
Volume 31(2012), Number 1 pp. 1–13 COMPUTER GRAPHICS forum

TreeMatrix: A Hybrid Visualization of Compound Graphs

Sébastien Ru�ange1 and Michael J. McGuf�n1 and Christopher P. Fuhrman1

1Department of Software and IT Engineering, École de technologie supérieure, Montréal, Canada
sebastien@ru�ange.com, {michael.mcguf�n, christopher.fuhrman}@etsmtl.ca

Figure 1: The TreeMatrix prototype displaying the structure of a set of source code �les as a compound graph. Portions of
the compound graph are shown as adjacency matrices. Some matrices have had their contents collapsed by the user, and only
their names are visible (e.g., “Sys1”, “Util”). Rounded rectangles surrounding the matrices show the upper levels of the tree
structure of the compound graph. Curves connecting the matrices showgraph edges of the compound graph. At lower right, a
radial menu is popped up to access commands.

Abstract
We present a hybrid visualization technique for compound graphs (i.e.,networks with a hierarchical clustering
de�ned on the nodes) that combines the use of adjacency matrices, node-link and arc diagrams to show the graph,
and also combines the use of nested inclusion and icicle diagrams to show thehierarchical clustering. The graph
visualized with our technique may have edges that are weighted and/or directed. We �rst explore the design space
of visualizations of compound graphs and present a taxonomy of hybrid visualization techniques. We then present
our prototype, which allows clusters (i.e., subtrees) of nodes to be grouped into matrices or split apart using
a radial menu. We also demonstrate how our prototype can be used in the software engineering domain, and
compare it to the commercial matrix-based visualization tool Lattix using a qualitative user study.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms I.3.6 [Computer Graphics]: Methodology and Techniques—Interaction tech-
niques H.5.2 [Information Interfaces and Presentation]: User Interfaces—Interaction styles

c
 2012 The Author(s)
Computer Graphics Forumc
 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 GarsingtonRoad, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

1. Introduction

A compound graph, also called a clustered graph [DBF09],
is a graph (i.e., network) together with a rooted tree such
that the leaves of the tree are the vertices of the graph. The
non-leaf nodes of the tree can be thought of as meta-nodes or
clusters of nodes. Compound graphs are useful for modelling
situations where there is a network whose nodes can be
grouped together into clusters. For example, a social network
could be modelled as a compound graph, with graph edges
representing relationships between people, and the tree clus-
ters representing hierarchically-organized communities. As
another example, in biology, a protein-protein interaction
(PPI) network forms a graph whose nodes can be clustered
hierarchically according to Gene Ontology [Gen00] terms.
Many algorithms exist for automatically computing a hierar-
chical clustering of a graph, essentially converting the graph
into a compound graph.

Clusters are typically very meaningful to users in a spe-
ci�c application domain; they help users understand the
structure of the compound graph. These clusters, whether
computed or provided with the input graph, can be used to
aid visualization (e.g., [GKN05,BD07]) to limit the amount
of detail the user sees at any given moment, e.g., by collaps-
ing clusters of nodes and representing them as a single meta-
node in the compound graph's tree. If the compound graph
is large, such collapsing may be more convenient than try-
ing to visualize all details of the graph at once. However, as
pointed out in [BD07], a disadvantage of collapsing a cluster
to a single meta-node is that detail is lost.

A second problem with many visualizations of graphs
generally (not just compound graphs) is that of edge cross-
ings obscuring information, especially in dense networks.
To address this second problem, visualizations based on ad-
jacency matrices (e.g., [Ber83, SJSJ05, GFC05]) have been
proposed, which completely eliminate edge crossings. It
is also possible to mix adjacency matrices with traditional
node-link representations, as done with NodeTrix [HFM07].
The current work presents a novel visualization for com-
pound graphs that extends NodeTrix by combining multiple
previous visualization techniques for trees and graphs. We
call our visualization TreeMatrix (Figures1, 2, 9), because
it makes use of adjacency matrices for visualizing parts of
a graph, and simultaneously displays the tree structure in a
compound graph. The use of matrices addresses the problem
of edge crossings mentioned above. It also helps mitigate the
�rst problem mentioned above, that collapsing a cluster to
a single meta-node can remove too much detail: instead of
completely collapsing a cluster of nodes, the user may in-
stead convert it to a matrix, to provide a visual summary of
the nodes within it. As discussed later, our technique also
combines aspects of MatLink [HF07] and Lattix [SJSJ05].

Before presenting our visualization in detail, we �rst in-
vestigate the design spaces of hybrid visualizations of trees,
hybrid visualizations of graphs, and visualizations of com-

Figure 2: A zoomed view of the adjacency matrix in the
lower left of Figure1. Within each matrix of the visualiza-
tion, the tree structure of the compound graph is shown with
nested black squares inside the matrix, as well as with an
“icicle diagram” listing nodes along the left edge of the
matrix. Also, within each matrix, the weighted edges of the
graph structure are shown by the numbers and colors in the
cells of the matrix, as well as by 180-degree arcs along the
top of the matrix.

pound graphs. The taxonomies we present of these design
spaces build upon the previously presented taxonomy in
[ZMC05] and clarify the reasons behind our design choices.
We then present our prototype implementation and demon-
strate its use for visualizing, interpreting, and reverse en-
gineering the design of software source code. Our contri-
butions are (1) new taxonomies of hybrid visualizations of
trees, graphs, and compound graphs; (2) a new visualization
technique for compound graphs that extends and combines
aspects of NodeTrix [HFM07], MatLink [HF07], and Lat-
tix [SJSJ05]; (3) a description of a software prototype im-
plementing this technique, and (4) the results of a user study
where our prototype was compared with Lattix, a status quo
commercial product, for software design tasks.

2. Background

2.1. Visualization of Trees

Many techniques exist for visualizing trees [JS10], includ-
ing node-link diagrams, icicle diagrams, and nested enclo-
sure approaches such as treemaps (Figure3). As the depth
of a tree increases, the number of nodes often increases ex-
ponentially, leading to crowding at the deeper levels.

