
VisReduce: Fast and responsive incremental information visualization of large
datasets

Jean-François Im∗, Félix Giguère Villegas†, and Michael J. McGuffin∗
∗École de Technologie Supérieure, Montréal, Canada

Email: jfim@jean-francois.im, michael.mcguffin@etsmtl.ca
†Mate1.com, Montréal, Canada

Email: felixgv@gmail.com

Abstract—Performance and responsiveness of visual ana-
lytics sytems for exploratory data analysis of large datasets
has been a long standing problem. We propose a method
for incrementally computing visualizations in a distributed
fashion by combining a modified MapReduce-style algorithm
with a compressed columnar data store, resulting in signif-
icant improvements in performance and responsiveness for
constructing commonly encountered information visualizations,
e.g. bar charts, scatterplots, heat maps, cartograms and parallel
coordinate plots. We compare our method with one that queries
three other readily available database and data warehouse
systems — PostgreSQL, Cloudera Impala and the MapReduce-
based Apache Hive — in order to build visualizations. We
show that our end-to-end approach allows for greater speed
and guaranteed end-user responsiveness, even in the face of
large, long-running queries.

Keywords-incremental visualization; online aggregation; in-
formation visualization; MapReduce; columnar storage;

I. INTRODUCTION

Visualization for business intelligence often involves

querying large databases to generate plots such as line

charts, barcharts, scatterplots, or potentially more exotic

visualizations [1], [2], [3] such as parallel coordinate plots

[4]. These visualizations provide more insight when the user

can interact with them to quickly refine queries, drill down,

or choose new paths of exploration. Unfortunately, common

back-end systems for processing very large datasets have

one or both of the following problems: (1) they exhibit

high latency, precluding feedback at interactive rates, or (2)

they require expensive pre-computations (such as indices or

datacubes) that accelerate restricted classes of queries, but

do not accelerate all of the common queries involved in data

visualization.
For example, systems based on SQL are not designed to

run arbitrary code as part of a query1. Hence, generating a

1Technically, many DBMS support user defined aggregation functions, as
proprietary extensions to SQL. These have different caveats depending on
the DBMS. For example, MySQL requires them to be written in C, Oracle
requires PL/SQL, C, C++ or Java, SQL Server requires them to run on the
.NET framework while PostgreSQL supports many languages. Furthermore,
the C APIs are incompatible between DBMS. Also, depending on the
database and foreign language combination, there may be a significant
overhead to calling a foreign function millions of times. Finally, DBMS-
internal languages have no intrinsic support for image manipulation.

scatterplot or parallel coordinates plot — which require all

data tuples for rendering — of a large dataset with SQL

requires running a query that transfers all the data tuples

from the database to the client, and then generating the plot

on the client. The client becomes a bottleneck, and the work

of generating the visualization cannot be distributed over

multiple nodes. Scalability is thus severely limited.

OLAP datacubes [5] support fast aggregation queries,

but only over the dimensions that were included during

the construction of the cube. With large datasets involving

20 or more dimensions, constructing a “full” cube with

all dimensions is often not feasible [6] due to memory

restrictions, and queries involving dimensions that are left

out will not be possible.

MapReduce [7] has recently gained attention as a tool

for processing large data, but is designed for batch jobs,

and has high latency. Just starting up a new job can require

several seconds with typical implementations. To quote Heer

and Shneiderman, “While popular platforms for large data

analysis such as MapReduce achieve adequate throughput,

their high latency and lack of online processing limit fluent

interaction” [8].

Interactive visualization of large data is an important prob-

lem, covering two challenges listed by Johnson (“human-

computer interaction” and “scalable, distributed, and grid-

based visualization” [9]) and two more listed by Chen

(“usability” and “scalability” [10]). Tableau, a leading com-

mercial front-end for visualization of databases for business

intelligence, has only limited features for dealing with very

large data. However, more powerful solutions would clearly

be valuable: “Tableau has users with very large databases

who are willing to wait minutes for database queries to

run so that they can see a graphical view of their valuable

data. However, users do not want interactive experiences that

include such pauses.” [11]

