
TSINGHUA SCIENCE AND TECHNOLOGY

I S S N l l 1 0 0 7 - 0 2 1 4 l l 0 1 / 1 2 l l p p 1 - 1 6

Volume 17, Number 4, August 2012

Simple Algorithms for Network Visualization: A Tutorial∗

Michael J. McGuffin∗∗

Department of Software and IT Engineering, École de technologie supérieure, Montréal, H3C 1K3, Canada

Abstract: The graph drawing and information visualization communities have developed many sophisticated tech-

niques for visualizing network data, often involving complicated algorithms that are difficult for the uninitiated to

learn. This article is intended for beginners who are interested in programming their own network visualizations, or

for those curious about some of the basic mechanics of graph visualization. Four easy-to-program network layout

techniques are discussed, with details given for implementing each one: force-directed node-link diagrams, arc

diagrams, adjacency matrices, and circular layouts. A Java applet demonstrating these layouts, with open source

code, is available at http://www.michaelmcguffin.com/research/simpleNetVis/. The end of this article also briefly

surveys research topics in graph visualization, pointing readers to references for further reading.

Key words: network visualization; graph visualization; graph drawing; node-link diagram; force-directed layout; arc

diagram; adjacency matrix; circular layout; tutorial

Introduction

Networks are increasingly encountered in numer-

ous fields of study. A wide variety of situations

can be modelled using networks (i.e., graphs), and

many data sets are most naturally interpreted and de-

picted as networks. Comprehensive surveys of tech-

niques for network visualization are available[1, 2], and

an entire discipline called graph drawing has ma-

tured, with its own annual conference and associated

surveys[3, 4]. Several feature-rich software packages

for network visualization are freely available, including

Tulip [5, 6] (http://www.tulip-software.org/), Graphviz

(http://www.graphviz.org/), Gephi (http://gephi.org/),

Pajek [7] (http://pajek.imfm.si/), and Cytoscape [8]

(http://www.cytoscape.org/).

Despite the availability of such software, researchers,

students, and others who are competent at programming

Received: ; Accepted:

∗ Supported by the Natural Sciences and Engineering Re-

search Council of Canada

∗∗ To whom correspondence should be addressed.

E-mail: michael.mcguffin@etsmtl.ca Tel: +1-514-685-6514

may wish to implement their own network visualiza-

tions. This may be to implement a visualization on a

new computing platform, or to integrate a visualization

within a larger software application. It may also be to

learn the details of network visualizations, possibly as

the first step of a research project. Finally, certain visu-

alization techniques, such as adjacency matrix visual-

ization, are poorly supported by existing packages, but

may be implemented from the ground up in new soft-

ware.

For those wishing to implement their own visualiza-

tions, the breadth of existing surveys of techniques[1–4],

covering hundreds of references, may be daunting. Fur-

thermore, most graph drawing algorithms that compute

the positions of nodes in a visualization are non-trivial

to implement, and some require that multiple papers be

studied before the details of a single algorithm are un-

derstood.

Fortunately, there are some basic network visualiza-

tion algorithms that are easy to understand and imple-

ment. This article discusses such algorithms, and gives

sufficient detail for a competent programmer to imple-

ment them. Contrary to current textbooks on visual-

ization, this article presents a synthesis of matrix and

2 Tsinghua Science and Technology, August 2012, 17(4): 000-000

non-matrix approaches for visualizing networks, show-

ing how they can be combined, and how an ordering al-

gorithm (the barycenter heuristic) can be used for both.

After presenting simple algorithms for computing

different graph layouts, Section 6 presents simple met-

rics for network analysis. Finally, Section 7 surveys re-

search topics in graph visualization with references to

examples in the literature, to serve as launching points

for researchers and students.

1 Force-Directed Layout of Node-Link Dia-

grams

Fig. 1 Force-directed node-link diagrams of a 43-node, 80-

edge network. Top: a low spring constant makes the edges

more flexible. Bottom: a high spring constant makes them

more stiff.

We use the term network as a synonym for graph, which

can be defined as an ordered pair (N,E) of a set N of

nodes and a set E of edges. In an undirected graph,

each edge is an unordered pair of nodes, i.e., E ⊆
{{x,y}|x,y ∈ N}. Two nodes n1,n2 ∈ N are adjacent if

and only if there exists an edge {n1,n2} ∈ E, in which

case n1 and n2 are neighbors. The degree of a node is

the number of neighbors it has. In a directed graph,

each edge is an ordered pair, i.e., E ⊆ {(x,y)|x,y ∈ N},

and the edge (x,y) is distinct from the edge (y,x). We

will be concerned primarily with undirected graphs.

The most common graphical representation of a net-

work is a node-link diagram, where each node is shown

as a point, circle, polygon, or some other small graph-

ical object, and each edge is shown as a line segment

or curve connecting two nodes. Many sophisticated al-

gorithms exist for computing the positions of nodes and

edges in such diagrams, such as the Sugiyama-Tagawa-

Toda algorithm [9], which positions nodes on the levels

of a hierarchical layout. We will instead consider a class

of algorithms based on force-directed layout [10, 11] for

positioning the nodes. We imagine the nodes as physi-

cal particles that are initialized with random positions,

but are gradually displaced under the effect of various

forces, until they arrive at a final position. The forces

are defined by the chosen algorithm, and typically seek

to position adjacent nodes near each other, but not too

near.

Specifically, imagine that we simulate two forces:

a repulsive force between all pairs of nodes, and a

spring force between all pairs of adjacent nodes. Let

d be the current distance between two nodes, and de-

fine the repulsive force between them to be Fr = Kr/d2

(a definition inspired by inverse-square laws such as

Coulomb’s law), where Kr is some constant. If the

nodes are adjacent, let the spring force between them be

Fs = Ks(d −L) (inspired by Hooke’s law), where Ks is

the spring constant and L is the rest length of the spring

(i.e., the length “preferred” by the edge, ignoring the

repulsive force).