2 The de�nitive version is available at onlinelibrary.wiley.com.

Treemaps [JS91, BHvW00, Wat05] are a technique for
drawing trees that make more ef�cient use of area than tra-
ditional node-link approaches, allowing more area to be al-
located to each node. Treemaps are part of a more gen-
eral category of tree representations which usenested enclo-
sureto depict the tree structure. In an analysis of the space-
ef�ciency of representations of trees [MR10], nested enclo-
sure approaches (including treemaps) were ranked as asymp-
totically more ef�cient than node-link approaches. However,
representations based on nested enclosure can also be more
confusing than node-link diagrams. For example, judging
the depth of a node within a treemap is more confusing than
in a classical layered node-link diagram. Hence, elastic hier-
archies [ZMC05] were proposed, allowing users to visualize
parts of a tree with treemaps, and other parts in node-link
form.

Figure 3: Three ways of drawing the same tree. A: node-link
diagram. B: nested enclosure. C: icicle diagram.

2.2. Visualization of Graphs

Many layout algorithms have also been proposed for visu-
alizing graphs [DBETT99, HMM00, KW01], most of these
based on node-link diagrams. Node-link diagrams, however,
suffer from edge congestion when depicting graphs with
many edges. An alternative to using node-link diagrams to
depict graphs is to use adjacency matrices. Matrices have
the advantage of completely eliminating edge crossings, but
have the disadvantage of making path-following tasks more
dif�cult [GFC05]. For this reason, enhancements have been
proposed to matrices [SM07], including MatLink [HF07]
which adds arcs along the edge of the matrix. Arcs allow
node adjacencies to be shown along a 1-dimensional layout,
as previously shown in [Ber83] and applied to the visualiza-
tion of repeating substrings in [Wat02].

Matrices also have a signi�cant area cost (Q(N2)), and so
probably don't offer much advantage, if any, when the graph
to be depicted is sparse. For this reason, NodeTrix [HFM07]
was proposed, with the idea of depicting the dense por-
tions of a graph with matrices, and the remaining portions
in node-link form. Notice the analogy between elastic hier-
archies [ZMC05] and NodeTrix [HFM07]: both allow two
representations to be mixed in the depiction of the data, ac-
cording to the density of data and the user's desires.

2.3. Visualization of Compound Graphs

There exists much previous work on the computation of hi-
erarchical clusters of nodes within a graph (e.g., [ACJM03,
GKN05,AvHK06,AMA09]). The TreeMatrix technique that
we present is concerned primarily withhow to depictthe re-
sulting compound graph, and is independent of the method
used to determine the clusters.

There is also previous literature on computing the layout
of node-link diagrams of compound graphs (e.g., [SM91,
San96, BM99]). More recent visualizations of compound
graphs have proposed new variants of node-link diagrams
[Hol06, PvW06, BD07, GBD09] (see von Landesberger et
al. [vLKS� 10] for a survey of techniques for visualizing
compound graphs, and Elmqvist and Fekete [EF10] for a re-
lated survey of techniques for aggregation).

Lattix [SJSJ05] is the earliest matrix-based technique we
know of for visualizing compound graphs (Figure4). Edges
of the graph are weighted, and these weights are indicated in
the cells of the matrix. The tree structure is shown using an
icicle diagram along the left of the matrix; this icicle diagram
can be used to expand or collapse portions of the compound
graph. The tree structure is also shown, redundantly, with
nested squares within the matrix.

Figure 4: A screenshot of Lattix [SJSJ05].

Note that all of these previous approaches use only one
representation for the graph structure of the compound
graph. None of them are hybrid, in the sense of using a mix-
ture of representations for either the tree structure, or for the
graph structure. (Lattix does use two duplicated represen-
tations for its tree structure: an icicle diagram and nested
squares, but these are not mixed in a way that allows a user
to tradeoff between them, as a hybrid like elastic hierarchies
does.) Thus, these previous techniques will suffer from at
least one of the disadvantages mentioned in sections2.1-2.2.
For example, most of the previously published techniques
use node-link diagrams to show the graph structure of the

3 The de�nitive version is available at onlinelibrary.wiley.com.

compound graph, and thus will suffer from edge conges-
tion if there are many edges. Lattix uses a single, large ma-
trix for the entire compound graph, rather than a hybrid like
MatLink or NodeTrix, and thus suffers from the disadvan-
tages of matrices that paths are dif�cult to follow and the
area required isQ(N2).

To summarize, our work is concerned not with cluster-
ing algorithms or layout algorithms, but hybrid depictions of
the compound graph. A tantalizing possibility is to combine
the approaches of elastic hierarchies and NodeTrix to show
both the tree and graph structure of a compound graph in
hybrid forms, allowing the user to use the most appropriate
representations for each part of the data. As we will show,
however, our �nal solution is not simply “elastic hierarchies
+ NodeTrix”, as there are several subtle design issues to con-
sider.

In the next section, we illustrate these issues with tax-
onomies of visualizations of trees and graphs. Contrary
to the prior survey of techniques in von Landesberger et
al. [vLKS� 10], we will not consider techniques for time-
varying structures in our taxonomy, but instead focus on con-
structing taxonomies of hybrid visualizations.

3. Taxonomy of Hybrid Visualizations of Trees and
Graphs

Consider a datasetD and a functionA(D) that mapsD to a
visual representation. Consider further that some alternative
visual representation may be used, given by functionB(D).
To create a hybrid mixture of the two representations, we
take some subsetS � D and visualize it asA(S), and vi-
sualize the remaining dataD nS asB(D nS). Finally, some
means is used to combine the two visualizations to yield a
single hybridA(S) � B(D nS). The exploration of different
hybrid visualizations for a given data type can thus be seen
as choosing different functions forA andB, choosing an ap-
propriate subsetSthat we may wish to represent differently
from the rest of the data, and choosing one or more operators
� for combining representations.

If D is a tree, then each of the functionsA andB could be a
node-link representation or a treemap representation (other
representations of trees are possible, but for our purposes
these two will provide a useful contrast). Many subsets of
S of the tree could be considered, however one subset that
occurs naturally when dealing with tree data is asubtreeof
some noden. So, letSbe the subtreeS(n) under noden 2 D.
We will refer to the remaining nodesDnSas the “surround-
ing nodes”. Finally, in the expressionA(S(n)) � B(DnS(n)) ,
the operator� could either insertA(S(n)) undern's par-
ent (call this� insert), or could displayA(S(n)) some dis-
tance away fromB(DnS(n)) with a connective line (call this
� connect). Choosing a hybrid is then equivalent to choosing
between node-link and treemap for each ofA andB, crossed
with f� insert; � connectg, yielding 8 possible hybrid visual-

izations. Of these, two are eliminated as uninteresting be-
cause there is little difference between� insert and� connect
whenB is a node-link representation. The remaining 6 visu-
alizations are shown in Figure5.