We present a simple yet promising solution called VisRe-

duce, that (1) allows queries to run arbitrary code on worker

nodes (unlike SQL-based solutions); (2) scales up in speed as

the number of worker nodes is increased; (3) gives continual

feedback to the client about the progress of a query, so

that the user knows roughly how long they will need to

978-1-4799-1293-3/13/$31.00 ©2013  IEEE 



Figure 1. In this example, the output being displayed by the VisReduce
client is a barchart. As the query progresses, the barchart is updated
incrementally, shown here as a sequence of screenshots, starting at top
left and ending at bottom right. Respective times since the start of the
query are 270 ms, 1137 ms, 3988 ms and the completed result at 5021
ms shows average delay for all 149.5 million flights. The bars initially
oscillate in length, but quickly converge to their final lengths as the query
progresses and becomes more accurate. As the query progresses, new bars
are occasionally created and inserted (these have been manually highlighted
in this figure with a lighter color).

wait; (4) incrementally updates the result displayed by the

client, so that the user sees an approximate visualization

of the data processed so-far during the entire query, as

illustrated by the bar charts of figure 1. The visualization

is displayed within 1 second of launching the query and

is updated frequently and continually during the query,

gradually converging toward the final result, allowing the

user to cancel a query before it has finished if they so desire.

VisReduce achieves these properties by avoiding all large

transfers of data between nodes, never writing large output

files to disk, leveraging compressed columnar storage data

formats, and keeping runtime environments on worker nodes

“warm” (i.e. persistent) rather than starting up new runtime

environments each time a new query is initiated so that

processing can start and visual feedback can be displayed

within 1 second.

We evaluated VisReduce by comparing its performance

with three other popular systems: Apache Hive (built on

top of Hadoop MapReduce), Cloudera Impala (a recently-

released implementation of Dremel for Hadoop), and Post-

greSQL. Tests were performed with the OnTime2 flight

data set, which has approximately 150 million records and

over 100 columns. Of these systems, VisReduce is the only

one that provides an incrementally updated visualization

during the query, and the results of our tests indicate that

it also completes queries significantly faster than the other

systems. We feel that the design ingredients of VisReduce

provide valuable lessons for the design of future interactive

2http://www.transtats.bts.gov/Fields.asp?Table ID=236

visualizations engines for large datasets.

II. RELATED WORK

Rapid interactive visual queries on databases were pi-

oneered with Shneiderman’s dynamic queries [12], which

emphasized the value of providing real-time feedback to

the user for a tight interaction loop. TreeJuxtaposer [13] is

an example of a visualization that achieves a guaranteed

constant frame rate during navigation through a large tree

structure. It achieves this by progressively rendering data

into the video card’s front buffer (rather than the usual back

buffer), drawing the more important data and landmarks first,

and stopping the rendering whenever a new frame must be

started. This way, if there is not enough time to draw the

full data set in the allocated time for a frame, the user

at least sees the most salient information before the next

frame is started. VisReduce is designed to scale up to much

larger data sets, but still adheres to the idea of displaying a

visualization that is updated often (several times per second)

and becomes increasingly accurate as the query progresses.

We now survey the most relevant types of backends for

large data processing.

SQL-based systems are programmer-friendly because the

query language is familiar and easy-to-understand. Exam-

ples of systems that expose an SQL-like language include

Dremel [14], a query system developed at Google for low-

latency querying of large data sets stored on their infras-

tructure, and Cloudera Impala, a recently-released open-

source implementation of the same concept. As explained

in the introduction, such systems cannot efficiently generate

a scatterplot or parallel coordinates plot, because they would

require all the data to be first transferred to the client for

rendering.

Of particular note is the work of Hellerstein et al. [15]

on implementing online aggregation inside of a database

engine, in which they explain how they implemented online

aggregration of simple aggregate statistics (sum, count, avg,

var and std dev) in Postgres.

OLAP datacubes [5] only accelerate queries on the cubes

that have been pre-computed. As mentioned in the intro-

duction, with large data sets, these cubes cannot incorporate

all dimensions, otherwise they become too large. The im-

Mens [6] system has a clever workaround for this problem:

it only pre-computes small cubes of 3 or 4 dimensions, and

can afford to pre-compute many such cubes, each with a

different set of 3 or 4 dimensions. This allows the user

to perform brushing and linking on overviews of data with

very rapid visual feedback. However, business intelligence

tasks can require the user to filter along 3 or 4 dimensions

(e.g., to examine only the data for a particular country, a

particular year, and a particular month) and then explore

further, and such filtering along many dimensions means

these small datacubes will no longer be useful. In addition,

although many small cubes require far less space than

26



Figure 2. Computing averages with MapReduce. The map, shuffle, and
reduce operations are each distributed over multiple nodes. Tables with
thick borders may be very large, resulting in slow disk I/O operations and
heavy network traffic.

one full cube, they can still require significant space and

pre-computation time: in a data set with 20 dimensions,

computing all possible 4-dimensional cubes requires storage

for
(
20
4

)
= 4845 cubes.