To implement this force-directed layout, assume that

the nodes are stored in an array nodes[], where each

element of the array contains a position x, y and the net

force force_x, force_y acting on the node. The

forces are simulated in a loop that computes the net

forces at each time step and updates the positions of

the nodes, hopefully until the layout converges to some

usefully distributed positions. Fig. 1 shows the results

of many iterations of such a loop. The inner body of the

simulation loop could be implemented like this:

1 L = ... // spring rest length

2 K_r = ... // repulsive force constant

3 K_s = ... // spring constant

4 delta_t = ... // time step

5

6 N = nodes.length

7

8 // initialize net forces

9 for i = 0 to N-1

10 nodes[i].force_x = 0

11 nodes[i].force_y = 0

12

13 // repulsion between all pairs

Michael J. McGufffin: Simple Algorithms for Network Visualization: A Tutorial 3

14 for i1 = 0 to N-2

15 node1 = nodes[i1]

16 for i2 = i1+1 to N-1

17 node2 = nodes[i2]

18 dx = node2.x - node1.x

19 dy = node2.y - node1.y

20 if dx != 0 or dy != 0

21 distanceSquared = dx*dx + dy*dy

22 distance = sqrt(distanceSquared)

23 force = K_r / distanceSquared

24 fx = force * dx / distance

25 fy = force * dy / distance

26 node1.force_x = node1.force_x - fx

27 node1.force_y = node1.force_y - fy

28 node2.force_x = node2.force_x + fx

29 node2.force_y = node2.force_y + fy

30

31 // spring force between adjacent pairs

32 for i1 = 0 to N-1

33 node1 = nodes[i1]

34 for j = 0 to node1.neighbors.length-1

35 i2 = node1.neighbors[j]

36 node2 = nodes[i2]

37 if i1 < i2

38 dx = node2.x - node1.x

39 dy = node2.y - node1.y

40 if dx != 0 or dy != 0

41 distance = sqrt(dx*dx + dy*dy)

42 force = K_s * (distance - L)

43 fx = force * dx / distance

44 fy = force * dy / distance

45 node1.force_x = node1.force_x + fx

46 node1.force_y = node1.force_y + fy

47 node2.force_x = node2.force_x - fx

48 node2.force_y = node2.force_y - fy

49

50 // update positions

51 for i = 0 to N-1

52 node = nodes[i]

53 dx = delta_t * node.force_x

54 dy = delta_t * node.force_y

55 displacementSquared = dx*dx + dy*dy

56 if (displacementSquared

> MAX_DISPLACEMENT_SQUARED)

57 s = sqrt(MAX_DISPLACEMENT_SQUARED

/ displacementSquared)

58 dx = dx * s

59 dy = dy * s

60 node.x = node.x + dx

61 node.y = node.y + dy

Lines 8 through 61 would be inside a loop that repeats

hundreds or thousands of times, causing the nodes to

move toward their final positions.

In the repulsive computation step (lines 13-29), we

need to visit every pair of nodes once. Note, however,

that the pair of nodes corresponding to i1=3, i2=7

would be the same as that corresponding to i1=7,

i2=3. Hence, to avoid visiting the same pairs twice,

line 16 begins iterating at i2=i1+1 rather than i2=0,

to ensure i1 < i2.

Similarly, in the spring force step (lines 31-48), we

avoid visiting the same adjacent pairs twice with line

37.

The computation of the repulsive and spring forces

is inspired by physical forces (Coulomb’s law and

Hooke’s law). However, for simplicity we do not store

a velocity for each node, and the forces serve only to

update the positions of nodes (lines 50-61) in a quasi-

physical manner, without acceleration.

If the time step delta_t (used at lines 53, 54) is too

small, many iterations will be needed to converge. On

the other hand, if the time step is too large, or if the net

forces generated are too large, the positions of nodes

may oscillate and never converge. Line 56 imposes a

limit on such movement. As a minor optimization, line

56 compares squares (i.e., displacementSquared

> MAX_DISPLACEMENT_SQUARED rather than

displacement > MAX_DISPLACEMENT), to avoid

the cost of computing a square root (unless the if

succeeds).

A minor improvement to the above pseudocode

would be to detect if the distance between two nodes

is zero (by adding an else clause to the if statement

at line 20), and in that case to generate a small force

between the two nodes in some random direction, to

push them apart. Without this, if the two nodes happen

to have the same neighbors, they may remain forever

“stuck” to each other.

A user might interact with a force-directed layout by

selecting and moving nodes with their mouse, or by us-

ing sliders to interactively adjust the values of L, K_r,

K_s, or delta_t. It is not necessarily useful, how-

ever, to allow the user to adjust K_r and K_s indepen-

dently. There are infinitely many pairs of (Kr, Ks) val-

ues that cause the layout to converge to the same final

“shape” (i.e., the same angles between edges, differing

only in edge lengths). A simpler user interface would

allow the user to change a single parameter correspond-

ing to a kind of ratio of the strength of the two forces.

Taking Kr/Ks as this ratio is not ideal, however, because

such a ratio is not dimensionless, and the final shape of

the layout will depend on both Kr/Ks and L.

Fortunately, we can rewrite the force equations as

Fr = Kr/d2 = K′
r/(d/L)2, and Fs = Ks(d−L) = K′

s(d−
L)/L, yielding the constants K′

r and K′
s both in force

units. Then, the ratio R = K′
r/K′

s = Kr/(KsL
3) is dimen-

sionless, and can be controlled by the user with a single

slider as a way of controlling the final shape of the lay-

out. This final shape will depend only on R and be inde-

pendent of L, which can also be controlled by the user to

change the scale of the layout. So, given any values for

4 Tsinghua Science and Technology, August 2012, 17(4): 000-000

R (chosen by the user), L (possibly also chosen by the

user), and Kr (having some hardcoded value), the soft-

ware could compute Ks = Kr/(RL3) and simulate the

forces using the updated constants to converge to a new

layout. Fig. 1, top and bottom, show the result of a high

and low R value, respectively. (For concreteness, Fig. 1,

top, was produced with L = 50, K_r = 6250, K_s = 1,

delta_t = 0.04, R = 0.05.)

Many variations on the forces used in the layout are

possible. For example, rather than an inverse-square re-

pulsion Fr = Kr/d2, we could define Fr = Kr/dp with a

variable exponent p. It could also be interesting to ex-

periment with a tangential force that pushes apart the

neighbors of each node n, to distribute them evenly

around n (compare this idea to [12]). As another ex-

ample, Noack[13] proposes a model depending on the

degree of the nodes: nodes with high degree repel other

nodes more strongly, helping to spread apart clusters of

nodes.

In the pseudocode above, the computation of repul-

sive forces is a bottleneck, since it requires O(N2) time,

where N is the number of nodes. This bottleneck can

be eliminated by various means. For example, we

could eliminate the repulsive force, and instead simu-

late springs of length L between all adjacent nodes, as

well as springs of length 2L between all nodes that are

two edges apart, and possibly springs of length 3L be-

tween nodes that are three edges apart, etc., up to some

limit. (This is closely related to the approach of Ka-

mada and Kawai[14] and Gansner et al.[15].) The extra

springs would help to spread apart the network, as did

the original repulsive forces. As long as the number of

edges is not too high, and there aren’t too many springs,

the computation time may be much less than O(N2).

Also, in the above pseudocode, it is unclear how to

choose the best value for delta_t. The GEM[16] al-

gorithm speeds up convergence by decreasing a “tem-

perature” parameter as the layout progresses, allowing

nodes to move larger distances earlier in the process,

and then constraining their movements progressively to-

ward the end.

Fig. 2 shows a force-directed layout generated for a

relatively small random graph. As can be seen, the mul-

tiple crossings of edges can make it unclear when cer-

tain edges pass close to a node or are connected to a

node. Also, in such layouts where the nodes are rather

closely packed, there isn’t much room left to display

labels or other information associated with each node.