Figure 5: Hybrid visualizations of trees. 1 shows a classical
layered node-link diagram, and 6 shows a “pure” treemap.
2, 3, 4, and 5 show various instances of hybrid Elastic Hier-
archies [ZMC05].

An analogous taxonomy can be generated for hybrid vi-
sualizations of a graphD. In this case, the subsetS� D may
be any subgraph, but would typically be a cluster of nodes
that the user wishes to represent differently from the rest of
the graph. We will refer to this subsetS as a “local sub-
graph”, since it may be thought of as a meaningful set of
nodes that are somehow close to each other, perhaps close
to a focal node. Next, the functionsA and B can each be
node-link or matrix representations, and the operators� insert
and� connect are analogous to the previously de�ned ones.
Again, 8 possible hybrids emerge, and again 2 can be elimi-
nated because there is essentially no difference between the
two operators ifB is a node-link representation. Figure6
shows the result.

Notice that the rows and columns of Figures5 and 6
are analogous: the rows correspond to the choice forA, the
columns to the choice ofB, and in both �gures the sub�gures
2 and 5 are the result of using the� connect operator rather
than� insert. The� connectoperator draws the subsetA as if
it were “extracted” from the rest of the data, which could be
useful for providing a kind of focus + context visualization.

Figure 7 pertains to compound graphs, having both a
graph structure and tree structure. However, in this �gure,
each of the tree structures, and each of the graph structures,
is shown using onlyonekind of visual representation, hence
these are not hybrids in the sense of those in Figures5 and6.
Notice also that, for tree structure, the categories “Treemap”
and “Node-Link” of Figure5 have been replaced with the

4 The de�nitive version is available at onlinelibrary.wiley.com.

Figure 6: Hybrid visualizations of graphs. 1 shows a node-
link diagram, and 6 shows a “pure” adjacency matrix. 4
shows NodeTrix [HFM07], and 2, 3, 5 show other possible
hybrids.

more general categories “Nested Enclosure” and “Other”,
respectively, to allow for more possibilities in Figure7.

To generate a taxonomy ofhybrid visualizations of com-
pound graphs, we again consider choices for the formula
A(S) � B(DnS). Let Sagain be a subtreeS(n) of some node
n, which corresponds to a subset of both the tree structure
and the graph structure. Notice that each ofA andB may be
any of the representations in Figure7. Without even consid-
ering different choices of� , we end up with a large space of
possibilities, shown in Figure8. Again, rows and columns
correspond to choices ofA andB, respectively.

Many possible hybrids exist in this space, and we have
not tried to depict them. Notice simply that the non-hybrid
forms of Figure7 lie along the diagonal of this new taxon-
omy, whereas hybrids lie off-diagonal.

To help understand Figures5 through8, we have always
depicted the same underlying tree and/or graph structure
with 8 (leaf) nodes, and have always used green for tree
structure and red for graph structure. Figure captions also
cite corresponding previous work, when applicable.

To decide which hybrids within Figure8 would be use-
ful, we can start with an approach in the spirit of NodeTrix:
subtrees that correspond to dense subgraphs should be de-
picted using matrices, while the surrounding graph could be
depicted in node-link form. This limits us to the lower left
quarter of Figure8. Next, to depict the tree structure out-
side the matrices, we choose to use a nested enclosure tech-
nique, since such representations are more space-ef�cient,
as shown in [MR10]. This further limits us to the left-most
column of the taxonomy, i.e., the two starred (“*”) cells in
Figure8. Notice that rather than having to choose between

Figure 7: Non-hybrid visualizations of compound graphs
showing both graph and tree structure. The lower row, la-
belled “Other”, shows tree structures using node-link or ici-
cle diagrams. 1 is comparable to [Har88,SGJ93]. 2 is simi-
lar to [FWD� 03]. 4 is similar to [PvW06], and also similar
to TimeArcTrees [GBD09] if limited to only one moment in
time, i.e., a node-link representation of a tree with arcs be-
tween the tree's leaf nodes to show graph edges. 5 is similar
to the radial visualization shown in [Hol06]. 3 and 6 are ap-
proaches for showing tree structure within a matrix and are
similar to Lattix [SJSJ05].

Figure 8: Hybrid visualizations of compound graphs. The
TreeMatrix in Figure9 (middle) corresponds to the two cells
in the lower-left corner shown here containing stars (“*”).

these two cells, we can happily combine the use of different
tree visualizations. Finally, adding arcs along the edge of the
matrix (in the spirit of MatLink) yields Figure9 (top) for a
single matrix, and Figure9 (middle) for the entire compound
graph. Notice that within each matrix in Figure9 (middle),
both the tree structure and the graph structure are shown

5 The de�nitive version is available at onlinelibrary.wiley.com.

twice, redundantly, using two techniques: nested squares and
a node-link diagram of the tree, and matrix cells and arcs for
the graph. The intention is that this double encoding will al-
low the user to attend to the most appropriate representation
according to their current task and context. The combination

Figure 9: Top:each matrix in TreeMatrix depicts one cluster
(possibly containing sub-clusters) of nodes, corresponding
to a subtree of the compound graph's tree. The tree struc-
ture is shown in green, and is shown redundantly using both
a node-link diagram to the left of the matrix, and nested
squares within the matrix. Graph edges are shown in red,
and shown redundantly using both �lled-in matrix cells and
arcs along the top of the matrix.Middle: An entire com-
pound graph is shown using multiple matrices, with graph
edges between matrices shown in red, and the tree struc-
ture outside matrices shown with green rounded rectangles.
Bottom: Our prototype implements a slight modi�cation to
the design, replacing the node-link tree diagrams with icicle
diagrams along the left edge of each matrix (see also Fig-
ure2). The matrix here is shown before and after collapsing
the parent node P3.

of techniques in Figure9 is thus the basis for the TreeMatrix
visualization. We next describe our implementation.

4. Prototype

Our prototype (Figures1, 2) was implemented in Java us-
ing the Prefuse toolkit [HCL05]. The compound graph vi-
sualized is a directed graph (hence the adjacency matrices
are not symmetrical) with weighted edges. Notice that along
the left edge of each matrix, we display an icicle tree di-
agram (Figure9(bottom)) rather than a node-link diagram
(Figure 9(top)), as the icicle diagram allows labels to be
displayed more easily and interferes much less with inter-
matrix edges. Small+ /� buttons within the icicle diagrams
allow subtrees of each matrix to be expanded or collapsed.
This kind of icicle diagram is also shown along the left edge
of the matrix in Lattix (Figure4).

