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VectorLens: Angular Selection of Curves within
2D Dense Visualizations

Maxime Dumas, Michael J. McGuffin, and Patrick Chassé

Abstract—We investigate the selection of curves within a 2D visualization by specifying their angle or slope. Such angular selection
has applications in parallel coordinates, time series visualizations, spatio-temporal movement data, etc. Our interaction technique
specifies a region of interest in the visualization (with a position and diameter), a direction, and an angular tolerance, all with a single
drag. We experimentally compared this angular selection technique with other techniques for selecting curves, and found that angular
selection resulted in a higher number of trials that were successful on the first attempt and fewer incorrectly selected curves, and was
also subjectively preferred by participants. We then present the design of a popup lens widget, called the VectorLens, that allows for
easy angular selection and also allows the user to perform additional filtering operations based on type of curve. Multiple VectorLens
widgets can also be instantiated to combine the results of their filtering operations with boolean operators.

Index Terms—Information Visualization, Finance Visualization, Interaction Technique, Selection Technique, Curves Selection
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1 INTRODUCTION

D ENSELY overlapping curves, trajectories, and edges
occur in many visualizations, including parallel

coordinates, time series data, GPS data showing move-
ments of people or vehicles over time, node-link dia-
grams of graphs, etc. A fundamental task to support in
such visualizations is the selection of subsets of curves.
Currently, this is possible with a variety of techniques:
clicking directly on curves, dragging out a region (by
dragging a brush or by drawing a rectangle) that over-
laps the curves to select, selecting curves according to
some criterion such as “category” or “type” of curve, or
sketching the shape of curves to select [1], [2].

Another approach which has been less investigated
to date is selection by specifying the angle or slope
of curves. Such angular selection could be useful in
many cases: selecting one of several overlapping clusters
within a parallel coordinates plot, or one of several
overlapping edge bundles [3], or selecting all the stocks
rising or falling at a given rate on a given date, or all
the boats moving along similar trajectories through a
given region of an ocean. In some of these examples,
automatic clustering might help identify groups of re-
lated curves, but clustering algorithms typically require
tuning to decide how many clusters to find, whereas
a user may visually identify very quickly a group of
curves following some common direction and wish to
select them.
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Fig. 1. With angular selection, the user first clicks down
to express interest in a circular region (solid black circle
in A), then drags away from the center by at least the
minimum distance shown by the dashed circle (B). This
selects all curves that pass through the solid black circle
and that also have a slope falling within the range of the
shaded angular sector. Dragging further away reduces
the angular tolerance (C). At any time, the mouse wheel
can be used to change the diameter of the solid black
circle. This technique, by itself, we call the Pure Angular
technique. We also propose a Hybrid Angular technique
that supports both angular selection and simple brush
selection. In this hybrid technique, the user may optionally
release their click within the dashed circle (A) to select all
curves that pass through the solid circle, regardless of
their slope.

In our work, we investigate a technique performed
with a single drag for specifying (1) a region of interest
within the visualization, (2) an angle or direction, and (3)
an angular tolerance (Figure 1). This kind of interaction
is well suited for integration into a lens widget that offers
the user additional functionality, such as filtering op-
tions. As discussed later, our prototype interface allows a
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user to instantiate a lens widget, called a VectorLens, and
select curves within it based on angular criteria. This is
in contrast to previous techniques [4] that don’t involve
a lens and simply select a range of slopes over some
horizontal interval, or other previous work [5] where
a user paints multiple regions to define a compound
selection of only curves passing through all such regions.
Because our approach is oriented toward use with a
lens widget, we designed our interaction technique to
enable the user to precisely select a subset of curves
within the lens with a single click-and-drag, without
having to instantiate a second lens (although the user
may optionally do so, as presented later). Our approach
could sometimes have an advantage over techniques
that select slopes over a horizontal interval [4] because
the selected curves are limited to a circular region in
addition to a limited set of directions or slopes, making
it more restrictive.

Before presenting our VectorLens widget, we first
study the basic selection technique by which the user
selects a region, a direction, and an angular tolerance, by
comparing it with other curve selection techniques. Four
techniques were experimentally compared: rectangle se-
lection, a circular brush, single-drag angular selection
(Figure 1, B and C), and a hybrid combination of circular
brush with angular selection (Figure 1, A, B and C).
In our experimental task, participants had to select a
highlighted target subset of curves by using one of the
techniques, and could perform one or multiple interac-
tions (for example, dragging out two or three rectangles
in a single trial to select the subset of curves passing
through all rectangles). Although the angular and hybrid
techniques required slightly more time on average to
complete the task, these two techniques also resulted
in the largest number of trials that could be completed
with a single drag, and also minimized the number
of erroneous curves selected during a trial. (This is
important for using the technique within a lens widget,
as it greatly reduces the need for a user to create multiple
lenses for compound selections of curves.) Participants
subjectively preferred the hybrid technique overall.