MapReduce [7] is a framework used at Google for

writing distributed programs that can be run on large

clusters of computers. An open-source implementation,

Hadoop MapReduce, is a popular approach for handling

large datasets. Both are optimized for throughput of large

batch jobs, not latency, and thus involve overhead that is a

significant barrier to real-time interaction. Just starting up a

new job can take several seconds, partly because new Java

Virtual Machines (JVMs) must be started on each worker

node. Furthermore, running MapReduce on large datasets

involves moving lots of data between machines (Figure 2).

Finally, common implementations of MapReduce do not

return any partial results; the client must wait for a job to

complete before seeing feedback.

Some previous work [16], [17], [18] has studied how to

structure databases so that queries iterate over data in a

statistically random order. This allows confidence bounds on

the current result to be computed and displayed throughout

the query, so that the user not only sees the current result,

but also bounds on what the final result may be, giving

the user more information to decide whether they can

stop a query before it completes. User studies [19] have

shown that such confidence bounds provide end users with

valuable information to accelerate decisions by the user.

Unfortunately, this approach comes with a significant up-

front cost: randomly shuffling all records in the database

[16] or constructing an “ACE Tree” [17] structure which

itself requires multiple complete passes through the dataset.

Our current VisReduce prototype performs no such pre-

processing but this also means we cannot provide confidence

bounds on the incrementally updated result during a query.

Note also that, because VisReduce uses a columnar data

Figure 3. A comparison of SQL, MapReduce, and VisReduce. VisReduce
is the only approach to have all the advantages listed, because it is designed
especially for interactive visualizations.

format, it can greatly benefit from having data that is not
randomly shuffled: run-length encoding can greatly com-

press the columns if there are many repeated values. For

example, generating an “average sales by month” barchart

of a large dataset with VisReduce would only require reading

in two columns, one of which (the “month” dimension) may

be greatly compressed because it contains many repeated

values, thus saving disk read time.

There have also been efforts to extend MapReduce to

allow for online aggregation [20], [21]. These approaches

require some time to start up before they can return results.

For example, Figure 4 in [21] shows almost 20 seconds

elapsing before any progress is made. The latency achieved

with VisReduce is much lower (under 1 second) and more

suitable for interactive feedback; this faster start up time

allows rapid sequences of partial queries to be explored

with no perceived waiting time by the user, such as a user

executing multiple sequential drilldowns in GPLOM [22]

without waiting for query completion.

Figure 3 summarizes some key differences between SQL,

MapReduce, and our proposed VisReduce.

III. VISREDUCE

VisReduce differs from MapReduce by making two as-

sumptions in order to increase the performance to interactive

levels:

• the resulting output aggregate is small enough to fit in

memory and be transmitted in a reasonable time (less

than 250 ms) over the network;

• there always exists an inverse aggregate, so that partial

results can be removed from the output aggregate.

An overview of VisReduce running on two worker nodes

is shown in Figure 4, which can be contrasted with Figure 2

for MapReduce. One key difference is that MapReduce

27



Figure 4. Computing averages with VisReduce over two worker nodes.
Tables with thick borders may be very large, but do not leave the worker
node they are stored on. Only relatively small amounts of data are
transferred between nodes. At time t, each worker w produces result rt,w;
the master node assembles these into result rt to be displayed by the client.

doesn’t return a result until the entire job is finished. With

VisReduce, however, results are computed incrementally,

so that at time t, the 2 workers produce partial results

rt,1 and rt,2, respectively. These results are combined by

the master node with its previous partial result yielding

rt = rt−1⊕ rt,1⊕ rt,2. In the example shown in Figure 4,

this partial result rt might be displayed by the client in

the form of a barchart, with the heights of bars gradually

converging toward their final heights, i.e., rt converging

toward its final value as t increases.

Another key difference between Figures 2 and 4 is seen by

noting which tables are “big” (drawn with a thick border).

In Figure 2, there are 5 big tables, requiring large volumes

of data to be transferred over the network. MapReduce

supports an optional optimization where a combiner is run

over the output of the mapping phase before transmitting it

over the network, but it still requires writing the potentially

large output of the mapping phase to disk. With VisReduce,

however (Figure 4), the two large tables remain on their

respective worker nodes, and only small results rt,w and rt
need to be transferred between nodes with no disk writes.