The following sections present alternative ways of de-

Fig. 2 Force-directed node-link diagram of a random 50-

node, 200-edge graph.

picting networks that address these problems.

2 Arc Diagrams and Barycenter Ordering

It is sometimes useful to layout the nodes of a network

along a straight line, in what might be called lineariza-

tion. With such a layout, edges can be drawn as circular

arcs (Figure 3), yielding an arc diagram. This layout

leaves much room to the right of the nodes, useful for

long labels or other information to show for each node.

The nodes may also be sorted in different ways.

Arc diagrams were independently discovered and

proposed by Wattenberg [17] as a way of visual-

izing repeating substrings within a string of data,

such as repeating phrases within a piece of music

(http://www.bewitched.com/song.html). However, as

with several other visualization techniques, an earlier

example can be found in a single figure of Bertin’s work
[18], that shows a network with nodes on a linear layout

and edges drawn as 180-degree arcs. (Interestingly, in

Wattenberg’s work, the thickness of arcs is varied, to

show the length of substrings.)

It is important that the arcs in the diagram all cover

the same angle, such as 180 degrees. This way, an arc

between nodes n1 and n2 will extend outward by a dis-

tance proportional to the distance between n1 and n2,

Michael J. McGufffin: Simple Algorithms for Network Visualization: A Tutorial 5

Fig. 3 Arc diagrams of a 43-node, 80-edge network. Left:

with a random ordering and 180-degree arcs. Middle: after

applying the barycenter heuristic to order the nodes. Right:

after changing the angles of the arcs to 100 degrees.

making it easier to disambiguate the arcs. However, it

is not necessary that the arcs cover a 180 degree angle.

Figure 3, right, shows an arc diagram where all arcs

cover 100 degrees.

To program a subroutine that draws an arc covering

angle θ connecting points A = (x,y1) and B = (x,y2),

we need to find the center C of the arc. Figure 4 shows

a right triangle connecting A, C, and the midpoint be-

tween A and B. The length of one side of the triangle is

d = |y1 − y2|/2, and we also have tanθ/2 = d/e, hence

C = (x+ e,(y1 + y2)/2) where e = d/(tanθ/2).

Fig. 4 An arc covering angle θ , with center C.

The nodes within an arc diagram might be sorted in

various ways. For example, if each node has an asso-

ciated label, and represents an object with a size, time-

stamp, or other attribute, the nodes in the arc diagram

might be sorted alphabetically, or by size, time, etc.,

helping the user to analyze the network. Furthermore,

every node has a degree, as well as additional metrics

that can be computed (later we discuss how to compute

the clustering coefficient and coreness of each node),

and any of these might be used to sort the nodes within

the linear ordering of an arc diagram.

We might also order the nodes to reduce the length

of the arcs, making the topology of the network eas-

ier to understand. There are many algorithms for com-

puting such an ordering (see Liiv [19] and section 4.2

of Henry [20]), however, we will discuss an easy-to-

program technique called the barycenter heuristic [9, 21].

The barycenter heuristic is an iterative technique where

we compute the average position (or “barycenter”) of

the neighbors of each node, and then sort the nodes by

this average position, and then repeat. Intuitively, this

should move nodes closer to their neighbors, making

the arcs shorter.

To implement a reordering algorithm, one approach

might be to reorder the elements of the nodes[] ar-

ray used in the previous section. However, this may

not be convenient because the edges from nodes to

their neighbors are typically stored as pointers, refer-

ences, or indices (in the previous section, indices within

nodes[].neighbors[]), and these would need to

be updated if the nodes are relocated in memory. Fur-

thermore, if each element of the nodes[] array con-

tains additional data (like a name, color, or other meta-

data for the node), then reordering the array might in-

volve moving a lot of data around the memory.

Instead, we will assume that the nodes[] array

is fixed, and use a second data structure to store

the current ordering of nodes to use for the arc di-

agram. Let this second data structure be an array

orderedNodes[], having one element for each

node. We will use the term index to refer to a node’s

fixed location within nodes[], and position to refer to

the node’s current location within orderedNodes[].

Each element of orderedNodes[] will store

an index and an average. For example,

if orderedNodes[3].index == 7, then

orderedNodes[3] corresponds to nodes[7],

and nodes[7] is to be displayed at position 3 in

the arc diagram. To find the index corresponding to

a given position, we can simply perform a look-up in

orderedNodes[]. To perform an inverse look-up,

we define a function that computes the position p of a

node given its index i:

6 Tsinghua Science and Technology, August 2012, 17(4): 000-000

function positionOfNode(i)

for p = 0 to N-1

if orderedNodes[p].index == i

return p

Note that this function performs a linear-time search.

A slightly more complicated, but much faster, imple-

mentation would cache the positions within the ele-

ments of nodes[] and lazily update them:

function positionOfNode(i)

if orderedNodes[nodes[i].position].index != i

// The cached position is not valid.

// Update ALL the cached positions

// so they will be valid next time.

for p = 0 to N-1

nodes[orderedNodes[p].index].position = p

return nodes[i].position

Given either implementation above of

positionOfNode(), we can implement the

inner body of the barycenter heuristic like this:

1 // compute average position of neighbors

2 for i1 = 0 to N-1

3 node1 = nodes[i1]

4 p1 = positionOfNode(i1)

5 sum = p1

6 for j = 0 to node1.neighbors.length-1

7 i2 = node1.neighbors[j]

8 node2 = nodes[i2]

9 p2 = positionOfNode(i2)

10 sum = sum + p2

11 orderedNodes[p1].average = sum

/ (node1.neighbors.length + 1)

12

13 // sort the array according to the values of average

14 sort(orderedNodes, comparator)

Lines 1 through 14 would be inside a loop that it-

erates several times, hopefully until convergence to a

near-optimal ordering. Figure 3, middle, shows an arc

diagram after several iterations of the barycenter heuris-

tic to improve the ordering of nodes, thereby reducing

the length of arcs with respect to Figure 3, left.

In practice, rather than converging, the algorithm

sometimes enters a cycle. Thus, a limit on the num-

ber of iterations should be imposed, stopping the loop

if the limit is reached (one rule of thumb is to limit the

number of iterations to kN, where N is the number of

nodes and k is a small positive constant). Simple ways

to improve the algorithm would be to (1) detect if it has

converged to an ordering that does not change with ad-

ditional iterations, and in such a case stop the loop; (2)

detect cycles, and similarly stop the loop.

Line 14 of the pseudocode sorts the contents of

orderedNodes[] according to a comparator

defined by the calling code. Typical program-

ming environments provide an efficient O(N logN)

implementation of sort (such as qsort in C, or

Arrays.sort() in Java) that uses a client-defined

comparator to determine which of a pair of array el-

ements should appear before the other. In our case,

our comparator should of course compare the values

of average for any two given elements to determine

their order.