Later, we present the design of the interactive Vector-
Lens widget, which allows the user to perform angular
selections in a single drag, as well as brush selections in
a single click. Once invoked, the lens remains displayed
on the screen, affording further interactions to move the
lens, as well as filtering and category-based selection.

Our contributions are (1) the design of a single-drag
angular selection technique and of a hybrid technique
combining angular selection and a circular brush, (2)
an experimental comparison of selection techniques, and
(3) the design of the VectorLens widget integrating our
hybrid selection technique with extensible filtering and
category-based selection features.

2 RELATED WORK
Techniques to aid in the understanding of dense visual-
izations of points or of curves include excentric labeling

[6], lenses that magnify content [7], and lenses that
filter out a subset of content [8]. In the case of curves,
additional approaches for aiding visualization involve
the interactive deformation or “bending” of curves [9].

Techniques for the selection of elements in a visualiza-
tion can be used for invoking operations on the selected
elements, and/or for changing rendering parameters
(such as the color or alpha) of the selected elements.
If the elements to select are small and localized (or
point-like), selection of just one element can be aided
by techniques that cause the mouse cursor to grow or
shrink based on mouse velocity and/or on the proximity
of candidate targets near the cursor [10], [11], making it
easy for the user to select the nearest target. DynaSpot is
one of the most promising of many proposed techniques
for aiding such single-target selections. Other single-
target selection techniques are notable for their use of
direction: Splatter [12], Escape [13], and Click-and-Cross
[14] all allow the user to first indicate a location of
interest, where there may be multiple overlapping or
nearby candidate targets, and then drag in a direction
that has been assigned to only one target to complete
the selection. In these techniques, the direction is not an
intrinsic property of the candidate targets, but is rather
assigned arbitrarily to disambiguate them.

Selection of multiple points or curves in a visualization
can be performed with traditional techniques where the
user “paints” a selection using a rectangular or circular
brush. Our work focuses on the case where the user
wishes to select multiple curves that follow a similar
direction and that pass through a common region. Since
these target curves may overlap with other curves going
in different directions, traditional paint-based selection
is ineffective unless the user can paint a compound se-
lection of at least two regions, to select the curves pass-
ing through both regions. This approach is used with
Hochheiser and Shneiderman’s [5] timeboxes, where the
user can specify two rectangular regions over a visu-
alization of time-series data to select all curves passing
through both. Other techniques for selecting curves with
a given direction, angle, or slope are angular brushing
[4], “angular queries” (another technique proposed by
Hochheiser and Shneiderman [5]), and the operators of
Guo et al. [15] that have an “angular tolerance”. The
first two of these apply to parallel coordinates and time
series data, but do not naturally apply in the case of
parametric curves where neither x nor y is an indepen-
dent variable, because the techniques assume there is
some horizontal interval over which to operate, which
would be meaningless in a parametric plot. Also, none
of the three previous techniques [4], [5], [15] is optimized
to enable the definition of a selection in a single click-
drag. In contrast, our present work proposes a technique
that can be invoked in a single drag for fast execution,
and can be applied to parallel coordinates, time series
data, or continuous parametric curves (Figure 3). Our
proposed VectorLens widget is also more flexible and
complete in its features than these previous widgets.
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For example, a single VectorLens widget allows the user
to select multiple angular ranges without instantiating
additional lenses.

Kosara [16] proposes multitouch input techniques for
selecting multiple curves of a given slope or angle using
three or four fingers simultaneously. This can work well
in some cases, however multitouch input suffers from
a lack of spatial precision, as well as physical limits on
how far and how close fingers can be positioned.

Various “query-by-sketch” techniques have been pro-
posed [1], [2], [17], [18] to select curves by drawing the
approximate shape of the curves of interest. These allow
the user to be more specific in their selection than simply
specifying a location and a direction, however “query-
by-sketch” can also incur more cost to perform, since the
user must provide the entire shape of a curve rather than
simply a location and direction.

Later in our paper, we show how to incorporate angu-
lar selection with a single drag inside a more complete
widget called the VectorLens, offering more options to
the user. Tominsky et al. [19] recently published a survey
of interactive lenses. Among them, an interesting widget
for performing selections based on angles is the Edge-
Analyzer [20], which detects clusters of edges, making
it easier for the user to select these clusters. However,
the EdgeAnalyzer does not allow the user to perform
selections with a single drag as our VectorLens does.