In Figure 4, the transmitted results are heights of bars in a

barchart, and the master node’s ⊕ operator simply computes

average values. Alternatively, if we were using VisReduce to

compute a scatterplot or parallel coordinates plot, the partial

results rt,w and rt could be bitmap images, with the master

node’s ⊕ operator performing image compositing.

Because the partial results rt,w and rt are small in size,

VisReduce doesn’t need to write results to disk, saving time.

Notice also that, if we increase the number of worker

nodes, VisReduce’s speed will increase almost linearly,

because worker nodes can work in parallel and still only

send small results over the network, even if the raw data set

grows in size.

Also, no matter how large the dataset is, workers can

send frequent partial results to the master (several times per

second), to display incrementally updated feedback to the

user. This is unlike most database approaches.

As a partial result can be “removed” by inverting it and

reducing it into the current state, results can be sent to the

client without waiting for completion of an input segment

while still maintaing fault tolerance. In contrast, MapRe-

duce’s fault tolerance mechanisms require an input segment

to be completely mapped before reducing the mapper’s

output, leading to long delays before the first results are

sent to the client in online approaches, as shown in Figure 4

of [21].

Unlike MapReduce, the runtime environments on VisRe-

duce’s worker nodes are kept “warm”, to decrease start-up

time.

VisReduce further saves time by using a simple columnar

data store, which is combined with a dictionary encoding

(e.g., replacing each string “Dallas, TX” with an integer

value) and run-length encoding. Unlike a general database,

with VisReduce we care much more about fast agregation

performance, and not individual row lookups or updating the

data.

Previous work has demonstrated the performance advan-

tages of such columnar approaches. Pavlo et al. [23] com-

pared Hadoop MapReduce with two commercially available

massively parallel databases — an unnamed row-oriented

database3 and a column-oriented one (Vertica) — and show

that the column database is faster than the other two ap-

proaches for aggregation workloads. Abadi et al. [24] discuss

how adding various simple compression techniques to a

column-oriented DBMS offer significant gains in both query

run time and storage size.

A. Theory

Formally, if R is the set of possible results (e.g., key-value

pairs for barcharts, or bitmap images of scatterplots), then

the ⊕ operator used to combine partial results is a binary

operator from R × R �→ R. We furthermore require that

(R,⊕) be an Abelian group:

Closure ∀a, b ∈ R⇒ a⊕ b ∈ R
Associativity a⊕(b⊕ c) = (a⊕ b)⊕ c
Commutativity ∀a, b ∈ R, a⊕ b = b⊕ a
Identity element ∀a ∈ R, ∃0 ∈ R : a⊕0 = a
Inverse element ∀a ∈ R, ∃ − a ∈ R : a⊕−a = 0

Associativity and commutativity mean that the master

node can combine partial results from W workers in any

order with rt = rt−1⊕ rt,1⊕ . . .⊕ rt,W . The existence of

inverses means that the master node can also remove a partial

result rt,i from rt if the master decides that worker node i is

3Many commercial database vendors prohibit publishing benchmarks in
their licensing agreements. In the case of Pavlo et al., the database is known
as DBMS-X, “a parallel DBMS from a major relational database vendor.”

28



malfunctioning and the partial result needs to be recomputed,

either by a different worker node or by the same worker

node.

We further define an operator 	 : R × D �→ R which

combines a single data element d ∈ D with a partial result

r ∈ R to produce a new partial result. This operator is used

by the worker nodes to construct their partial results. Each

worker node w begins with an empty result 0 ∈ R (e.g., 0
could be a blank bitmap image) and combines it with data

elements to generate rt,w = 0	 d1	 . . .	 dn.

The 	 operator in VisReduce is analogous to the map

operator in MapReduce. However, with MapReduce, the

map operator must map to a list of key-value pairs, whereas

our 	 operator can map to any object of reasonable size,

including key-value pairs and bitmap images.

VisReduce jobs can be implemented by defining the four

side effect-free functions listed below. These could be the

basis for four methods in a Java interface or an abstract base

class in C++, that must be implemented by the programmer.

• a ⊕ function that combines two partial results

• a 	 function that combines a partial result with a data

element

• an identity function which returns the empty result 0
• an inverse function which returns the inverse −r of a

partial result r

Those four functions, or methods, can be packaged to-

gether to form a work-object, which can then be distributed

across a cluster (as a single .class file, in the case of

Java) for parallel processing.