The linear arrangement of nodes in an arc diagram

has many advantages. As already mentioned, there is

room to the right of each node for a long text label, if

desired. The space to the right of nodes can also be used

to display small graphics, such as line charts for each

node, possibly to show a quantity associated with the

node that evolves with time. TimeArcTrees [22] show

changes in a graph over time by drawing multiple arc

diagrams, each one at a different time, with the time axis

progressing perpendicular to the layout axis of each arc

diagram. Arc diagrams can also be incorporated as an

axis within a larger graphic or visualization, as in [23].

Also, as mentioned, the nodes within an arc diagram

can be sorted in different ways, which can be useful

for seeing relationships between nodes with specific at-

tribute values.

Despite the advantages of arc diagrams, and the room

available to draw labels beside nodes, if there are too

many edges that cross each other, it becomes difficult to

read the edges. The next section presents an alternative

visualization technique that eliminates edge crossings.

3 Adjacency Matrix Representations

An adjacency matrix (Figure 5, top) contains one row

and one column for each node of a network. Given

two nodes i and j, the cells located at (i, j) and (j, i)

in the matrix contain information about the edge(s) be-

tween the two nodes. Typically, each cell contains a

boolean value indicating if an edge exists between the

two nodes. (In the figures in this article, a true boolean

value is shown as a black, filled-in cell.) If the graph

is undirected, the matrix is symmetric, i.e., the two cells

(i, j) and (j, i) correspond to the same edge. If the graph

is directed, however, the matrix is not symmetric.

Visualizing a network as a matrix has the advantage

of eliminating all edge crossings, since the edges cor-

respond to non-overlapping cells. However, in such a

visualization, the ordering of rows and columns greatly

influences how easy it is to interpret the matrix. Fig-

ure 5, top, has a random ordering, whereas Figure 5,

bottom, has had its rows and columns ordered according

Michael J. McGufffin: Simple Algorithms for Network Visualization: A Tutorial 7

Fig. 5 Adjacency matrix visualizations of a 43-node, 80-

edge network. Top: with a random ordering of rows and

columns. Bottom: after barycenter ordering and adding arc

diagrams. The multiple arc diagrams are redundant, but re-

duce the distance of eye movements from the inside of the

matrix to the nearest arcs.

to the same barycenter heuristic presented in the previ-

ous section. Interestingly, by bringing nodes “closer”

to their neighbors with the barycenter heuristic, this

pushes the edges (filled-in matrix cells) closer to the di-

agonal of the matrix, making certain patterns appear in

the positions of the cells.

Certain subgraphs (subsets of nodes and edges in

the graph) correspond to easy-to-recognize patterns in

the adjacency matrix, given an appropriate ordering of

rows and columns. Figure 6 shows that cliques (sub-

graphs with all possible edges connecting the nodes)

correspond to square “blocks” of filled-in cells along

the matrix diagonal (with only the cells on the diag-

onal not filled in, since edges do not connect a node

to itself). Furthermore, each biclique (pair of subsets

of nodes with edges connecting each node in one sub-

set with each node in the other subset) corresponds to

two filled-in rectangular blocks of cells, and each clus-

ter (subset of nodes interconnected by many edges) is

recognizable as a set of filled cells along the matrix di-

agonal. Finally, the degree of a node is shown by the

number of filled cells within the column or row corre-

sponding to the node, as shown in Figure 5 where the

degree of the highlighted node “26” is 5.

Note that the ordering in Figure 5, bottom, was gener-

ated with the barycenter heuristic, whereas that in Fig-

ure 6 was chosen manually, to make all the desired pat-

terns visible. The visibility of patterns is very sensitive

to ordering, and the barycenter heuristic does not neces-

sarily make all such patterns visible. Worse, there may

occur cases where no single ordering makes all the pat-

terns in a network visible at the same time.

Despite these problems, Ghoniem et al. [24] demon-

strated experimentally that adjacency matrices allow

certain graph analysis tasks to be performed better than

with node-link diagrams. However, they also found

that tasks related to finding paths between nodes were

more difficult with adjacency matrices. Subsequently,

Henry and Fekete [25] and Shen and Ma [26] proposed

visual ways to make paths within a matrix easier to

see. Figure 5, bottom, and Figure 7, show Henry and

Fekete’s approach, called MatLink: the matrix is aug-

mented with arc diagrams drawn along the edges of the

matrix.

Henry and Fekete’s MatLink visualization also al-

lows users to select a node, and then roll their cursor

over other nodes, causing the shortest path between the

two nodes to be highlighted in response.

Like arc diagrams, adjacency matrices can have infor-

8 Tsinghua Science and Technology, August 2012, 17(4): 000-000

Fig. 6 Patterns corresponding to interesting subgraphs appear along the diagonal of an appropriately ordered adjacency ma-

trix.

Fig. 7 MatLink visualization of a random 50-node, 200-

edge graph, after barycenter ordering.

mation (such as labels) drawn beside each row or col-

umn. Matrices have the added advantage of also being

able to display information related to each edge within

the cells of the matrix. For example, if the edges are

weighted, this weight can be shown in the color of the

cell. Cells can also contain small graphics or glyphs, as

in Brandes and Nick’s “gestaltmatrix” [27] where each

cell contains a glyph showing the evolution of the edge

over time.

An important disadvantage of using adjacency matri-

ces, however, is that the space they require is O(N2)

where N is the number of nodes, as pointed out by

Henry and Fekete [25]. We next present a technique that

allows the labels of nodes to be drawn larger than with

arc diagrams or adjacency matrices, when constrained

to a window of the same size.

4 Circular Layouts

Figures 8 and 9 depict networks by positioning nodes

on the circumference of a circle. As illustrated in Fig-

ure 8, drawing edges as curves rather than straight lines

increases the readability of the drawings. Once again,

the order chosen for the nodes greatly influences how

clear the visualization is. The barycenter heuristic can

again be applied to this layout, with a slight modifica-

tion to account for the “wrap around” of the circular

layout.

Let C be the center of the circular layout. To draw

a curved arc between points A and B on the circumfer-

ence, we draw a circular arc that is tangent to the lines

Michael J. McGufffin: Simple Algorithms for Network Visualization: A Tutorial 9

Fig. 8 Circular layouts of a 43-node, 80-edge network, be-

fore (top, and bottom left) and after (middle, and bottom

right) barycenter ordering, with curved (top, and middle)

and straight (bottom) edges.

Fig. 9 Circular layout of a random 50-node, 200-edge

graph, after barycenter ordering.

AC and BC (Figure 10). The center C′ of the arc can be

found by finding the intersection between a line through

A that is perpendicular to AC, and a line through B that

is perpendicular to BC.

Fig. 10 A and B are two nodes connected by the arc drawn

in bold. AC and AC′ are perpendicular, as are BC and BC′.