In summary, our angular selection technique is unique
in that it can be performed in a single drag; and can be
applied to parallel coordinates, time series, and visual-
izations of continuous curves; and is also incorporated in
a larger widget so that the user may optionally invoke it
in a single drag or invoke the widget’s additional options
for more control, unlike all previous techniques.

3 ANGULAR SELECTION IN A SINGLE DRAG

Our selection technique leverages an elementary and
useful characteristic of curves: direction. In many visual-
izations, curves that pass through similar positions with
similar slopes are meaningfully related, e.g., they belong
to a “cluster” or “bundle” or somehow represent similar
behaviors. Our approach for angular selection allows the
user to select such clusters or bundles (or subsets of
them) in the absence of automatic clustering algorithms,
which would in any case require fine-tuning by the user.

Prior to clicking, a circular brush follows the mouse
cursor, remaining centered on the cursor. (This is the
solid black circle in Figure 1.) When the user clicks down,
the brush is fixed in place. If the user drags outside
the dashed circle (Figure 1-B), this defines a vector
originating at the brush center and pointing to the mouse
cursor position (Figure 2). Only curves passing under the
circular brush and with slopes oriented in approximately
the same direction will be selected. The angular tolerance
allowed (i.e., the angle covered by the shaded angular
sector) decreases as the cursor is dragged further from
the center of the brush (Figure 1). In our implementation,

the angular tolerance is initially 70 degrees (when the
mouse cursor is immediately outside the dashed circle),
and decreases as 1/d, where d is the distance (Figure 1-
C). This inverse function allows a large value initially for
coarse selection, but decreases quickly to enable precise
selections without having to move too far from the lens
center. Theoretically, this technique allows arbitrarily
high precision as the distance increases.

Fig. 2. Elements of our angular selection technique. The
brush specifies a region of interest.

Highlighting shows the user a preview of the curves
that will be selected prior to releasing the mouse button.

The user may use the mouse wheel to change the
diameter of the lens, allowing for the specification of a
more or less precise location of interest. Such adjustment
can be performed prior to clicking, or even after clicking
and during dragging (in which case, the highlighted
subset of curves is updated to reflect the lens’ new
diameter).

The slope of curves under the brush is calculated
according to the direction of tangent vectors at the
intersections of the curves and the brush circle. If any
of the tangent vectors’ directions fall within the range of
directions of the shaded angular sector, then that tangent
vectors’ curve will be selected (Figure 3).

Fig. 3. Tangent vectors are calculated at brush-curve
intersection points. Vectors in gray, such as A, are not
selected as they do not fit in the angular range. Red
vectors such as B and C fit in the tolerance range, causing
their curves to be selected.

An alternative approach would have been to compute
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the average slope of all tangent vectors at the intersection
points, or the average slope between the first and last
intersection point, and use this average slope to deter-
mine which curves to select. If the curve intersects the
circular region at two points, this is equivalent to using
the secant slope. We did not implement this, because such
an average slope can be difficult for a user to predict (as
well as being computationally more expensive), and it
is easier for the user to drag in the direction of one of
the intersection tangents to select their desired curve(s).
Furthermore, in practice, the “curves” in parallel coor-
dinates and time series plots usually have long straight-
line segments, and would not be as curvaceous as that
shown in Figure 3 (right). If a user wanted to select
a subset of curves in a parallel coordinates plot, they
might first click on an axis and then drag out a range
of directions on the right side of the axis, for example,
in which case they would not expect their selection to
be influenced by the slopes on the left side of the axis,
which is another reason to not use the secant or average
slope.

Figure 3 shows that curves do not need to be contained
within the angular sector to be selected, but must have
a tangent vector pointing in the same direction. The user
can often easily avoid unwanted neighboring curves by
strategically positioning the brush prior to clicking, so
the brush does not cover unwanted curves. In extreme
cases where the slope of the curve is highly variable such
as Figure 3 right, the user can simply solve this issue
by reducing the size of the lens or by leaving the lens
centered on top of the curve.

By way of comparison, the “angular queries” pro-
posed by Hochheiser and Shneiderman [5] limit the re-
gion of interest only along the 1-dimensional horizontal
axis, Our technique allows the region of interest to be
positioned within 2-dimensional space.

The angular selection technique just described will
be referred to as Pure Angular selection, which we
evaluated experimentally. We also evaluated a Hybrid
Angular technique that works just like the Pure Angular
technique, except that the user may optionally release the
mouse button within the 10-pixel-radius dashed circle in
Figure 1-A, causing all curves passing through the brush
to be selected. This shortcut allows the technique to be
used as a traditional circular brush, which is faster than
specifying an angle and is appropriate if there are no
undesired curves under the brush.

Notice also the Pure and Hybrid angular selection
technique can be applied to parallel coordinates, time
series data, edges within network diagrams, and contin-
uous curves.