B. Implementation

Our VisReduce prototype has been implemented as a web

application using Play4 for serving the web content and

Akka5 for clustering and actor-based inter-node commu-

nication. Each worker node has a copy of the entire data

set which is saved on disk in a compressed and bit-packed

read-only column oriented format, split in several segments

called tablets. Upon receiving a request from a client, the

master node gathers a list of tablets for a particular table,

then sends a list of tablets and a work-object to each worker

node. Worker nodes then run the work-object on the tablet,

sending the resulting state from the processing to the master

node and requesting additional work.

The master node aggregates the results of tablet process-

ing on the cluster as they are received and pushes back the

aggregate onto the client at an appropriate speed for the

client, which updates the data visualisation shown to the

user. To ensure interactivity, the master node can request a

partial result from the processing of a tablet by a worker, so

that slow tasks running on large tablets still display partial

aggregates.

4http://www.playframework.org/
5http://akka.io/

Figure 5. Example of a heat map and accompanying histogram of arrival
delay by time of day, with the median, 90th and 99th percentiles of the
arrival delay highlighted.

Complete node failures are detected using the ϕ accrual

failure detector [25], while exceptions caught by VisReduce

are reported to the master node. Should a node fail during

tablet processing with its partial state sent to the client, the

partial state can be removed by inverting it and sending the

negative delta to the client, while scheduling the execution of

the failed tablet on another node, thus ensuring a consistent

final state.

C. Examples

The bar chart in figure 1 was generated using simple

operations for each operator:

0 Initialize an empty associative array of grouping

keys to sum and count pairs

− Invert all sums and counts in the associative array

⊕ Combine both associative arrays, removing values

with a count of 0

	 Add or update the value in the associative array

The resulting associative array is then turned into an ani-

mated bar chart by the VisReduce client. The heat map of

figure 5 was generated using the following operators:

0 Initialize an empty array of bins, each containing

a count of 0

− Invert all counts of the array

⊕ Sum both arrays together

	 Increment the count for the appropriate bin

The bins are then turned into an image and the appropriate

percentiles for each time block are highlighted.

IV. EVALUATION AND RESULTS

VisReduce is designed to ensure that query performance

is comparable to other non-incremental systems; it would

not be very useful to see incremental results while having

to wait significantly longer for any given query, compared

to a non-incremental approach.

29



We evaluate our approach using a dataset of domestic US

flights by major carriers from October 1987 until February

2013 and their associated delay information, for a total

of 149,598,920 records with 109 columns. The dataset

comprises 305 CSV files for a total of 65.74 GB. The size

of the data set and its number of records are consistent with

the findings of Rowstron et al. [26] for typical analytical

workloads on clusters of computers.

The query performance of VisReduce was compared with

PostgreSQL, Apache Hive and Cloudera Impala. All systems

were benchmarked using queries that spanned one, two and

three columns. The one column query counted the number of

flights by carrier, which resulted in 32 rows of output across

all 149.5 million flights. The two column query calculated

simple aggregate statistics (min, max, count and sum) for

the arrival delay of flights grouped by carrier, which also

resulted in 32 rows of output. Finally, the three column query

calculated the same aggregate statistics for the arrival delay

but grouped by origin and destination airport pairs, resulting

in 8431 pairs of airports and their associated arrival delay

information.

Queries were run on a five node cluster used for produc-

tion analytical workloads at a commercial dating website

during times when no other jobs were running. The cluster

was comprised of heterogenous nodes equipped with either

one or two Intel Xeon processors ranging from 2.13GHz to

2.66GHz, memory sizes ranging between 8 and 16 gigabytes

and Western Digital hard drives ranging in size from 160GB

to 600GB spinning at 7200 RPM. All nodes ran Debian 6.0

“Squeeze,” had Cloudera’s CDH 4.2.0 Hadoop distribution

installed and used the vendor-supplied patches for Apache

Hive 0.10.0 and Apache Hadoop 2.0. We used Impala 1.0,

as it was the most recent version available at the time of

writing. PostgreSQL was tested using version 9.1.3 on a

desktop computer running Windows 7 equipped with a hard

drive with a rotational speed of 7200 RPM as well as a laptop

computer running PostgreSQL 9.1.9 and Ubuntu 10.04.4

LTS equipped with a 120GB Intel 330 series solid state

drive.

The data was loaded directly from the set of CSV files

in the case of PostgreSQL, generating a large table with

109 columns. For Apache Hive, the data was loaded from

CSV file using CSV SerDe and put into a text table as well

as a table encoded in record columnar format, also known

as RCFile [27]. As Impala supports an efficient column-

oriented file format called Parquet natively, we also copied

the data from the text table into its preferred Parquet format.