In each matrix, the weight of each edge is shown in three
ways: as a numeric value in the appropriate cell, by the back-
ground color of that cell (using a continuous grayscale), and
by the color of the corresponding 180-degree arc. Between
matrices, the colors of the edges again re�ect their weight.
The direction of edges is shown with small arrow heads.
Edges drawn between matrices are drawn as cubic bezier
curves. The start and end point of each of these bezier curves
may be along any of the four sides (top, bottom, left or right
edge) of the relevant matrix node; the side used is chosen
to minimize curve length. When drawing aggregated edges,
start and end points are made to coincide to bundle the edges
together, reducing clutter. The user may interactively control
such aggregation of edges, by collapsing matrices (e.g., the
edges from the “Sys1”, “Data”, “Util”, and “org” nodes in
Figure1 are aggregated because those nodes have been col-
lapsed), allowing the user to reduce clutter and focus only on
the nodes of interest. To further reduce clutter from edges,
a mode can be activated such that only the node under the
mouse cursor has its 180-degree arcs drawn, rather than all
such arcs.

When the mouse hovers over a node, that node is high-
lighted. The user may select individual nodes by clicking,
or a contiguous set of nodes in the matrix by click-dragging
and using lasso gestures.

Once selected, nodes can be manipulated using actions
within the radial menu [CHWS88,KB93] shown in Figure1.
Placing these actions in a radial menu rather than a tool-
bar has several advantages. Radial popup menus require no
screen space when not in use. Also, they eliminate the need
to travel back and forth between a work area and a toolbar.
Finally, they can be invoked with rapid directional drags.

In our prototype, the user may also interactively collapse
or expand subtrees, as well as change the location of nodes
or highlight them, all to change the graphical presentation
of the compound graph. Every time a new matrix is instanti-
ated, the rows and columns can be automatically re-ordered
using the barycentric algorithm [STT81, MS00], to make
highly-linked groups of nodes more evident within the ma-
trix (see section 4.2 of [Hen08] for an overview of matrix
ordering algorithms). To ensure that the ordering does not

6 The de�nitive version is available at onlinelibrary.wiley.com.

violate the hierarchical grouping of nodes within the ma-
trix, the barycentric ordering algorithm is only applied to
the leaf nodes of the lowest levels of the tree of clusters.
The user may manually reorder the rows and columns. All
these operations allow the user to manage available screen
space and represent the data in whatever way best for their
task, however these operations only change the presentation
of the data and do not change thestructureof the compound
graph.

In addition, the user may interactively change thestruc-
ture of the compound graph, by selecting any subtree and
moving it under a new parent node, by selecting a set of
nodes and moving them under a new subtree, or by splitting
or merging nodes (Figures10, 11). This allows the user to
change the way the compound graph is clustered. Such op-
erations are useful in software engineering when performing
software design discovery.

Finally, a text �eld in the upper right corner of the main
window (Figure1) allows the user to search for nodes by
name. Matching nodes are highlighted, unless they are hid-
den because a parent or ancestor has been collapsed, in
which case the nearest visible ancestor node is highlighted.
The right margin of the main window (Figure1) also con-
tains an overview of the entire compound graph, which is
useful for navigating a zoomed-in view in the main window
(in other words, the user has a a focus + context interface).

4.1. Software Design Discovery

While any compound graph can be visualized using our pro-
totype, we were interested in evaluating our approach in the
software design domain. The data shown in Figures1, 2, 10,
11 is the source code structure of the ApexText text editor
program, available athttp://sf.net/projects/apextext/. Each
node is a Java class, and each directed edge is acouplingbe-
tween the software elements, computed with a source code
analysis tool. Edge weights are computed from the number
of couplings between elements.

Initially, the hierarchical clustering of nodes can be auto-
matically deduced from the organization of packages (subdi-
rectories) of source code classes. The user can then browse
the compound graph to see if the couplings (edges) either
respect or violate the package architecture of the software.
As described in the previous section, the user can also dy-
namically (re-)de�ne the hierarchical clustering of nodes at
runtime, which is useful for software design discovery where
the user interprets the couplings and chooses the most logi-
cal clustering of nodes, and also useful if the user sees that
the package architecture is violated by many couplings and
should be reorganized.

We note that in software design discovery, the typical
work�ow is to progress one layer of abstraction at a time,
and examine the linksbetweenclusters (rather than those
within multiple clusters) to determine how to organize the

next layer. This work�ow is supported through our proto-
type's ability to collapse any subtree, hiding the details in-
side that subtree and aggregating (and bundling) edges ema-
nating from that subtree, thereby reducing clutter and allow-
ing the user to focus on links between that cluster and others.
The ability to visualize any subtree as a matrix also reduces
clutter by eliminating edge crossings within that subtree.

5. Comparison with Lattix

Lattix [SJSJ05] is a commercial software package for visual-
izing a compound graph representing the couplings between
source code modules and their hierarchical clustering (Fig-
ure4). Lattix is useful for software design recovery, and al-
lows the user to dynamically change the hierarchical clus-
tering of nodes, as does our TreeMatrix prototype. However,
as mentioned earlier, Lattix visualizes the compound graph
as one large adjacency matrix, called the “Design Structure
Matrix” (DSM).

Several DSM analysis and visualization tools are listed
at http://www.dsmweb.org. To our knowledge, Lattix is the
only one of these that supports software design recovery
tasks (such as manually changing the hierarchical cluster-
ing of modules), and is also the most widely-used software
analysis tool that uses a matrix-based visualization. Thus, it
is a reasonable candidate for comparison with TreeMatrix.
In addition, to our knowledge, there are no DSM tools that
allow the adjacency matrix to be split apart and visualized
as multiple small matrices, as does TreeMatrix. The abil-
ity to split the matrix into multiple matrices in TreeMatrix
means that users may position two or more matrices of in-
terest close to each other to see the edges connecting them,
whereas in Lattix it can be very inconvenient or impossible
to see the edges connecting multiple groups of nodes, hence
users of Lattix may sometimes need to do much scrolling, re-
sulting in loss of context. The increased �exibility afforded
by TreeMatrix's hybrid visualization is the primary differ-
ence between our prototype and Lattix that we are interested
in evaluating.