4 EXPERIMENTAL EVALUATION

To evaluate the performance of our angular selection
technique, we experimentally compared it with other
selection techniques in terms of speed, “errors” (our
name for the number of curves whose selection state had

to be corrected before the end of a successful trial), and
subjective user preferences.

Our angular selection technique was chosen to be
easy to integrate into a lens widget, and is designed to
allow for selection of an angular subset within a circular
region. In practice, this selection can often be done with a
single click-and-drag, and with only one circular region
defined. However, this click-drag may be somewhat
slow to execute because of the precision required on
the part of the user to define the angular tolerance. In
contrast, other selection techniques (Rectangle and Brush
selection, described below) may often require two click-
drag actions, but have the advantage that each of these
click-drag actions are easy and fast to perform. We chose
these techniques for comparison to better understand the
tradeoffs between these two styles of interaction: the first
based more on a precise selection within a single circular
region, and the second based more on fast, multiple
selections.

4.1 Task

Participants were asked to select a target cluster within
a synthetic data set that was displayed in a seven axis
parallel coordinates chart. This is almost equivalent to
a discrete time series over 7 time steps, and therefore
we do not think a separate evaluation with time series
would yield new insights. Four techniques of selection
were compared: Rectangle selection, where the user drags
out the diagonal of a rectangle; Brush, where the user
clicks to paint with a circular brush (optionally dragging
before releasing, to paint a larger selection); Pure Angular,
shown in Figures 1 B, C; and Hybrid Angular, shown in
Figures 1 A, B, C, which can be used as a circular brush
by clicking and releasing, thus combining the Brush and
Pure Angular techniques. Only one technique was avail-
able during each trial, but could be invoked multiple
times to perform corrective selections or deselections.

With three of the techniques (Brush, Pure Angular, and
Hybrid Angular), the user could adjust the size of the
brush with the mouse wheel, both before and during a
selection.

At the start of each trial, one of the four techniques is
active, and the user is shown the full data set across
7 axes, with the target cluster of curves highlighted
in red. The user then clicks and drags to activate the
technique to attempt to select only the target curves. The
successfully selected target curves are then highlighted
in green, and the incorrectly selected non-target curves
are highlighted in orange (Figure 4, top). If there are also
target curves not yet selected, they remain highlighted
in red. When the user releases the mouse button, if
there are no incorrectly selected curves, the trial ends.
Otherwise, the user must perform additional corrective
selections (or deselections) with subsequent drags. The
trial only ends when all the targets curves have been
selected, and no incorrect curves are selected. The Time
measured is the total duration of the trial. Furthermore,
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after each drag, we count the number of non-target
curves that are erroneously selected, and the number of
target curves that are not yet selected, and the sum of
these numbers over all drags of the trial gives the total
number of Errors for the trial. These are not errors in
common sense of the term, because the user is forced to
correct these incorrect selections so that there are none
left by the end of the trial. However, we are interested
in counting such incorrect selections, to compare how
close the user can get to the final target selection after
just one click-drag, and for simplicity we refer to this
count of incorrect selections over the course of the trial as
Errors. In practice, techniques with smaller Error count
may help the user deal with large datasets, because
such techniques cause a smaller subset of curves to be
highlighted after the first click-drag, possibly helping
the user to more easily identify the subset of curves
that interests them, and helping them understand what
subsequent corrections (if any) are required.

Corrective selections and deselections can be per-
formed in several ways. Clicking and dragging with the
left mouse button adds additional curves to the previous
selection (corresponding to a set union of the previous
and new selections). Clicking and dragging with the
right mouse button removes curves (corresponding to
set difference). Holding down the space bar and clicking
and dragging with the left mouse button selects within
the previous selection (corresponding to set intersection).
Set intersection is used in Figure 4, top and middle,
where a 2nd rectangle is drawn to select only curves
passing through both rectangles (in this case, corre-
sponding precisely to the target curves, completing the
trial).

Participants were free to use any combination of se-
lections they liked, but were instructed to complete the
trials as quickly as possible. We observed during pilots
that set intersection with the spacebar was frequently
the simplest and most effective approach to use, and
encouraged participants to also use this approach when
a single drag was insufficient to complete the trial.
Usually, 2-3 drags were sufficient to complete a trial
using intersection. For example, in Figure 4, top, a single
drag with the Rectangle technique cannot select all target
curves without also selecting erroneous curves (shown
in orange), however a second Rectangle selection with
set intersection completes the trial (Figure 4, middle).
When using the Hybrid Angular technique, participants
were encouraged to perform an initial angular drag for
each trial, and if a corrective selection was needed, to do
so using the brush shortcut with set intersection.

