their �nger down on a menu item. At the
end of the trial, the user was given visual feedback in green
if the trial had been successful, and red if there was an error
(incorrect menu item selected). In the case of such an error,
the user had to redo the trial.

A pilot study found that users sometimes lifted their �rst
�nger before their 2nd �nger landed on the target menu
item, causing an error. Thus, in the full experiment, we
added a 200ms timeout in the code to allow for the user to
do this without causing an error.

In our full experiment, 16 users (5 female, 2 left-handed)
aged 19 to 38 (mean 26.8, sd = 5.69) participated. 14 used
touch screens daily (on phones), 10 had prior experience
with a stylus, 3 had prior experience with a radial menu.
Each user session lasted approximately 1.5 hours, and users
were given a $20 gift card.

Each user's hand size was measured by having them stretch
their hand and touch the Cintiq with their thumb tip and
tip of middle �nger. The measured distance was on average
625 pixels = 6.6 inches (sd = 52 pixels, min = 518, max
= 715). The menu was scaled to this handSize, such that
the central region of the menu was centerRadius = 30 pixels
in radius, and each ring of the menu had a radial thick-
ness of (handSize - centerRadius) / numberOfRings, where
numberOfRings varied from 1 to 3 depending on the current
experimental conditions.

The experiment varied the following factors: SYMME-
TRY , which was either Sym (symmetrical) or Asym (asym-
metrical); HANDS , which could be 1HAND (one hand),
2HAND (two hands), HAND+STYLUS (one hand opens
the menu with a �nger, the other hand completes with the
stylus), or STYLUS+HAND (one hand opens with the sty-
lus, the other hand completes with a �nger); and RINGS ,
which could be 1RING, 2RING, 3RING. Each menu instance
could have anywhere between 4 items (Sym, 1RING) and 24
items (Asym, 3RING), and for each menu instance, the user
performed 48 trials, covering each item an equal number of
times. The three factors were fully crossed, yielding 16 par-
ticipants � 2 levels of SYMMETRY � 4 levels of HANDS �
3 levels of RINGS � 48 trials = 18432 trials in total. Because
we were mostly interested in the e�ects of SYMMETRY and
HANDS, the ordering of their 8 combinations of levels was
counterbalanced with an 8� 8 Latin square. The ordering of
RINGS was �xed and increasing in number of rings.

4.1 Results and Discussion
The main e�ect of the time was analyzed using non para-

metric repeated measures ANOVA using the Aligned Rank
Transform [28]. All post-hoc comparisons were made using a
pairwise t-test with Holm's sequential Bonferroni correction.
Error count measures were compared using the� 2 test.

Figure 4: Time by SYMMETRY and HANDS, with
95% con�dence intervals.

Figure 5: Time by SYMMETRY and RINGS, with
95% con�dence intervals.

Each of the main factors had a signi�cant e�ect on time
(Figures 4 and 5). SYMMETRY had a signi�cant e�ect on
time (p < 0:005, F1;15 = 12 :45) with symmetrical menu
(mean time 1023ms) signi�cantly faster than asymmetri-
cal menu (1074ms). RINGS also had a signi�cant e�ect
on time (p < 0:001, F2;30 = 71 :6). The 1RING menu
(982ms) was faster than the 2RING menu (1037ms) which
was faster than the 3RING menu (1126ms) (all di�erences
signi�cant). HAND also had a signi�cant e�ect on time
(p < 0:001, F3;45 = 19 :1). 2HAND (962ms) was faster than
1HAND (1026ms), which was faster than HAND+STYLUS
(1075ms), which was faster than STYLUS+HAND (1132ms)
(all di�erences signi�cant). We see in these results a clas-
sic tradeo�: increasing menu breadth slows down the user.
From a design perspective, the number of items in the menu
may be doubled by (1) using asymmetry rather than sym-
metry (corresponding to a cost of 1074ms - 1023ms = 51ms),
or (2) using 2 rings rather than 1 (costing 1037ms - 982ms
= 55ms), or (3) using a stylus (costing anywhere between
1075ms - 1026ms = 49ms to 1132ms - 962ms = 170ms). By
this comparison, it seems clear that using a stylus is not the
best way to increase menu breadth. Furthermore, without
a stylus, the user is free to choose between using 1HAND
or 2HAND (the latter being 64ms faster, on average, at the
cost of requiring more e�ort). Thus, using asymmetry or
more rings are better ways to increase breadth.