There are several secondary differences between the
TreeMatrix prototype and Lattix. For example, TreeMatrix
has a popup radial menu, whereas Lattix uses traditional
pull-down menus and toolbars to access functionality. Also,
both software tools display the numerical weight of each
edge (i.e., the number of couplings) within the appropriate
matrix cell, however TreeMatrixalso shows this weight by
coloring the cell, causing interesting weight values to “pop
out” visually. This means that groups of interesting edges
(and their associated nodes) can be perceived faster in the
TreeMatrix prototype for subsequent selection and manipu-
lation. Finally, TreeMatrix allows for both pan and zoom to
be done continuously, whereas Lattix only allows continous
panning (or scrolling).

7 The de�nitive version is available at onlinelibrary.wiley.com.

Figure 10: Moving nodes and changing their representations.A: the user may select a subset of nodes (in this case, the last four
nodes), and move them into a destination rounded rectangle by selecting “Move Here” in the radial menu (in this case, creating
a 4� 4 matrix).B: the user selects one subtree within the matrix (by moving the cursor over thecorresponding square) and
selects “To Matrix” in the radial menu, causing the subtree to be extracted as a new, smaller matrix.C: dragging an existing
matrix or rounded rectangle inside another rounded rectangle causes the dragged cluster to be re-parented under the dropped
location.D: dragging an existing matrix or rounded rectangle toward the border of its parent rounded rectangle has one of
two effects: if dragged towards its parent, the parent increases in size and continues to contain the child; if dragged towards
another parent, the child is allowed to leave the parent and is re-parented under that other rounded rectangle.E: the user can
also transform a cluster of nodes back into a matrix.

6. Qualitative User Study

We compared our TreeMatrix prototype with Lattix version
6.2.6 in a qualitative user study involving tasks related to
software design discovery. Ten participants who were stu-
dents in a master's-level course on software design received
three hours of instruction on Design Structure Matrix (DSM)
theory and layered architectural style for software design.
The students were separated into two groups (A and B) of
�ve students each. Two professional software engineering
researchers also participated in the study bringing the total
number of participants to 12. The study involved three de-
sign discovery tasks, performed on the source code of two
open-source software projects (orion-ssh2 and sdedit).

6.1. Choice of Source Code Projects

We selected the data sets among the open-source projects
available on SourceForge. Speci�cally, we sought two
projects that were (1) in development for more than a
year, (2) developed in Java, (3) used in different ap-
plication domains, and (4) contain between 100 and

200 classes. The �rst project is OrionSSH2 (build 213),
a library for the SSH2 protocol, and is available at
http://sf.net/projects/orion-ssh2/. The second project is an
UML editor program, Quick Sequence Diagram Editor
3.0.5, available athttp://sf.net/projects/sdedit/.

6.2. Tasks

We chose three tasks to be done using each tool, which were
performed by participants in each group during sessions that
lasted 3.5 hours. In each session, the participants received 30
minutes of training (5 minutes per task, per tool) and had 1.5
hours per tool to perform the tasks and �ll out questionnaires
(approximately 30 minutes per task).

In the �rst task, the participants had to categorize the re-
lationships :

1. Select all the nodes in the matrix and cluster them ;
2. Find a node with very little incoming links (type 1) ;
3. Find a node with very little outgoing links (type 2) ;
4. Find a cycle or type 3 category (i.e., nodes with a high

density of edges along the matrix's diagonal).

8 The de�nitive version is available at onlinelibrary.wiley.com.

Figure 11: Creating and editing of subtrees within a matrix.A: initially, this matrix contains no hierarchy. The user selects 4
different subsets of nodes and creates a subtree for each one, shownin B. B: tabs are visible along the left edge of the matrix.
These form the icicle diagram showing the hierarchy, and indicate there arenow 4 subgroups. To edit the hierarchy, the user
may drag groups within their parent or into each other, resulting in C.C: the icicle diagram along the left edge of the matrix
indicates the new hierarchical organization of groups within the matrix.

The second task aimed at restructuring the design in a
layered fashion. In a software architecture, the direction of
the links in a design should be from a top layer to a bottom
layer [GS93]. The participants had to :

1. Check which of the following scenarios apply :
a) If the node of type 1 identi�ed previously uses other
elements, it is an upper layer. Move it above the �rst used
element.
b) If the node of type 2 identi�ed previously is used by
other elements, it is a lower layer. Move it below the last
element which uses it.
c) Group the nodes inside the cycle (type 3).

2. Find a new cycle or type 3 and group these nodes ;
3. Find a node with a strong link with the group created in

the previous step and move that element in the group.

In the third task, they had to explore high level and low
level links between nodes and restructure the design. They
were asked to :

1. Identify the three top layers with the highest number of
internal links.

2. Indicate the links between the three top layers and group
the two more related layers as “TL”.

3. Find the low level nodes which are responsible for the
previous relationship. Group and place them under “TL”.

4. Find the nodes which are linked to the “TL” group and
move them into it.

7. Results

In this study, we collected user feedback, user ratings (Ta-
ble 1), and task completion times (Table2) . Users rated the
usefulness of the hybrid of matrices in TreeMatrix at 2.2, on
average, on a scale of 0 to 3 (unused, not very useful, use-
ful, very useful). Some participants explained that our visual

approach is advantageous in that the ability to split matrices
helps to have a better view of the design elements and their
relationships (P1-P6, P9). For example, participants men-
tioned that having multiple matrices facilitates the visual-
ization of links between software layers (P6) and the identi-
�cation of low level elements that are responsible for higher
level couplings (P1).

The 180-degree arcs in TreeMatrix were found useful by
75% of the participants (P1-P5, P8, P10, P11, P12) and they
noted that “Arcs help to �nd relationships between elements
and evaluate the link strength” (P1, P2, P8, P10 all made
similar statements) and that “it is a huge plus” (P1, P4).

Some users also expressed that they preferred the arrow
heads showing edge direction in TreeMatrix, rather than hav-
ing to deduce the direction of edges based on their location
in Lattix's matrix. For instance, P4 and P9 commented that
arrows are easier to follow than reading a matrix cell. Recall
that, in TreeMatrix, the weight of an edge in a matrix cell
is shown both numerically and with a color, whereas in Lat-
tix it is only shown numerically. One user (P12) suggested
that the TreeMatrix prototype should also show numerical
weight values beside the 180-degree arcs and bezier curves
that are outside each matrix, to reveal detailed information.
Two users (P6, P7) asserted that the tooltips, supported in
both tools, helped them to read the direction of an edge. All
participants were able to learn how to use the radial menu al-
though they had never used one before. Participants also ap-
preciated the ability to collapse subtrees and aggregate edges
to reduce the visual complexity.