Participants were also advised to adjust the mouse
wheel to obtain a brush diameter they were comfortable
with, and then not frequently readjust it, as we found in
pilots that frequently readjusting the brush diameter was
expensive in time. During the experiment, the selected
brush diameter was persistently remembered across tri-
als by the software, reducing the need to readjust it.

Fig. 4. Top: A first drag with the Rectangle technique
selects all target curves, but also selects several non-
target curves (in orange). Middle: a second drag with
Rectangle selects all curves passing through both rect-
angles, which completes the trial. Bottom: in this case,
the same task can be completed with a single drag using
the Pure Angular or Hybrid Angular techniques. Note that
the above images are cropped; the experiment displayed
parallel coordinates with 7 axes.

4.2 Data Sets

A new data set was randomly generated for each trial,
with different random seeds used for each user.

Many solutions have been proposed in the litterature
[21], [22] to generate synthetic data sets. We developped
our own algorithm to control the density level on the
charts. Each data set contained approximately 50% of its
curves in 5 clusters, and the other 50% of its curves as
uncorrelated background “noise”. Within each generated
cluster, each curve had to pass within 5% of the axis
length of the randomly chosen centroid on each axis
for that cluster. The target cluster always consisted of 5
curves, whereas the number of curves in other clusters
and in the background depended on the desired density
of data.

We define density as the fraction of pixels being used
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to display curves, taking into account the Euclidean
length of line segments, without taking into account
overlap between curves. For example, if a single hori-
zontal line of thickness 1 is displayed within a 100×100
window, there are 100 pixels used to display the line out
of 10000 pixels in total, yielding a density of 100/10000 =
1%. On the other hand, if the line is diagonal, extending
from the lower left corner of the window to the upper
right, its length is 100

√
2, its thickness is 1, and its total

area is 1×100
√
2, yielding a density of 1.4%. The density

of a visualization with multiple curves is simply the
sum of the densities for each curve, without considering
overlap. If the total density of a set of curves is 100%,
and the curves never overlap, then theoretically all pixels
should be covered by curves, however in practice over-
lapping curves will leave many pixels uncovered even
at a nominal 100% density.

In our experiment, we varied the density over 5 levels
(Figure 5), from 5% to 90%. Our data set generation
algorithm incrementally adds curves until the desired
density is reached, resulting in an average of 20 curves
for 5% density, up to 380 curves for 90% density. Higher
densities result in more overlapping curves, making it
more difficult for the non-angular selection techniques
to select only the target curves in a single drag.

Fig. 5. Cropped images showing the range of densities
in the experiment. For all densities, there was a target
cluster of 5 curves, initially highlighted in red.

4.3 Apparatus

The experiment was conducted on a 2.3 Ghz Quad
Core Intel i7-2820 laptop running Microsoft Windows
7, connected to an external 24 inch 1920×1080 pixel
LCD display. Participants used the external display, and
external USB mouse and keyboard. Mouse acceleration
was disabled.

4.4 Participants

To allow for counterbalancing of conditions and order-
ings, twelve volunteers (4 women, 8 men) participated,
ranging in age from 23 to 46 (average 30.8, median
27.5). All were right-handed and controlled the mouse
using their right hand. No one reported having physical

handicaps, and none had color deficiencies. Nine partic-
ipants were employees from Croesus Finansoft working
in different departments (programming, QA, business
analysis, etc.). Three participants were master’s students
in engineering programs from ETS. All participants re-
ceived a twenty dollar gift card for their participation.

4.5 Design

The technique and density variables were within-
subjects. Technique was countered-balanced with a 4×4
Latin square. Each user performed 3 blocks of 50 trials
with each technique, performing first the 3 blocks for the
first technique, then the 3 blocks for the 2nd technique,
etc. Pauses were allowed between blocks. The order of
densities within each block was random.

Prior to the 3 blocks for each technique, participants
were shown a video demonstration of the technique,
and then were asked to perform 50 warm-up trials (10
repetitions × 5 densities).

Not counting warm-up trials, there were
12 participants
× 4 techniques (Rectangle, Brush, Pure Angular, Hybrid
Angular)
× 3 blocks
× 5 densities (5%, 25%, 50%, 75%, and 90%)
× 10 repetitions
= 7200 trials in total.

Each user session lasted approximately 1.5 hours.

4.6 Results

Figures 6 and 7 show the average time and errors for
each technique and density.

Fig. 6. Average time per density level.