It is interesting that STYLUS+HAND was signi�cantly

slower than HAND+STYLUS. This is explained by two ob-
servations. First, users found the stylus slippery against
the Cintiq surface, forcing them to slow down so as to stay
within the menu center when opening the menu with the
stylus. Second, the position at which the menu was opened
did not much matter, whereas the selection within the menu
required more precise pointing and is thus best done with
the dominant hand (i.e., the hand holding the stylus).

We suspect 1HAND was slower than 2HAND because
1HAND required rotating the wrist to sometimes less com-
fortable angles.

We also analyzed data according to a SECTOR factor,
which varied from target to target, with 8 levels (N, NE,
E, SE, S, SW, W, NW). SECTOR had a signi�cant e�ect
on time (p < 0:001, F7;105 = 12 :0), with SE and NW sig-
ni�cantly slower than the other directions. This is likely a
consequence of most users being right-handed, and having
to tuck their thumb under their hand to reach SE and NW
targets in the 1HAND condition.

From a design perspective, if all but one direction is occu-
pied with frequently-accessed commands, the best direction
for a submenu is SE-NW, since the left hand can hold open
the submenu while the right hand accesses submenu items,
similar to a Hotbox. (These are of course reversed for left-
handed users.)

Figure 6: Error rates (in %) by SYMMETRY and
HANDS.

RINGS had a signi�cant e�ect on error (p < 0:05), with
1RING having the lowest error rate, followed by 2RING fol-
lowed by 3RING which was worst (all di�erences signi�cant).
The symmetrical menu had a lower error rate (5.28%) than
the asymmetrical menu (5.75%), however this di�erence was
not signi�cant. Notice that all mean error rates are be-
low 10%, despite our not asking users to wear cots or con-
trol which �ngers they used. However, (Asym,1HAND) and
(Asym,2HAND) have the highest measured error rate of the
8 conditions in Figure 6, suggesting that these combinations
should be avoided in favor of symmetrical layouts.

Users were asked to score the conditions on Likert scales.
(Sym,1HAND) was rated as the easiest and the least tiring,
whereas (Asym,STYLUS+HAND) was rated as the most
di�cult and most tiring. (Sym,1HAND) was also the most
preferred technique, followed by (Sym,2HAND).

Given the above results for time, error rates, and the sub-
jective preferences, we recommend the following. If more
than 4 commands are desired in the top-level menu, to in-
crease the top-level menu breadth, we recommend adding a
2nd ring rather than using asymmetry or requiring a sty-
lus. If the user will be using a stylus anyway, e.g. as part
of a drawing application, it should be possible to open the

menu with a �nger (e.g. on the non-dominant hand). For
right-handed users, frequently used commands should not be
placed in the NW-SE directions, although these directions
are useful for a submenu held open by the left hand.

At the end of each session, participants in the experiment
were shown a simple drawing program (described in the next
section) that uses the Multitouch Radial Menu, and asked to
interact with the program. 10 out of 16 participants stated
they would like to use the menu in real-world applications,
such as in 3D applications or drawing programs.

5. EXAMPLE APPLICATION

Figure 7: An implementation of a symmetrical mul-
titouch radial menu for a drawing application.

Figure 7 shows a screenshot of a multitouch radial menu
implemented in our drawing program (see companion video
for demonstration). Notice that the menu is symmetrical,
like in Figure 2e. Consider a hypothetical right-handed user .
Once this user has learned that, for example, \Manipulate"
lies on a North East { South West axis, they can place their
thumb and index �nger on the screen, with �ngertips aligned
on a diagonal line, and it won't matter which �nger touches
down �rst: if the thumb touches �rst, the menu will be
centered on the thumb, and the index �nger will touch the
North East \Manipulate". Alternatively, if the index �nger
touches �rst, the menu will be centered on the index �nger,
and the thumb will land on the South West \Manipulate".

Figure 8: An alternative way of explaining the ges-
tures available in the menu of Figure 7.

This symmetrical layout also enables an alternative way
to explain or present the gestures available to a new user.
Figure 8 was designed based on the menu in Figure 7, and
may be a more e�ective way of explaining the available ges-
tures to a user. One �nger maps to the default command,
and two �ngers map to other commands depending on the
orientation of these two �ngers. Note that, at present, Fig-
ure 8 is only a static image, and we have not yet found an
e�ective way to incorporate similar visual feedback into an
interactively explorable popup menu.