7.1. Tasks Ratings and completion times

The task completion results show that tasks were, on aver-
age, faster using TreeMatrix. However, there were no sta-
tistically signi�cant differences for tasks 1 and 3. The �rst

9 The de�nitive version is available at onlinelibrary.wiley.com.

two task components focus on a matrice perspective and
users generally preferred Lattix for these (Table1, Task
Components 1 and 2). Participants explained that they rated
TreeMatrix less positively because its non-traditional user
interface made them feel less con�dent. Reasons given in-
cluded that the prototype uses a novel radial menu, in con-
trast to the traditional menu bars of Lattix; and TreeMatrix
also lacks keyboard shortcuts, undo, and traditional scroll-
bars for scrolling, which are features of Lattix. In addi-
tion, some participants (P1, P7, P10) pointed out that Lattix
makes it easy to see the diagonal of the matrix at all times,
which can help to �nd cycles. We �nd interesting that the
more classical approach of Lattix in tasks 1 and 2 was not
faster, despite the unfamiliar aspects of TreeMatrix that the
users had to learn. The second task was signi�catively faster
using TreeMatrix and we believe this is due to the highlight-
ing and the 180-degree arcs that were appreciated.

The ratings for the 3rd task component show that TreeMa-
trix was preferred for analyzing links at a higher level of
abstraction. This is backed up by some participants com-
menting that TreeMatrix is better for qualitative analysis (P2,
P10). The TreeMatrix prototype was also appreciated with
respect to highlighting of edges and nodes (the 6th com-
ponent in Table1). Participants explained that “the colored
edges and the inter-matrix links really help” (P1, P6) and
commented that the TreeMatrix prototype is more visual,
helping to perform the tasks (P3, P7, P9). The task com-
pletion results show that TreeMatrix was not signi�cantely
faster for the third task. The comments suggest that some
users have spent more time in visually exploring the data set
and playing with the interface.

We believe that certain modi�cations could be easily
made to the TreeMatrix prototype to increase its usefulness
to users: implementing undo, keyboard shortcuts, optional
traditional scrollbars and pull-down menus, making the di-
agonal of each matrix always easier to see, and displaying
the edge weights of bezier curves and arcs with numerical
labels (possibly displayed in a tooltip).

7.2. Threats to validity

We �rst consider the internal validity (i.e., the con�dence
level of the results) of the user study. We tried to prevent the
effects of confounding variables, between a tool (indepen-
dent variable) and a dependent variable (e.g., user ratings,
time). Participants received the same training for both ap-
proaches. None of the ten students had any prior experience
with TreeMatrix or Lattix, while the two researchers had ex-
perience using Lattix. The participants had no prior expo-
sure of the open-source projects. To counterbalance the con-
ditions, the participants of each group were randomly cho-
sen, with group A performing the three tasks using Lattix
on orion-ssh2 and then using TreeMatrix on sdedit. Group B
performed the tasks on the same data sets, but started with
TreeMatrix and then with Lattix.

Task Component Lattix TreeMatrix

1 Perception of relationships 8.50 5.75
within matrices (Tasks 1, 2) p = 0.0051* (n=12)

2 Ability to reorganize matrices 8.50 6.17
(Task 2) p = 0.0054* (n=12)

3 Identi�cation of high-level links 6.75 8.17
(links between clusters) (Task 3) p = 0.0381* (n=12)

4 Identi�cation of low-level links 7.42 7.42
(links between classes) (Task 3) p = 0.9682 (n=12)

5 Ability to reorganize entire 7.58 7.58
clusters at a high level (Task 3) p = 0.9683 (n=12)

6 Highlighting of nodes and edges 6.80 7.80
(Tasks 1-3) p = 0.1649 (n=10)

Table 1: Average ratings by participants of how each tool
performed for components of the tasks, on a scale of 1 (Poor)
to 10 (Excellent), along with the p-values of the Wilcoxon
signed rank test.

Task Lattix TreeMatrix

1 Find clusters in a matrix 14.25 11.63
p = 0.4349 (n=8)

2 Reorganize nodes inside a matrix 25.11 18.22
p = 0.0116* (n=9)

3 Restructure the design 20.92 19.70
p = 0.1381 (n=10)

Table 2: Average timings by participants of how each tool
performed with respect to tasks (in minutes), along with the
p-values of the Wilcoxon signed rank test.

We statistically veri�ed the differences in the dependent
variables. We veri�ed that we could perform the tasks for all
projects with a similar effort and time. Given the exploratory
nature of the tasks and the real-world complexity in the data,
we focused on collecting the impressions of the participants
after performing useful exploratory tasks and did not eval-
uate the error rates. However, the user feedback that we
collected suggest that there were no signi�cant differences
among the tools. The participants had to write down their
timings at each substep and we excluded any uncertain data.

We now turn to the external validity (the generalizabil-
ity of the study). Real and complete projects, from different
domains, were evaluated by the participants in all their com-
plexity, which should ensure that the approach has a practical
value for other projects. Since a small number of partipants
were involved, it should be repeated with more participants.
The prototype, demonstrated in the supplementary videoy,
has been tested with software designs of a few thousands of
nodes and links on a Sager NP8150 laptop. We valided one
hybrid approach, but further research is needed to evaluate
the other possible hybrids that can be derived from our tax-
onomy againsts a larger number of tools and domains.

y The video is available online at http://ref.ru�ange.com/cgf2012.

10 The de�nitive version is available at onlinelibrary.wiley.com.

8. Conclusions and Future Directions

We have presented new taxonomies of hybrid visualizations
of trees, graphs, and compound graphs, and shown how these
taxonomies lead to a novel hybrid visualization of compound
graphs called TreeMatrix. TreeMatrix combines advantages
of NodeTrix and MatLink (which, in their original form, are
not designed for compound graphs) with the matrix visual-
ization of Lattix. Our hybrid visualization allows users to
represent selected clusters of the compound graph as ma-
trices, with each matrix providing a visual summary of its
contents, free of edge crossings, and containing a double en-
coding of both the tree and graph structure within the matrix.