To correctly adapt the barycenter heuristic to this lay-

out, consider how to compute the “average position” of

the neighbors of a node. As an example, if one neigh-

bor is positioned at an angle of 10 degrees, and an-

other is at an angle of 350 degrees, simply taking the

numerical average yields (10+ 350)/2 = 180 degrees,

whereas the intuitively correct barycenter is at 0 degrees

(or, equivalently, 360 degrees). So, to correctly compute

the barycenter, we do not compute averages of angles.

Instead, we convert each node to a unit vector in the ap-

propriate direction, add these unit vectors together, and

find the angle of the vector sum. Define the function

10 Tsinghua Science and Technology, August 2012, 17(4): 000-000

angle(p) = p*2*pi/N giving the angle of a node

at position p. Then, the pseudocode for the barycenter

heuristic becomes

1 // compute average position of neighbors

2 for i1 = 0 to N-1

3 node1 = nodes[i1]

4 p1 = positionOfNode(i1)

5* sum_x = cos(angle(p1))

6* sum_y = sin(angle(p1))

7 for j = 0 to node1.neighbors.length-1

8 i2 = node1.neighbors[j]

9 node2 = nodes[i2]

10 p2 = positionOfNode(i2)

11* sum_x = sum_x + cos(angle(p2))

12* sum_y = sum_y + sin(angle(p2))

13* orderedNodes[p1].average

14* = angleOfVector(sum_x,sum_y)

15

16 // sort the array according to the values of average

17 sort(orderedNodes, comparator)

The above pseudocode is very similar to the pseu-

docode given earlier for the barycenter heuristic. The

only differences appear at lines 5-6 and 11-14, marked

with stars after their line numbers. Line 14 calls a func-

tion angleOfVector() which simply computes the

angle of a vector relative to the positive x axis, and can

be implemented as:

function angleOfVector(x, y)

hypotenuse = sqrt(x*x + y*y)

theta = arcsin(y / hypotenuse)

if x < 0

theta = pi - theta

// Now theta is in [-pi/2,3*pi/2]

if theta < 0

theta = theta + 2*pi

// Now theta is in [0,2*pi]

return theta

Many improvements to the basic circular layout are

proposed by Gansner and Koren [28]. In addition, Circos
[29] (http://circos.ca) is another visualization technique

that uses a circular layout and curved arcs, though not

specifically for visualizing network data.

5 Comparison of Layout Techniques

The following table contrasts the layout techniques ac-

cording to several criteria:
node-link circular arc adjacency

diagram layout diagram matrix MatLink

Height of each node’s label O(1/
√

N) O(π/N) O(1/N) O(k1/N) O(k2/N)

(best) (worst)

Easy to perceive paths yes somewhat somewhat no somewhat

Avoids edge crossings no no no yes yes

Avoids ambiguity from edges no yes yes yes yes

passing close to nodes

Can depict an ordering of nodes no yes yes yes yes

Can depict information somewhat somewhat somewhat yes yes

about each edge

Node labels all have the same yes no yes yes yes

orientation, for easier reading

The first row of the table quantifies the space effi-

ciency of each layout. This is done by assuming that

each layout is confined to fill the same 1×1 square,

and by calculating the height of the labels on the nodes

as a function of the number N of nodes. For exam-

ple, in a node-link diagram, if we assume the nodes

are distributed uniformly, then each node should be

surrounded by an area of roughly (1/
√

N)× (1/
√

N)

within which a label can be displayed without over-

lapping neighboring nodes (although such labels will,

generally, overlap edges). The height of such a label,

therefore, will be proportional to 1/
√

N. The height of

the labels in the other layouts is always O(1/N), but

with different hidden constants. In particular, in an ad-

jacency matrix, the hidden constant is k1 < 1 because

margins must be reserved for the row and column la-

bels; and with MatLink, the hidden constant is k2 < k1

since even larger margins must be reserved to display

the arcs. Thus, the columns of the above table are or-

dered left-to-right, from best to worst space efficiency

in terms of label height.

To explain the second to last row in the above table,

we point out that information such as edge type or edge

weight can be depicted in node-link diagrams and other

non-matrix layouts by varying the color, thickness, or

opacity of edges. However, this has a limited ability to

convey information. Matrix-based layouts, on the other

hand, can display richer information (such as a glyph)

for each edge, because an entire cell is available for each

edge.

Designers may thus choose a layout from the above

table based on whatever criteria are most important to

them. Generally speaking, node-link diagrams may of-

ten be best for showing the topology of the network in

a clear and simple manner, so long as the network is

not too dense. Matrix-based layouts are potentially best

for dense networks, since they eliminate all inter-edge

occlusion. Arc diagrams may be best for integration

with other visual information, since they can be laid out

along a single axis of a larger diagram. Circular layouts

may be best for making labels on the nodes larger than

is possible with arc diagrams.

A Java applet demonstrating these lay-

outs, with open source code, is available at

http://www.michaelmcguffin.com/research/simpleNetVis/.

Michael J. McGufffin: Simple Algorithms for Network Visualization: A Tutorial 11

6 Elementary Node Metrics

Visualizations are often enriched by computing auto-

matic analyses of the data. For example, nodes in a lay-

out might be colored and/or ordered according to met-

rics of how important or central each node is. One such

metric is simply the degree deg(n) of the node n, i.e.,

the number of neighbors n has. Nodes with a high de-

gree can be expected to be more important. In this sec-

tion, we explain two other metrics that can be computed

rather easily for each node.

The first is the clustering coefficient of the node,

which is a measure of how interconnected the neighbors

of a node are. If a node n has k = deg(n) neighbors, then

there are up to k(k− 1)/2 edges between those neigh-

bors. The clustering coefficient of n is the fraction of

such edges actually present. A clustering coefficient of

zero means none are present (i.e., none of n’s neigh-

bors are neighbors of each other), and a coefficient of

1.0 means that n and its neighbors form a complete sub-

graph. If m is the number of edges present between the

neighbors, the clustering coefficient is m/(k(k−1)/2),

and can be computed with the following algorithm:

function clusteringCoefficient(i)

node = nodes[i]

deg = node.neighbors.length

if deg == 0

return 0 // this is arbitrary

if deg == 1

return 1 // this is arbitrary

count = 0 // num. edges present between neighbors

for j = 0 to deg-2

i2 = node.neighbors[j]

node2 = nodes[i2]

for k = j+1 to deg-1

i3 = node.neighbors[k]

node3 = nodes[i3]

if edgeExistsBetween(node2,node3)

count = count + 1

return count / (deg * (deg-1) / 2)

The last metric we discuss is related to the k-core de-

composition of a graph [30, 31]. To obtain the k-core of

a graph, we remove all nodes with degree lower than k,

updating the degrees of remaining nodes as we remove

lower-degree nodes. Figure 11 shows an example. Be-

cause all nodes in that figure initially have a degree of 1

or greater, the 1-core is the entire graph. Imagine then

removing all nodes of degree 1 (such as nodes “41” and

“42”), as well as all nodes whose degree has been re-

duced to 1 by the removal of other nodes (specifically,

node “40”). When nodes can no longer be removed,

we are left with the 2-core. We then remove nodes of

degree 2 to obtain the 3-core, etc. Notice that node

“18” initially has degree 6, but it is not part of a 6-core

or even the 3-core, because its neighbors “19” through

“22” are removed for having a degree of only 2, causing

the degree of “18” to drop to 2 and requiring it to also

be removed and excluded from the 3-core.