Observe also that the North/South \Camera" command
in Figure 7 has pie slices that extend outward more than
the other slices. The Camera command in this case is for
controlling 2D zoom and pan. We observed that when users
wish to zoom out, they naturally begin with their �ngers far
apart to prepare for pinching their �ngers together. This
requires that the corresponding pie slices be long enough to
\catch" the �ngers. Another way to address this issue would
have been to make all pie slices extend in�nitely outward
(though not necessary drawing them as in�nitely large), en-
suring that �nger events are always \caught" by the menu;
we chose not to do this to instead allow the default command
to be invoked on multiple �ngers when they press outside the
menu. In our application, this allows for inking with mul-
tiple �ngers: the user �rst uses their NDH's index �nger to
open the menu, then presses down with their DH's multi-
ple �ngers outside the menu to begin inking with multiple
�ngers, making it easier to draw grass, hair, or textures.

6. INFORMAL OBSERVATIONS
Before designing the Multitouch Radial Menu, we imple-

mented a Toolglass for a multitouch screen, and found it
awkward for two reasons. First, the dominant hand's (DH's)
�nger causes occlusion during click-through operations, un -
less an o�set is introduced between the �nger and the cursor.
However, without detection of hover, such an o�set makes it
di�cult to know where to aim before the �nger has landed
on the screen. Second, dragging the non-dominant hand's
(NDH's) �nger across a large screen feels tiring and slow
compared to moving a mouse.

We asked a group of 12 users to perform a series of com-
mands (requiring 2, 3, or 4 DoF) with either the Multitouch
Radial Menu or with our implementation of Toolglass on the
Cintiq. Users found the Toolglass tiring because it required
them to use both hands at all times, whereas the Multi-
touch Radial Menu could be used with one or both hands.
All users subjectively preferred the Multitouch Radial Men u
over the Toolglass.

7. LIMITATIONS
Because the North East { South West direction is more

di�cult to access with only a right hand, and both hands are
required to access a submenu, our menu is not well suited to
mobile devices held in one hand. A 10-inch-or-larger screen
on a stable platform is best.

When trying to manipulate an object close to the edge of
the screen, users may sometimes lack room for both �ngers,
however this can be addressed by having the user �rst invoke
a camera command to pan the object away from the screen's
edge before manipulating the object.

The fastest version of our menu, with a single ring and
symmetrical layout, has only room for either 5 commands

(including the default command), or 4 top-level commands
with one submenu, or 3 top-level commands plus two sub-
menus, where each submenu might contain up to 20 com-
mands. More commands could be accessed by sacri�cing
kinesthetic continuity and introducing modes, such as with
a toolbar to switch between di�erent menus.

Users often needed 10 minutes of explanation and practice
to understand how to operate the menu. Future work could
develop better visual feedback or metaphors to explain the
menu to users.

8. CONCLUSION
We have presented the Multitouch radial menu, which

supports continuous control over 4 DoF command argu-
ments, submenus, and a default item easily accessed at the
center of the menu. Our experimental evaluation examined
the e�ects of number of rings, symmetry (or lack thereof),
use of a 2nd hand and stylus, and enables a better under-
standing of the tradeo�s associated with speed, error rate,
and number of items in the root menu. The taxonomy in
Figure 1 also summarizes several ways of comparing previous
techniques, and may guide designers in choosing a technique
according to hardware constraints.

9. ACKNOWLEDGMENTS
Thanks to Tovi Grossman, Ken Hinckley, and Nathalie

Henry Riche for advice. Funding was provided by NSERC.

10. REFERENCES
[1] G. Bailly, A. Demeure, E. Lecolinet, and L. Nigay.

Multitouch menu (MTM). In Proc. IHM , 2008.
[2] G. Bailly, J. M •uller, and E. Lecolinet. Design and

evaluation of �nger-count interaction: Combining
multitouch gestures and menus. IJHCS, 70(10), 2012.

[3] N. Banovic, F. C. Y. Li, D. Dearman, K. Yatani, and
K. N. Truong. Design of unimanual multi-�nger pie
menu interaction. In Proc. ACM ITS , 2011.

[4] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and
T. D. DeRose. Toolglass and magic lenses: The
see-through interface. In Proc. SIGGRAPH , 1993.

[5] N. Chen, F. Guimbreti�ere, and C. Lockenho�. Relative
role of merging and two-handed operation on
command selection speed.IJHCS, 66, 2008.

[6] G. Fitzmaurice, A. Khan, R. Piek�e, B. Buxton, and
G. Kurtenbach. Tracking menus. In Proc. ACM UIST ,
pages 71{79, 2003.