Times were log-transformed and analyzed with a 2-
way, 3 technique × 5 density ANOVA with sphericity
corrections. Both technique (F = 29.2, p < 0.001) and
density (F = 384, p < 0.001) had significant effects
on time. Pairwise t-test comparisons with Bonferroni
correction indicates that all techniques are significantly
different except for Rectangle and Brush. Rectangle and
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Fig. 7. Average number of erroneously selected curves
per density level. Note that all trials ended in success,
because users had to correct their selections to end each
trial. The “error” count here refers to the number of curves
whose selection state was incorrect over the course of the
trial and had to be subsequently corrected by the end of
the trial.

TABLE 1
Detailed results

Technique Avg. Time Avg. Number of
(seconds) Errors single-drag trials

Pure Angular 4.53 5.45 522
Hybrid Angular 3.58 7.12 474

Brush 3.31 15.26 291
Rectangle 3.19 9.37 435

Brush were the overall fastest techniques, with Rectangle
slightly (but not significantly) faster.

Errors were also analyzed with a 2-way, 3 technique ×
5 density ANOVA, again finding significant effects due
to technique (F = 25.3, p < 0.001) and due to density
(F = 583, p < 0.001). Pairwise t-test comparisons with
Bonferroni correction indicates that all techniques are
significantly different, with the two angular techniques
the overall best.

We also compared the number of trials in each tech-
nique that were successfully completed with a single
drag, i.e., completed with zero errors. The two angular
techniques performed best by this criterion, as shown in
the right-most column of this summary:

All tasks were divided in three blocks of 50 trials. After
each block, the participant was allowed to take a pause.
We compared the results between blocks and detected
no significant difference for selection time and number
of errors.

We compared the 4 techniques within each of the
12×5 (participant, density) combinations. We found that
Hybrid Angular was the fastest of the four techniques
in 8 out of the 60 such combinations. Density does not
appear to advantage the hybrid as these 8 fastest times
are distributed similarly across all densities. No obvi-

ous pattern can be extracted from the data that would
explain the ideal conditions for the hybrid technique to
outperform the others speedwise.

Participants were observed to exhibit a variety of be-
haviors and strategies, resulting in varied performance.
The fastest participants reported playing video games on
a regular basis, with 3 of the top 4 fastest participants
playing video games at least 15 hours per week. The
two participants who were fastest overall, participants 2
and 9, were also the fastest at using the Hybrid Angular
technique. Gaming performance is often influenced by
the player speed at executing commands. Experience
with advanced selection controls (such as the one found
in video games) could have an impact on the observed
results. Gamers clearly appeared to be more at ease with
the angular controls, and rapidly developped strategies
to optimize their selections. This might explain partly
why they outperformed the other candidates using the
hybrid approach.

After the experimental trials, participants were asked
to choose their subjectively preferred technique. 9 out of
the 12 participants preferred Hybrid Angular, and the
remaining 3 participants preferred Rectangle. The most
commonly given reasons for preferring the Hybrid An-
gular technique was that it allowed for greater “Precision
/ Limiting the number of selected curves” and allowed
for “Rapid correction” of errors.

Because of the Latin square counterbalancing used in
our experiment, 3 participants used the Hybrid Angular
technique first, before trying the other techniques. All of
these participants stated that they would have liked to
re-do the trials with the Hybrid technique at the end,
feeling that they would have done better a 2nd time.

4.7 Discussion

Of the four techniques, Rectangle is best in terms of time
and better than Brush according to all criteria. The angu-
lar techniques are best in terms of errors and number of
single-drag trials, and between the two, Hybrid Angular
achieved a significantly better time than Pure Angular,
and Hybrid Angular was only about 12% slower than
Rectangle. Hybrid Angular was also the most preferred
subjectively.

We thus have a tradeoff between, on the one hand,
Rectangle selection, which results in more erroneously
selected curves after the first drag (e.g., Figure 4, top)
but is nevertheless faster despite the extra time required
for corrective selections, and on the other hand, Hybrid
Angular selection, which is 12% slower on average but
is more precise and was subjectively preferred.

We note again that our metric of “errors” does not
refer to unsuccessful trials, since all trials ended suc-
cessfully, but rather it refers to curves that were at some
point in an incorrect selection state during the trial and
required correction. Such (temporarily) incorrect selec-
tions are often unavoidable for techniques like Rectangle
and Brush, and these techniques were nevertheless quite
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Fig. 8. Left: a visualization with a density of 1000%. Some clusters are partially visible, others are entirely hidden. In
a realistic scenario, there is typically no highlighting to indicate to the user what to select, and the user must explore
to find interesting clusters or subsets. Middle: When dragging out a single rectangle, the user cannot avoid selecting
many curves that are not part of a single cluster. Right: In contrast, a single angular selection allows the user to
interactively brush in different directions and focus almost exclusively on a single cluster, all in a single drag.

effective given their time performance, but the lower
number of “errors” with the Angular techniques shows
that the highlighted subset of selected curves is, on
average, closer to the target subset after the first click
of the user.