For VisReduce, data was imported from CSV and written as

its native columnar format, each tablet being the columnar

representation of an input CSV file.

To minimize the effect of disk caching, the operating

system’s read cache was flushed between runs of Apache

Hive, Impala and VisReduce; this was done to ensure that

the data for each query was loaded from disk. Neither

0.1

1

10

100

PostgreSQL
(HDD)

Hive
(text)

Hive
(RCFile)

Impala
(text)

PostgreSQL
(SSD)

Impala
(Parquet)

VisReduce

Software

Q
ue

ry
 ti

m
e 

(s
ec

on
ds

)

Columns used in query 1 2 3

Figure 6. Log10 plot of mean query completion time by query type. Error
bars represent a 95% confidence interval for the mean. Queries on three
columns for PostgreSQL were aborted after twenty minutes.

Impala nor VisReduce keep data resident in memory, but

both benefit from the operating system cache in the case

where data from a previous run is re-read on the same

node. As the PostgreSQL database size was larger than the

available memory, this step was not deemed necessary for

PostgreSQL. Queries on Impala and VisReduce were run

20 times each, five times for Apache Hive and PostgreSQL

on SSD and three times for PostgreSQL on a standard hard

drive. As is common for benchmarks on the JVM, queries for

VisReduce were ran several times before the actual timing

runs as a warm up phase as to avoid JIT compilation during

benchmarking.

The performance of VisReduce is significantly better than

row-oriented databases, as shown in figure 6. As column-

oriented databases only transfer the columns required to an-

swer a query, they have much higher effective I/O utilization

than row-oriented approaches for large aggregation-oriented

workloads on a subset of columns. Column compression

further increases the performance advantage in the case

of columns containing highly redundant data, such as the

carrier name column in our dataset, which has a very low

cardinality compared to the number of records. Finally, as

the data in VisReduce is static, there is no need for locks,

row versions or other forms of concurrency control, as would

be the case in a general purpose database where data can be

written at any time, such as PostgreSQL.

In the case of Apache Hive, there is a significant per-job

overhead due to the query being translated into a MapReduce

job before being deployed onto the cluster. Once the job

has been deployed, it requires several MapReduce iterations,

with each iteration incurring fixed start up time costs and

the need to write to disk between each iteration. While very

general — for example, Hive can join arbitrarily sized tables,

which neither Impala nor VisReduce can do — there is a

30



significant performance cost to this generality, which makes

Hive unsuitable for exploratory visual analytics if the data

can be processed by faster systems. At the time of testing,

Hive lacked stable support for the more efficient Parquet file

format.

As for Cloudera Impala, it is possible that its query

planning phase limited its performance relative to VisRe-

duce; the current implementation of VisReduce has no

query optimizer and naively processes all tablets across

the cluster. Furthermore, Impala has a pluggable storage

architecture and supports multiple input formats, while the

current implementation of VisReduce only supports its own

native column store format.

For the bar charts displayed by the client, our VisReduce

implementation attempts to send JSON-formatted data every

250 milliseconds to the browser via WebSocket, which is

then turned into an animated chart using JavaScript. We

experimented a little with changing this parameter, but it

seemed a reasonable compromise between perceived end-

user latency and the capabilities of current web browsers

to ingest data at a fast rate while animating many SVG

elements without any perceived choppiness.

Increasing the rate at which data is sent to the browser also

has another unfortunate tradeoff; as the data displayed to the

user rapidly converges at the beginning of the computation,

showing a visualisation right after the user clicks to start

a job means that the user will see a quickly updating

and “jumpy” visualisation. Our first iteration on VisReduce

simply iterated through tablets in chronological order, which

caused the bars in the resulting bar chart to rapidly shift for

several seconds as new carriers that did not operate in the

year 1987 were introduced into the bar chart and pushed the

other bars around while the vertical axis changed its scale

to accomodate the fluctuating bars. Shuffling the tablet pro-

cessing order greatly reduced this shifting. We believe that

pre-populating bars with cardinality information gathered

from the column store metadata would make the resulting

visualisation more aesthetically pleasing, as it would prevent

new bars from being introduced.

V. LIMITATIONS

As we mostly focused on the technical aspects of com-

puting the underlying data for an information visualisation

in an incremental fashion, most of the human interface

aspects were ignored. For example, adding error bars as

the query processes more information seems like an obvious

improvement, which has been explored by Fisher et al. [18],

[19].