We have also presented a prototype implementation of
TreeMatrix, and demonstrated how it can be useful for soft-
ware design discovery tasks, such as visualizing the struc-
ture of source code. Our prototype displays both low-level
and high-level abstractions (within and above the level of
matrices, respectively) in one integrated view, and allows
the user to dynamically edit tree clusters (inside a matrix
or at an upper level). We reported the results of a compara-
tive evaluation of our prototype with Lattix, a commercial-
grade, matrix-based software tool. Several users found our
prototype's ability to split matrices into multiple submatri-
ces advantageous, and found it either useful or preferable
that our prototype displays edges as arcs or curves with ar-
rowheads. User ratings indicate that they preferred our pro-
totype in particular for interpreting high-level links between
clusters. This con�rms the rationale behind using a hybrid
visualization: TreeMatrix has the �exibility of enabling low-
level details to be shown within matrices (eliminating edge
crossings) while allowing high-level edges to be shown in
node-link form (which are easier to interpret, if they are not
too dense or numerous).

Based on some of the comments we collected, one pos-
sible future direction would be to allow the user to switch
between novice or advanced modes to access a different
set of features. There are also improvements that could be
made to the computed layout and bundling of edges, to make
the TreeMatrix visualization even less cluttered. Future user
studies could also examine in more detail the kinds of tasks
[LPP� 06] that bene�t from hybrid visualizations, e.g., com-
paring hybrid and non-hybrid visualizations in a follow-up to
Archambault et al. [APP10]. Another future direction would
be to implement an interactive prototype �exible enough to
allow the user to explore all possible hybrid combinations
in Figure 8, with automatic generation of appropriate lay-
outs and even smoothly animated transitions during changes
to the visualization. Although many of the hybrids generated
this way might not be very useful, there is the possibility that
new useful forms could be discovered this way.

9. Acknowledgements

We thank the participants in our study and the anony-
mous reviewers for their valuable comments. This work was

funded by NSERC, and doctoral scholarships from Fonds de
recherche du Québec and ÉTS.

References

[ACJM03] AUBER D., CHIRICOTA Y., JOURDAN F.,
MELANÇON G.: Multiscale visualization of small world
networks. InProceedings of the Ninth annual IEEE conference
on Information visualization (Seattle, Washington, 2003),
INFOVIS'03, IEEE Computer Society, pp. 75–81.3

[AMA09] A RCHAMBAULT D., MUNZNER T., AUBER D.: Tug-
Graph: Path-preserving hierarchies for browsing proximityand
paths in graphs. InProceedings of IEEE Paci�c Visualization
(Beijing, China, 2009), pp. 113–120.3

[APP10] ARCHAMBAULT D., PURCHASE H. C., PINAUD B.:
The readability of path-preserving clusterings of graphs.Com-
puter Graphics Forum 29, 3 (2010), 1173–1182.11

[AvHK06] A BELLO J., VAN HAM F., KRISHNAN N.: ASK-
GraphView: A large scale graph visualization system.IEEE
Transactions on Visualization and Computer Graphics (TVCG)
12, 5 (September/October 2006), 669–676.3

[BD07] BALZER M., DEUSSENO.: Level-of-detail visualization
of clustered graph layouts. InAsia-Paci�c Symposium on Visual-
isation (APVIS)(Sydney, Australia, 2007).2, 3

[Ber83] BERTIN J.: Semiology of graphics: diagrams, networks,
maps. University of Wisconsin Press, Madison, Wisconsin, 1983.
2, 3

[BHvW00] BRULS M., HUIZING K., VAN WIJK J. J.: Squari�ed
treemaps. InProceedings of the joint Eurographics and IEEE
TCVG Symposium on Visualization(Amsterdam, The Nether-
lands, 2000), pp. 33–42.3

[BM99] BERTAULT F., MILLER M.: An algorithm for draw-
ing compound graphs. InProceedings of Symposium on Graph
Drawing (Stirín Castle, Czech Republic, 1999), pp. 197–204.3

[CHWS88] CALLAHAN J., HOPKINS D., WEISER M., SHNEI-
DERMAN B.: An empirical comparison of pie vs. linear menus.
In Proceedings of ACM Conference on Human Factors in Com-
puting Systems (CHI)(Washington, DC, 1988), pp. 95–100.6

[DBETT99] DI BATTISTA G., EADES P., TAMASSIA R., TOL-
LIS I. G.: Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice-Hall, Upper Saddle River, N.J., 1999.3

[DBF09] DI BATTISTA G., FRATI F.: Ef�cient c-planarity testing
for embedded �at clustered graphs with small faces.Journal of
Graph Algorithms and Applications 13, 3 (Nov 2009), 349–378.
Special Issue on Selected Papers from GD '07.2

[EF10] ELMQVIST N., FEKETE J.-D.: Hierarchical aggregation
for information visualization: Overview, techniques, and design
guidelines. IEEE Transactions on Visualization and Computer
Graphics 16, 3 (2010), 439–454.3

[FWD� 03] FEKETE J.-D., WANG D., DANG N., ARIS A.,
PLAISANT C.: Overlaying graph links on treemaps. InProceed-
ings of IEEE Symposium on Information Visualization (InfoVis)
Poster Compendium(Seattle, Washington, 2003), pp. 82–83.5

[GBD09] GREILICH M., BURCH M., DIEHL S.: Visualizing the
evolution of compound digraphs with TimeArcTrees.Computer
Graphics Forum 28, 3 (June 2009), 975–982.3, 5

[Gen00] GENE ONTOLOGY CONSORTIUM: Gene ontology: tool
for the uni�cation of biology. Nature Genetics 25, 1 (May
2000), 25–29. http://www.geneontology.org (Accessed January
18, 2012).2

11 The de�nitive version is available at onlinelibrary.wiley.com.

[GFC05] GHONIEM M., FEKETE J.-D., CASTAGLIOLA P.: On
the readability of graphs using node-link and matrix-based repre-
sentations: Controlled experiment and statistical analysis. Infor-
mation Visualization 4, 2 (2005), 114–135.2, 3

[GKN05] GANSNER E. R., KOREN Y., NORTH S. C.: Topologi-
cal �sheye views for visualizing large graphs.IEEE Transactions
on Visualization and Computer Graphics (TVCG) 11, 4 (2005),
457–468.2, 3