Fig. 11 k-core decomposition of a graph. Shaded regions

show the 1-core, 2-core, 3-core, and 4-core.

We then define the coreness of a node as the highest

integer k for which it is a member of the k-core. For

example, the coreness of node “18” is 2, whereas the

nodes “00” through “04” as well as “12” through “17”

have a coreness of 4.

The three metrics mentioned, degree, clustering coef-

ficient, and coreness, are just three of the many metrics

that have been proposed in the literature. (Another often

used metric is betweenness, which is more complicated

to compute. An efficient algorithm for it is given by

Brandes[32].) Any of these metrics can be used to clas-

sify nodes within a graph, and can be indicated using

colors, or using a numerical label beside each node, or

can be used to sort the nodes within an arc diagram or

other ordered layout. We can also position nodes on a

2D plane by mapping one metric to the x-axis and an-

other metric to the y-axis. Such an approach is some-

times called an attribute-driven layout, an excellent ex-

ample of which is found in GraphDice [33], a system

where the user may choose to map any metric or at-

tribute to either the x or y axes.

Much more information about network analysis, es-

12 Tsinghua Science and Technology, August 2012, 17(4): 000-000

pecially analysis of social networks, can be found in

Wasserman and Faust [34].

7 Further Reading

Readers interested in learning more are encouraged to

consult von Landesberger et al. [2], which is the most re-

cent and comprehensive survey of research on network

visualization. Nevertheless, in this section we provide

a brief, and necessarily incomplete, sampling of some

interesting topics for research, at times citing examples

of recent work.

7.1 Alternative Layouts and Visual Representations

We have already seen that the barycenter heuristic can

be used to reorder arc diagrams, matrices, and circular

layouts. The barycenter heuristic is only one of many

reordering algorithms (Liiv [19] and section 4.2 of Henry
[20]). A comprehensive analysis and comparison of dif-

ferent reordering algorithms, in terms of performance,

convergence, quality, etc., is still lacking in the litera-

ture.

Another useful network layout not discussed in the

previous sections is based on concentric circles, e.g.,

where the user selects some focal node(s) for the cen-

ter, and other nodes are assigned to progressively larger

circles based on a breadth-first traversal. Yee et al. [35]

present an example of this with cleverly designed ani-

mated transitions when the focal node changes.

Attribute-driven layouts position nodes based on

computed metrics and/or associated attributes of the

nodes. Two recent examples include [33, 36], which

plot nodes within scatterplots and parallel coordinates.

A closely-related way of visually representing a net-

work is presented by Kairam et al. [37], who generate

heatmaps as a function of network topology.

Many metrics can be computed on nodes to quantify

the “importance” of different nodes. Examples of met-

rics are discussed in [2, 33, 34, 36–38]. A comprehensive

survey and comparison of graph metrics is still lacking

in the literature.

Hive plots [38] are an interesting variant of the linear

arc diagrams already discussed, and might inspire fur-

ther variants in layout.

Researchers have also proposed hybrid approaches.

For example, some hybrid approaches are used to ap-

ply the most appropriate representation to different sub-

sets of the data. TopoLayout [39] detects subgraphs with

specific characteristics and applies an appropriate node-

link layout algorithm to each subgraph. Other hybrid

approaches mix matrix and node-link representations
[40, 41] or display variants of the standard adjacency ma-

trix [42, 43].

7.2 Simplified Visual Representations

Edge bundling has received much recent attention

in the literature; a few examples are [28, 44–47]. Edge

bundling involves routing curved edges so that they

overlap and share some of their length, to reduce vi-

sual clutter. The results can be aesthetically pleasing,

but often introduce ambiguity, since each edge entering

a bundle may exit in many different ways.

There are also related methods for visual simplifi-

cation that do not introduce any ambiguity. These in-

clude edge concentration [48], edge compression [49], the

“tracks” in confluent drawings [50], and power graphs
[51]. A key idea for many of these techniques is identi-

fying bicliques in the graph and replacing each biclique

with a visually simpler representation.

7.3 Interaction Techniques

Several rapid interaction techniques have been pro-

posed for navigating through networks [52] or perform-

ing other operations via popup widgets [42, 53–55], some

of which involve interaction using both hands simulta-

neously.

Interaction techniques involving curved edges have

also been explored, such as EdgeLens [56], and Edge

Plucking [57]. A survey of these and related techniques

is given in [58].

Multitouch interaction has become a popular topic

in human-computer interaction, and a few multitouch

techniques for interacting with networks have been pro-

posed [59, 60].

To date, there is no consistent and unifying user in-

terface that combines the best of all these interaction

techniques.

7.4 Dealing with Large Networks

The force-directed layout paradigm presented earlier

in this article does not scale well to large graphs. To

scale better with larger graphs, a common approach is to

compute a hierarchical clustering of the graph and per-

form a multilevel layout. Archambault et al.[39] briefly

survey such techniques, and propose their own hybrid

layout algorithm.

Topological fisheye views [61] exploit hierarchical

clustering to render a view of the network that de-

pends interactively on the user’s current focus: parts of

the network further from the focus are rendered more

Michael J. McGufffin: Simple Algorithms for Network Visualization: A Tutorial 13

coarsely.

GPU programming has been used to significantly ac-

celerate layout computations, as described by Frishman

and Tal [62], allowing larger networks to be visualized.

It has also been proposed that, in some situations, the

user may not be interested in seeing an overview of an

entire large network. Instead, the user can be shown a

single initial node, from which the user can expand out-

ward, toward neighbors of interest, expanding the con-

text as desired [63].

7.5 Graphs with Auxiliary Information

Graphs may be associated with additional informa-

tion that can be visualized beside, or on top of, the

graph. For example, one recent approach for visual-

izing subsets of nodes is given in [64], which also sur-

veys other approaches for visualizing subsets. This is

related to the challenge of visualizing a hypergraph, i.e.,

a graph with hyperedges that can be incident on more

than 2 nodes each.