[7] G. Fitzmaurice, J. Matejka, A. Khan, M. Glueck, and
G. Kurtenbach. PieCursor: merging pointing and
command selection for rapid in-place tool switching.
In Proc. ACM CHI , pages 1361{1370, 2008.

[8] C. Foucault, M. Micaux, D. Bonnet, and
M. Beaudouin-Lafon. SPad: a bimanual interaction
technique for productivity applications on multi-touch
tablets. In Extended abstracts of CHI, 2014.

[9] M. Frisch, J. Heydekorn, and R. Dachselt.
Investigating multi-touch and pen gestures for
diagram editing on interactive surfaces. In ITS , 2009.

[10] E. Ghomi, S. Huot, O. Bau, M. Beaudouin-Lafon, and
W. E. Mackay. Arp�ege: learning multitouch chord
gestures vocabularies. InProc. ACM ITS , 2013.

[11] T. Grossman, K. Hinckley, P. Baudisch, M. Agrawala,
and R. Balakrishnan. Hover widgets: using the
tracking state to extend the capabilities of
pen-operated devices. InProc. ACM CHI , 2006.

[12] F. Guimbreti�ere and T. Winograd. FlowMenu:
Combining command, text, and data entry. In Proc.
ACM UIST , pages 213{216, 2000.

[13] C. Gutwin, A. Cockburn, J. Scarr, S. Malacria, and
S. C. Olson. Faster command selection on tablets with
FastTap. In Proc. ACM CHI , 2014.

[14] K. Hinckley, P. Baudisch, G. Ramos, and
F. Guimbreti�ere. Design and analysis of delimiters for
selection-action pen gesture phrases in Scriboli. In
Proc. ACM CHI , pages 451{460, 2005.

[15] K. Hinckley, F. Guimbreti�ere, P. Baudisch, R. Sarin,
M. Agrawala, and E. Cutrell. The Springboard:
multiple modes in one spring-loaded control. In Proc.
ACM CHI , pages 181{190, 2006.

[16] P. Kabbash, W. Buxton, and A. Sellen. Two-handed
input in a compound task. In Proc. ACM CHI , 1994.

[17] K. Kin, B. Hartmann, and M. Agrawala. Two-handed
marking menus for multitouch devices. ACM TOCHI ,
18(3):16, 2011.

[18] G. Kurtenbach and W. Buxton. The limits of expert
performance using hierarchic marking menus. In Proc.
ACM CHI , pages 482{487, 1993.

[19] G. Kurtenbach, G. Fitzmaurice, T. Baudel, and
B. Buxton. The design of a GUI paradigm based on
tablets, two-hands, and transparency. In CHI , 1997.

[20] G. Kurtenbach, G. Fitzmaurice, R. Owen, and
T. Baudel. The Hotbox: E�cient access to a large
number of menu-items. In Proc. ACM CHI , 1999.

[21] G. J. Lepinski, T. Grossman, and G. Fitzmaurice. The
design and evaluation of multitouch marking menus.
In Proc. ACM CHI , pages 2233{2242, 2010.

[22] Y. Luo and D. Vogel. Pin-and-cross: A unimanual
multitouch technique combining static touches with
crossing selection. In Proc. ACM UIST , 2015.

[23] M. McGu�n, N. Burtnyk, and G. Kurtenbach. FaST
sliders: Integrating Marking Menus and the
adjustment of continuous values. In Proc. GI , 2002.

[24] M. J. McGu�n and I. Jurisica. Interaction techniques
for selecting and manipulating subgraphs in network
visualizations. IEEE TVCG , 15(6):937{944, 2009.

[25] S. Pook, E. Lecolinet, G. Vaysseix, and E. Barillot.
Control menus: Excecution and control in a single
interactor. In Extended abstracts of CHI, 2000.

[26] J. Raskin. The Humane Interface: New Directions for
Designing Interactive Systems. Addison-Wesley, 2000.

[27] A. J. Sellen, G. P. Kurtenbach, and W. A. S. Buxton.
The prevention of mode errors through sensory
feedback. Human Computer Interaction , 7(2), 1992.

[28] J. O. Wobbrock, L. Findlater, D. Gergle, and J. J.
Higgins. The aligned rank transform for
nonparametric factorial analyses using only ANOVA
procedures. In Proc. ACM CHI , pages 143{146, 2011.

[29] T. Yoshikawa, B. Shizuki, and J. Tanaka.
HandyWidgets: local widgets pulled-out from hands.
In Proc. ACM ITS , pages 197{200, 2012.