Another limitation is the fact that programming a VisRe-

duce job is not as simple as writing a SQL query. The

endurance of SQL as a query language is a testament to

how user friendly and useful it is to answer a wide range

of queries. However, in many visualisation systems, such as

Tableau [28], SQL is merely an implementation detail that

is hidden from the user. We believe that it would be possible

to provide built-in VisReduce jobs that compute aggregates

in an online fashion and offer a more familiar interface just

as Apache Hive provides a SQL-like abstraction on top of

MapReduce.

VisReduce is also not as general as MapReduce, which

can handle arbitrarily sized outputs and enormous input data

sizes that would simply be too large to visualize in an

interactive fashion; this is by design. In VisReduce, we trade

generality for performance and quick feedback. VisReduce

is simply not a good match for batch processing or process-

ing of arbitrary data, just as common implementations of

MapReduce are not a good match for interactive processing.

We also do not currently address algorithms that require

multiple passes over the input data. For example, it is not

possible to compute the standard deviation in a single pass

as it requires knowing the mean of the input data, which is

unknown at the start of a job. Algorithms that depend on a

global ordering, such as computing the exact median of the

data, are also impossible to express in a single pass.

VI. CONCLUSION AND FUTURE DIRECTIONS

VisReduce is a novel approach for interactive visualization

of large data sets, that is scalable, distributed, achieves low

latency, returns incremental feedback to the user multiple

times per second, and was found to be significantly faster

than three competing readily available solutions.

The main drawback with VisReduce is that it currently

has no way of computing confidence bounds on the partial

results it displays to the user over the course of a query.

As mentioned in the previous section, adding estimation

of error bounds of partial aggregates would be helpful for

analysts to determine if they should stop a query or wait

for its completion. Jermaine et al. [16] and Joshi et al. [17]

suggest ways of doing so on relational databases and, while

VisReduce isn’t a relational database, similar approaches

could be used to provide online estimates of error.

An additional direction for future work would be to

modify VisReduce to allow pre-loading all data in memory

in the case of smaller data sets, as is done by [29]. Further

work is also needed to evaluate VisReduce with much larger

data sets and cluster sizes to identify potential performance

bottlenecks.

ACKNOWLEDGMENTS

The authors wish to thank Hisham Mardam-Bey and

Mate1.com for their support.

REFERENCES

[1] P. C. Wong and R. D. Bergeron, “30 years of multidimen-
sional multivariate visualization,” 1997, chapter 1 (pp. 3–33)
of Gregory M. Nielson, Hans Hagen, and Heinrich Müller,
editors, Scientific Visualization: Overviews, Methodologies,
and Techniques, IEEE Computer Society.

31



[2] U. C. Georges Grinstein, Marjan Trutschl, “High-dimensional
visualizations,” in Proc. International Workshop on Visual
Data Mining, 2001, pp. 7–19.

[3] D. A. Keim, “Information visualization and visual data
mining,” IEEE Transactions on Visualization and Computer
Graphics (TVCG), vol. 8, no. 1, pp. 1–8, 2002.

[4] A. Inselberg, “The plane with parallel coordinates,” Visual
Computer, vol. 1, pp. 69–91, 1985.

[5] S. Chaudhuri and U. Dayal, “An overview of data warehous-
ing and olap technology,” ACM Sigmod record, vol. 26, no. 1,
pp. 65–74, 1997.

[6] Z. Liu, B. Jiang, and J. Heer, “imMens: Real-time visual
querying of big data,” in Proceedings of EuroVis 2013, 2013.

[7] J. Dean, S. Ghemawat, and G. Inc, “MapReduce: simplified
data processing on large clusters,” in In OSDI’04: Proceed-
ings of the 6th conference on Symposium on Opearting
Systems Design & Implementation. USENIX Association,
2004.

[8] J. Heer and B. Shneiderman, “Interactive dynamics for
visual analysis,” Queue, vol. 10, no. 2, pp. 30:30–30:55,
Feb. 2012. [Online]. Available: http://doi.acm.org/10.1145/
2133416.2146416

[9] C. Johnson, “Top scientific visualization research problems,”
IEEE Computer Graphics and Applications (CG&A), vol. 24,
2004.

[10] C. Chen, “Top 10 unsolved information visualization prob-
lems,” Computer Graphics and Applications, IEEE, vol. 25,
no. 4, pp. 12 – 16, July-Aug. 2005.