7.6 Graphs from Multidimensional Data

Imagine a relational data table listing sales of prod-

ucts, with one column for the client identifier, one col-

umn for the product identifier, and other columns for

price, date, etc. Each row of the table corresponds to a

sale. From such a table, we might want to generate a

bipartite network of links between clients and products

sold to them, or we might instead want to generate a net-

work of clients with edges between two clients if they

bought the same product. Orion [65] and Ploceus [66] are

prototype software systems that allow such graphs to be

easily generated from a relational database and subse-

quently transformed.

Work in this vein can be thought of as a comple-

ment to attribute-driven layouts: GraphDice [33] and

other attribute-driven layouts [36] display a network us-

ing multidimensional visualization techniques (namely,

scatterplots and parallel coordinates), whereas Orion

and Ploceus visualize multidimensional data as net-

works.

7.7 Dynamic Graphs

Other recent work [22, 67–70] visualizes networks that

change over time, using small multiples, animation, or

by showing the differences between two instances of the

graph (e.g., at times t and t +1). Some visualizations of

dynamic graphs extend the adjacency matrix to show

the temporal dimension [27, 71]. Others identify clusters

within the graph and show overall changes of the clus-

ters over time (e.g., merging and splitting) [72, 73], rather

than emphasizing detailed topological information —

an appropriate approach for large dynamic graphs.

7.8 Evaluation

Lee et al. [74] identify several tasks related to visual-

ization and analysis of graphs. Such a reference list of

tasks can help make the design and evaluation of user

interfaces more systematic.

Many perceptual questions surrounding graph visu-

alization have been investigated, and many still remain

to be explored. One recent example is by Holten et al.
[75], who compared different ways of depicting directed

edges.

Another recent user study [76] compared layouts of

node-link diagrams generated algorithmically versus

those arranged manually by users.

8 Conclusion

We have presented some elementary layout and analysis

algorithms, and given a brief sampling of research top-

ics within network visualization. Hopefully, this will

whet the appetite of readers, encouraging them to track

down some interesting references and try their hand at

programming some of the algorithms given. The graph

visualization literature is already quite large and still

growing, but many challenges remain, and real-world

applications are found wherever graphs can be used to

model relationships or data.

References

[1] Ivan Herman, Guy Melançon, and M. Scott Mar-

shall. Graph visualization and navigation in in-

formation visualization: A survey. IEEE Trans-

actions on Visualization and Computer Graphics

(TVCG), 6(1):24–43, 2000.

[2] T. von Landesberger, A. Kuijper, T. Schreck,

J. Kohlhammer, J. J. van Wijk, J.-D. Fekete, and

D. W. Fellner. Visual analysis of large graphs. In

EuroGraphics: State of the Art Report, 2010.

[3] Giuseppe Di Battista, Peter Eades, Roberto

Tamassia, and Ioannis G. Tollis. Graph Draw-

ing: Algorithms for the Visualization of Graphs.

Prentice-Hall, 1999.

[4] Michael Kaufmann and Dorothea Wagner, editors.

Drawing Graphs: Methods and Models. Springer,

2001.

14 Tsinghua Science and Technology, August 2012, 17(4): 000-000

[5] David Auber. Tulip: A huge graph visualization

framework, 2004. A chapter (pp. 105–126) in

Michael Jünger and Petra Mutzel, editors, Graph

Drawing Software, Springer.

[6] D. Auber, D. Archambault, R. Bourqui, A. Lam-

bert, M. Mathiaut, P. Mary, M. Delest, J. Dubois,

and G. Melançon. The Tulip 3 framework: A scal-

able software library for information visualiza-

tion applications based on relational data. Techni-

cal Report RR-7860, INRIA Bordeaux Sud-Ouest,

2012.

[7] Vladimir Batagelj and Andrej Mrvar. Pajek – pro-

gram for large network analysis. Connections,

21(2), 1998.

[8] Paul Shannon, Andrew Markiel, Owen Ozier,

Nitin S. Baliga, Jonathan T. Wang, Daniel Ram-

age, Nada Amin, Benno Schwikowski, and Trey

Ideker. Cytoscape: A software environment for

integrated models of biomolecular interaction net-

works. Genome Research, 13:2498–2504, 2003.

[9] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko

Toda. Methods for visual understanding of hier-

archical system structures. IEEE Transactions on

Systems, Man, and Cybernetics, SMC-11(2):109–

125, February 1981.

[10] Peter Eades. A heuristic for graph drawing. Con-

gressus Numerantium, 42:149–160, 1984.

[11] Thomas M. J. Fruchterman and Edward M. Rein-

gold. Graph drawing by force-directed placement.

Software: Practice and Experience, 21(11):1129–

1164, 1991.

[12] Chun-Cheng Lin and Hsu-Chun Yen. A new force-

directed graph drawing method based on edge-

edge repulsion. Journal of Visual Languages and

Computing, 29(1):29–42, 2012.

[13] Andreas Noack. Energy-based clustering of

graphs with nonuniform degrees. In Proceedings

of Symposium on Graph Drawing (GD), 2005.

[14] Tomihisa Kamada and Satoru Kawai. An algo-

rithm for drawing general undirected graphs. In-

formation Processing Letters, 31(1):7–15, 1989.

[15] Emden R. Gansner, Yehuda Koren, and Stephen

North. Graph drawing by stress majorization.

In Proceedings of Symposium on Graph Drawing

(GD), 2004.

[16] Arne Frick, Andreas Ludwig, and Heiko Mehldau.

A fast adaptive layout algorithm for undirected

graphs. In Proceedings of Symposium on Graph

Drawing (GD), 1994.

[17] Martin Wattenberg. Arc diagrams: Visualizing

structure in strings. In Proceedings of IEEE

Symposium on Information Visualization (Info-

Vis), pages 110–116, 2002.

[18] Jacques Bertin. Sémiologie graphique: Les di-

agrammes, Les réseaux, Les cartes. Éditions

Gauthier-Villars, Paris, 1967. (2nd edition 1973,

English translation 1983).

[19] Innar Liiv. Seriation and matrix reordering meth-

ods: An historical overview. Statistical Analysis

and Data Mining, 3(2):70–91, April 2010.

[20] Nathalie Henry. Exploring Social Networks with

Matrix-based Representations. PhD thesis, Uni-

versité Paris Sud, France, and University of Syd-

ney, Australia, 2008.

[21] Erkki Mäkinen and Harri Siirtola. The barycenter

heuristic and the reorderable matrix. Informatica,

29(3):357–363, 2005.

[22] Martin Greilich, Michael Burch, and Stephan

Diehl. Visualizing the evolution of compound di-

graphs with TimeArcTrees. Computer Graphics

Forum, 28(3):975–982, 2009.

[23] A. Johannes Pretorius and Jarke J. van Wijk.

Visual analysis of multivariate state transition

graphs. IEEE Transactions on Visualization

and Computer Graphics (TVCG), 12(5):685–692,

2006.

[24] Mohammad Ghoniem, Jean-Daniel Fekete, and

Philippe Castagliola. On the readability of graphs

using node-link and matrix-based representations:

Controlled experiment and statistical analysis. In-

formation Visualization, 4(2):114–135, 2005.