We suspect that one factor penalizing the angular tech-
niques is that participants had extensive prior experience
with performing rectangle selection in other software,
but had almost no comparative experience with angular
selection prior to the experience. A more longitudinal
study might find that user performance with angular
techniques improves significantly over time. This is also
suggested by the wide variety of behaviors and results
seen across participants.

Furthermore, in realistic scenarios where target clus-
ters are not highlighted and densities are very high
(Figure 8), the user may use these selection techniques
to exploratively brush the curves during a drag, without
necessarily knowing what direction a cluster has due to
occlusion. In such a scenario, rectangle selection could be
less effective than angular selection, since highlighting
will only appear after clicking, and undesirable curves
often cannot be deselected without restarting. In con-
trast, the use of angular selection allows the direction,
tolerance, and circular brush size to all be adjusted
during the first drag.

Finally, because angular selection more often allows
selection to be completed with a single drag, this makes
angular selection more amenable to inclusion within
a lens widget with enhanced filtering options, as pre-
sented in the next section. A similar widget based on
rectangular selection would be more likely to require
multiple instantiations to complete a selection, leading to
increased screen clutter, especially if the widget contains
many auxiliary menus or options.

5 THE VECTORLENS WIDGET

We propose incorporating angular selection within a lens
widget called VectorLens. This widget subsumes the Hy-
brid Angular technique in our experiment, supporting

angular and brush selection each in a single click, as well
as supporting direct selection (by clicking on individual
curves), categorical filtering capabilities, and complex
queries involving multiple lenses. The VectorLens is
designed specifically with times series and parallel coor-
dinates in mind. Figures 9-10 show it applied to financial
data.

Fig. 9. The VectorLens Widget. A: Clicking down and
dragging instantiates a VectorLens and invokes angular
selection. The innermost ring of the widget highlights
in red the angular range currently selected. B: Upon
releasing, the widget remains on screen, and blue sectors
on the innermost ring show the currently selected angular
ranges: a full 180 degree range on the right, and a 20
degree range on the left. C: Categorical filtering allows
the user to further narrow the set of selected curves. D:
When the cursor leaves the lens, it compresses to take
less screenspace, but will return to its original form if the
cursor enters again.

When not inside a VectorLens, a dashed circle follows
the mouse cursor, to provide a preview of the size of the
lens that will be created if the user clicks. This dashed
circle is resized with the mouse scroll wheel. Clicking
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down instantiates a VectorLens, after which the user may
release (to select all curves in the lens, like with Brush
selection) or may drag outward and release (to perform
angular selection (Figure 9-A)). The user may then access
several additional options within the VectorLens which
we describe below, or dismiss the lens with the “X” icon
at the bottom of the lens, or exit the lens in which case
it compresses itself (Figure 9-D). After exiting, the user
may instantiate more lenses in other places, or return to
the first lens again to access its options.

When the cursor is inside an instantiated VectorLens,
the user may click on the innermost ring to redefine
an existing angular range, or add a new angular range,
either on the left or right half of the ring. The user
may also right-click on an angular range on the same
innermost ring to remove a range. At any given time,
there may be multiple non-overlapping angular ranges
defined on the left and right halves of the VectorLens.
For example, range R1 on the left might correspond to
curves between 25 and 45 degrees below the horizontal,
range R2 on the left might correspond to curves between
10 and 30 degrees above the horizontal, and range R3

on the right might correspond to curves between 20
degrees below and 10 degrees above the horizontal. The
subset of curves selected in this case could be written
as (R1 ∪ R2) ∩ R3. In a time series visualization, the
user might have instantiated a VectorLens on a discrete
time instant, and in a parallel coordinates plot, the user
might have instantiated a lens on a vertical axis. In both
cases, the ability to select different ranges on the left and
right is useful, since the polygonal curves under the lens
will have one slope to the left, and typically a different
slope to the right. For example, we might want to select
different angles on both sides of an axis (entering in
range A AND exiting in range B). Hence, the user may
use the left slope, right-slope, or both, to discriminate
and select curves. By default, multiple angle ranges on
a single side are considered as disjunctions, and selection
on both sides would be conjunctions.