[11] J. D. Mackinlay, P. Hanrahan, and C. Stolte, “Show me: Au-
tomatic presentation for visual analysis,” IEEE Transactions
on Visualization and Computer Graphics (TVCG), vol. 13,
no. 6, pp. 1137–1144, 2007.

[12] B. Shneiderman, “Dynamic queries for visual information
seeking,” Software, IEEE, vol. 11, no. 6, pp. 70–77, 1994.

[13] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang, and
Y. Zhou, “TreeJuxtaposer: scalable tree comparison using
focus+context with guaranteed visibility,” ACM Transactions
on Graphics (TOG), vol. 22, no. 3, pp. 453–462, 2003.

[14] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis, “Dremel: interactive analysis
of web-scale datasets,” Proc. VLDB Endow., vol. 3,
no. 1-2, pp. 330–339, Sep. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1920841.1920886

[15] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online
aggregation,” in Proceedings of the 1997 ACM SIGMOD
international conference on Management of data, ser.
SIGMOD ’97. New York, NY, USA: ACM, 1997, pp. 171–
182. [Online]. Available: http://doi.acm.org/10.1145/253260.
253291

[16] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and
A. Pol, “The Sort-Merge-Shrink Join,” ACM Transactions on
Database Systems (TODS), vol. 31, no. 4, pp. 1382–1416,
2006.

[17] S. Joshi and C. Jermaine, “Materialized sample views for
database approximation,” IEEE Transactions on Knowledge
and Data Engineering, vol. 20, no. 3, pp. 337–351, 2008.

[18] D. Fisher, “Incremental, approximate database queries and
uncertainty for exploratory visualization,” in Large Data
Analysis and Visualization (LDAV), 2011 IEEE Symposium
on, Oct. 2011, pp. 73 –80.

[19] D. Fisher, I. Igor Popov, S. Drucker, and M. Schraefel, “Trust
me, I’m partially right: Incremental visualization lets analysts
explore large datasets faster,” CHI 2012, May 2012.

[20] J.-H. Böse, A. Andrzejak, and M. Högqvist, “Beyond online
aggregation: parallel and incremental data mining with
online Map-Reduce,” in Proceedings of the 2010 Workshop
on Massive Data Analytics on the Cloud, ser. MDAC ’10.
New York, NY, USA: ACM, 2010, pp. 3:1–3:6. [Online].
Available: http://doi.acm.org/10.1145/1779599.1779602

[21] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears, “MapReduce online,” in Pro-
ceedings of the 7th USENIX conference on Networked systems
design and implementation, 2010, pp. 21–21.

[22] J.-F. Im, M. J. McGuffin, and R. Leung, “GPLOM: The
generalized plot matrix for visualizing multidimensional mul-
tivariate data (in press),” IEEE Transactions on Visualization
and Computer Graphics (TVCG) (Proceedings of InfoVis),
vol. 19, no. 12, 2013.

[23] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker, “A comparison of approaches
to large-scale data analysis,” in Proceedings of the 35th
SIGMOD international conference on Management of data.
ACM, 2009, pp. 165–178.

[24] D. Abadi, S. Madden, and M. Ferreira, “Integrating com-
pression and execution in column-oriented database systems,”
in Proceedings of the 2006 ACM SIGMOD international
conference on Management of data. ACM, 2006, pp. 671–
682.

[25] N. Hayashibara, X. Defago, R. Yared, and T. Katayama, “The
ϕ accrual failure detector,” in Reliable Distributed Systems,
2004. Proceedings of the 23rd IEEE International Symposium
on. IEEE, 2004, pp. 66–78.

[26] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and
A. Douglas, “Nobody ever got fired for using Hadoop on a
cluster,” in Proceedings of the 1st International Workshop on
Hot Topics in Cloud Data Processing. ACM, 2012, p. 2.

[27] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu,
“RCFile: A fast and space-efficient data placement structure
in MapReduce-based warehouse systems,” in Data Engineer-
ing (ICDE), 2011 IEEE 27th International Conference on.
IEEE, 2011, pp. 1199–1208.

[28] C. Stolte, D. Tang, and P. Hanrahan, “Polaris: A system
for query, analysis, and visualization of multidimensional
relational databases,” IEEE Transactions on Visualization and
Computer Graphics (TVCG), vol. 8, no. 1, pp. 52–65, 2002.

[29] S. Shenker, I. Stoica, M. Zaharia, R. Xin, J. Rosen, and M. J.
Franklin, “Shark: SQL and rich analytics at scale,” 2012.

32



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