[GS93] GARLAN D., SHAW M.: An introduction to software ar-
chitecture. Advances in Software Engineering and Knowledge
Engineering 2(1993), 1–39.9

[Har88] HAREL D.: On visual formalisms.Communications of
the ACM (CACM) 31, 5 (May 1988), 514–530.5

[HCL05] HEER J., CARD S. K., LANDAY J. A.: Prefuse: A
toolkit for interactive information visualization. InProceedings
of ACM Conference on Human Factors in Computing Systems
(CHI) (Portland, Oregon, 2005), pp. 421–430.6

[Hen08] HENRY N.: Exploring Social Networks with Matrix-
based Representations. PhD thesis, Université Paris Sud, France,
and University of Sydney, Australia, 2008.6

[HF07] HENRY N., FEKETE J.-D.: MatLink: Enhanced matrix
visualization for analyzing social networks. InProceedings of
IFIP TC13 International Conference on Human-Computer Inter-
action (INTERACT)(Rio de Janeiro, Brazil, 2007), pp. 288–302.
2, 3

[HFM07] HENRY N., FEKETE J.-D., MCGUFFIN M. J.: Node-
Trix: A hybrid visualization of social networks.IEEE Trans-
actions on Visualization and Computer Graphics (TVCG) 13, 6
(2007), 1302–1309.2, 3, 5

[HMM00] H ERMAN I., MELANÇON G., MARSHALL M. S.:
Graph visualization and navigation in information visualization:
A survey. IEEE Transactions on Visualization and Computer
Graphics (TVCG) 6, 1 (January 2000), 24–43.3

[Hol06] HOLTEN D.: Hierarchical edge bundles: Visualization
of adjacency relations in hierarchical data.IEEE Transactions
on Visualization and Computer Graphics (TVCG) 12, 5 (2006),
741–748.3, 5

[JS91] JOHNSON B., SHNEIDERMAN B.: Tree-maps: A space-
�lling approach to the visualization of hierarchical information
structures. InProceedings of IEEE Visualization (VIS)(San
Diego, CA, 1991), pp. 284–291.3

[JS10] JÜRGENSMANN S., SCHULZ H.-J.: A visual survey of
tree visualization. InProceedings of IEEE Symposium on In-
formation Visualization (InfoVis) Poster Compendium(Salt Lake
City, Utah, 2010). http://treevis.net/ (Accessed January18,
2012).2

[KB93] K URTENBACH G., BUXTON W.: The limits of expert
performance using hierarchic marking menus. InProceedings
of ACM Conference on Human Factors in Computing Systems
(CHI) (Amsterdam, The Netherlands, 1993), pp. 482–487.6

[KW01] K AUFMANN M., WAGNER D. (Eds.):Drawing Graphs:
Methods and Models. Springer, Berlin, New York, 2001.3

[LPP� 06] LEE B., PLAISANT C., PARR C. S., FEKETE J.-D.,
HENRY N.: Task taxonomy for graph visualization. InProceed-
ings of the 2006 AVI workshop on BEyond time and errors: novel
evaluation methods for information visualization(Venice, Italy,
2006), BELIV '06, ACM, pp. 1–5.11

[MR10] MCGUFFIN M. J., ROBERT J.-M.: Quantifying the
space-ef�ciency of 2D graphical representations of trees.Infor-
mation Visualization 9, 2 (2010), 115–140.3, 5

[MS00] MÄKINEN E., SIIRTOLA H.: Reordering the reorderable

matrix as an algorithmic problem. InInternational Conference on
the Theory and Application of Diagrams(Edinburgh, UK, 2000),
pp. 453–468.6

[PvW06] PRETORIUSA. J., VAN WIJK J. J.: Visual analysis of
multivariate state transition graphs.IEEE Transactions on Visu-
alization and Computer Graphics 12, 5 (2006), 685–692.3, 5

[San96] SANDER G.: Layout of Compound Directed Graphs.
Tech. Rep. A/03/96, Universität des Saarlandes, Saarbrücken,
Germany, June 1996.3

[SGJ93] SINDRE G., GULLA B., JOKSTAD H. G.: Onion graphs:
Aesthetics and layout. InProceedings of IEEE Symposium on
Visual Languages (VL)(Bergen , Norway, 1993), pp. 287–291.5

[SJSJ05] SANGAL N., JORDAN E., SINHA V., JACKSON D.: Us-
ing dependency models to manage complex software architec-
ture. In Proceedings of ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA)
(San Diego, CA, 2005), pp. 167–176.2, 3, 5, 7

[SM91] SUGIYAMA K., M ISUE K.: Visualization of struc-
tural information: Automatic drawing of compound digraphs.
IEEE Transactions on Systems, Man and Cybernetics 21, 4
(July/August 1991), 876–892.3

[SM07] SHEN Z., MA K.-L.: Path visualization for adjacency
matrices. InProceedings of Eurographics/IEEE-VGTC Sympo-
sium on Visualization (EuroVis)(Norrköping, Sweden, 2007),
pp. 83–90.3

[STT81] SUGIYAMA K., TAGAWA S., TODA M.: Methods for
visual understanding of hierarchical system structures.IEEE
Transactions on Systems, Man, and Cybernetics SMC-11, 2
(February 1981), 109–125.6

[vLKS� 10] VON LANDESBERGER T., KUIJPER A., SCHRECK
T., KOHLHAMMER J., VAN WIJK J. J., FEKETE J.-D., FELL-
NER D. W.: Visual analysis of large graphs. InEuroGraphics:
State of the Art Report(Norrköping, Sweden, 2010).3, 4

[Wat02] WATTENBERG M.: Arc diagrams: Visualizing structure
in strings. InProceedings of IEEE Symposium on Information
Visualization (InfoVis)(Boston, Massachusetts, 2002), pp. 110–
116. 3

[Wat05] WATTENBERGM.: A note on space-�lling visualizations
and space-�lling curves. InProceedings of IEEE Symposium
on Information Visualization (InfoVis)(Minneapolis, Minnesota,
2005), pp. 181–186.3

[ZMC05] ZHAO S., MCGUFFIN M. J., CHIGNELL M. H.: Elas-
tic hierarchies: Combining treemaps and node-link diagrams. In
Proceedings of IEEE Symposium on Information Visualization
(InfoVis)(Minneapolis, Minnesota, 2005), pp. 57–64.2, 3, 4

12 The de�nitive version is available at onlinelibrary.wiley.com.