Other actions are also possible inside an instantiated
VectorLens. The user may click-drag in the center of the
lens to move the entire lens to a new location, making it
behave like a magic lens [23] for interactive filtering. The
user may also position the mouse cursor directly over a
curve in the middle of the lens (i.e., within a distance of
1 pixel of the curve) and click to select only that curve.
The user may also click on the outermost ring to open
a list of categories (Figure 9-C) and select one or more
categories in the list, narrowing the selected curves to
only those that match the selected categories. This can be
done for multiple criteria (displayed in the middle ring:
“Equities”, “Sectors”, “Clients”, “Reps”, and “Branches”
in the financial example in Figures 9-10), in which case
the selected curves are narrowed to those matching the
chosen categories within all criteria. Note that, prior to
selecting within a criterion’s list, the user may roll their
cursor over the items in the list, to see the corresponding
curves highlight (e.g., to see all curves corresponding

to a particular Branch, for example). This allows the
user to see which curves of each category are present,
without having to display a large number of labels on
the curves as could be necessary with Excentric labels [6],
[24]. The numbers displayed on the outermost ring show
the number of categories available under each criterion.
The user may also, at any time, use the mouse scroll
wheel to change the diameter of the current VectorLens.

When multiple lenses are instantiated (Figure 10), by
default an intersection of each lens’ selection is com-
puted, i.e., curves are selected if and only if they satisfy
the constraints of all lenses. However, the user may
modify this behavior using the query builder panel (left
side of (Figure 10) to define groups of lenses and to
choose the boolean operators to apply.

Normally, each VectorLens will only select among
the curves passing through its circular lens area. How-
ever, an additional option changes this behavior, causing
the widget to select among all curves passing through
the horizontal interval covered by the VectorLens (Fig-
ure 11). This allows the VectorLens to imitate some pre-
viously described widgets, such as [4]. In this “vertical
mode”, the intersection points used to compute slopes
of tangents are the intersections between curves and
the vertical boundaries covering the lens’ width. This
feature gives more flexibility to the tool for special cases
where the boundaries of the lens would be too limiting,
allowing both constrained and unconstrained modes.

In summary, the VectorLens widget subsumes a more
complete set of functions than the previously proposed
widgets, while still allowing brush selection and angu-
lar selection to be performed each with a single click.
It is worth noting that rectangle selection, which was
the fastest technique in our evaluation, could also be
incorporated into a rich lens-like widget, but this would
likely require the user to instantiate more widgets (since
selecting the same bundle of curves often requires two
rectangle selections, compared with a single angular
selection), leading to more screen clutter.

The fluid way in which a user can perform an an-
gular selection and invoke a VectorLens widget in a
single click-drag can be compared to other interactive
techniques that are not concerned with the selection of
data curves. For example, an extensive set of papers
have proposed various menu techniques for selecting
commands, many of these based on radial widgets [25]–
[27]. Many of these are surveyed in [28]. FaST sliders [29]
allow a user to perform a rapid parameter adjustment in
two drags, and then optionally keep a widget posted to
the screen for further interactions, which is comparable
to how a VectorLens is available for further interactions
after its instantiation. None of these menuing techniques,
however, are designed for the selection of elements in a
visualization.

6 CONCLUSION
We have proposed two single-drag selection techniques
for dense graphs: Pure Angular, and Hybrid Angular
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Fig. 10. Complex query created using three lenses. The query builder in the panel on the left shows that the user has
grouped lenses 9 and 10 into a single “bundle”, and chosen operators corresponding to Lens 11 AND (Lens 10 OR
Lens 9).

(which allows the user to perform angular selection or
traditional brush selection). Both of these were compared
in a controlled experiment with two other status quo
single-drag selection techniques: rectangle selection, and
brush selection. Our Hybrid Angular technique was
slightly slower than the best of the four, but resulted
in significantly fewer errors (i.e., fewer curves whose
selection state required correction) over the coures of
each trial and more single-drag trials. Hybrid Angular
selection was also preferred subjectively by 75% of par-
ticipants. Finally, we presented the design of VectorLens,
a selection widget that subsumes the Hybrid Angular
technique without requiring any additional clicks, while
also supporting multiple angular ranges, direct selection
of single curves, selection based on one or more cate-
gories, and complex queries involving multiple lenses,
making it more complete than any previously proposed
widget for selecting curves.

Our angular selection tool was primarily designed to
select clusters or bundles of curves close to each other
and oriented in the same direction. Future work could
explore automatic clustering techniques to make it easier
for the user to “snap” their selection to the nearest
cluster-like subset of curves. This could make it easier to
eliminate the 2 outlier curves in Figure 8, for example.

Some participants commented during the experiment
that our inverse function seemed too sensitive at first
when adjusting the angular tolerance. Future work could
therefore investigate multiple functions to find a bet-
ter mapping from cursor distance to angular tolerance,

which could improve the performance times with angu-
lar selection.

The VectorLens displays categories within simple lin-
ear lists. If the number of elements in such a list in-
creased significantly, the user might lose time scrolling.
Previous works, such as [30] and [31], provided interest-
ing solutions to accommodate large quantities of data in
lists. Such solutions could be applied to the VectorLens
to improve scalability to large numbers of categories.
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