[25] Nathalie Henry and Jean-Daniel Fekete. MatLink:

Enhanced matrix visualization for analyzing so-

cial networks. In Proceedings of IFIP TC13 In-

ternational Conference on Human-Computer In-

teraction (INTERACT), pages 288–302, 2007.

Michael J. McGufffin: Simple Algorithms for Network Visualization: A Tutorial 15

[26] Zeqian Shen and Kwan-Liu Ma. Path visualiza-

tion for adjacency matrices. In Proceedings of

Eurographics/IEEE-VGTC Symposium on Visual-

ization (EuroVis), pages 83–90, 2007.

[27] Ulrik Brandes and Bobo Nick. Asymmetric rela-

tions in longitudinal social networks. IEEE Trans-

actions on Visualization and Computer Graphics

(TVCG), 17(12):2283–2290, 2011.

[28] Emden Gansner and Yehuda Koren. Improved cir-

cular layouts. In Proceedings of Symposium on

Graph Drawing (GD), pages 386–398, 2006.

[29] Martin I. Krzywinski, Jacqueline E. Schein, Inanc

Birol, Joseph Connors, Randy Gascoyne, Doug

Horsman, Steven J. Jones, and Marco A. Marra.

Circos: An information aesthetic for comparative

genomics. Genome Research, 2009.

[30] Vladimir Batagelj and Matjaž Zaveršnik. An O(m)

algorithm for cores decomposition of networks,

2003. http://arxiv.org/abs/cs/0310049v1.

[31] Ignacio Alvarez-Hamelin, Luca Dall’Asta,

Alain Barrat, and Alessandro Vespignani.

k-core decomposition: a tool for the vi-

sualization of large scale networks, 2005.

http://arxiv.org/abs/cs/0504107v2.

[32] Ulrik Brandes. A faster algorithm for between-

ness centrality. Journal of Mathematical Sociol-

ogy, 25(2):163–177, 2001.

[33] Anastasia Bezerianos, Fanny Chevalier, Pierre

Dragicevic, Niklas Elmqvist, and Jean-Daniel

Fekete. GraphDice: A system for exploring mul-

tivariate social networks. Computer Graphics Fo-

rum, 29(3):863–872, 2010.

[34] Stanley Wasserman and Katherine Faust. Social

Network Analysis. Cambridge University Press,

1994.

[35] Ka-Ping Yee, Danyel Fisher, Rachna Dhamija,

and Marti Hearst. Animated exploration of dy-

namic graphs with radial layout. In Proceedings

of IEEE Symposium on Information Visualization

(InfoVis), pages 43–50, 2001.

[36] Christophe Viau, Michael J. McGuffin, Yves

Chiricota, and Igor Jurisica. The FlowVizMenu

and parallel scatterplot matrix: Hybrid multidi-

mensional visualizations for network exploration.

IEEE Transactions on Visualization and Computer

Graphics (TVCG), 16(6):1100–1108, 2010.

[37] Sanjay Kairam, Diana MacLean, Manolis Savva,

and Jeffrey Heer. GraphPrism: Compact visual-

ization of network structure. In Proceedings of

ACM Advanced Visual Interfaces (AVI), 2012.

[38] Martin Krzywinski, Inanc Birol, Steven J. M.

Jones, and Marco A. Marra. Hive plots – ratio-

nal approach to visualizing networks. Briefings in

Bioinformatics, 2011. http://www.hiveplot.com/.

[39] Daniel Archambault, Tamara Munzner, and David

Auber. TopoLayout: Multilevel graph layout

by topological features. IEEE Transactions on

Visualization and Computer Graphics (TVCG),

13(2):305–317, 2007.

[40] Nathalie Henry, Jean-Daniel Fekete, and

Michael J. McGuffin. NodeTrix: A hybrid

visualization of social networks. IEEE Transac-

tions on Visualization and Computer Graphics

(TVCG), 13(6):1302–1309, 2007.

[41] Sébastien Rufiange, Michael J. McGuffin, and

Christopher P. Fuhrman. TreeMatrix: A hybrid

visualization of compound graphs. Computer

Graphics Forum, 31(1):89–101, 2012.

[42] Anastasia Bezerianos, Pierre Dragicevic, Jean-

Daniel Fekete, Juhee Bae, and Ben Watson. Ge-

neaQuilts: A system for exploring large genealo-

gies. IEEE Transactions on Visualization and

Computer Graphics (TVCG), 16(6):1073–1081,

2010.

[43] Juhee Bae and Benjamin A. Watson. Developing

and evaluating quilts for the depiction of large lay-

ered graphs. IEEE Transactions on Visualization

and Computer Graphics (TVCG), 17(12):2268–

2275, 2011.

[44] Danny Holten. Hierarchical edge bundles: Visual-

ization of adjacency relations in hierarchical data.

IEEE Transactions on Visualization and Computer

Graphics (TVCG), 12(5):741–748, 2006.

[45] Danny Holten and Jarke J. van Wijk. Force-

directed edge bundling for graph visualiza-

tion. Computer Graphics Forum (EuroVis 2009),

28(3):983–990, 2009.

16 Tsinghua Science and Technology, August 2012, 17(4): 000-000

[46] Sergey Pupyrev, Lev Nachmanson, and Michael

Kaufmann. Improving layered graph layouts with

edge bundling. In International Symposium on

Graph Drawing (GD), 2010.

[47] Ozan Ersoy, Christophe Hurter, Fernando V.

Paulovich, Gabriel Cantareira, and Alexandru

Telea. Skeleton-based edge bundling for graph vi-

sualization. IEEE Transactions on Visualization

and Computer Graphics (TVCG), 17(12):2364–

2373, 2011.

[48] Frances J. Newbery. Edge concentration: A

method for clustering directed graphs. In Proceed-

ings International Workshop on Software Config-

uration Management (SCM), pages 76–85, 1989.

[49] Frank van Ham, Martin Wattenberg, and Fer-

nanda B. Viégas. Mapping text with phrase nets.

IEEE Transactions on Visualization and Computer

Graphics (TVCG), 15(6):1169–1176, 2009.

[50] Matthew Dickerson, David Eppstein, Michael T.

Goodrich, and Jeremy Yu Meng. Confluent draw-

ings: Visualizing non-planar diagrams in a planar

way. In International Symposium on Graph Draw-

ing (GD), 2003.

[51] Loı̈c Royer, Matthias Reimann, Bill Andreopou-

los, and Michael Schroeder. Unraveling protein

networks with power graph analysis. PLoS Com-

putational Biology, 4(7), 2008.

[52] Tomer Moscovich, Fanny Chevalier, Nathalie

Henry, Emmanuel Pietriga, and Jean-Daniel

Fekete. Topology-aware navigation in large net-

works. In Proceedings of ACM Conference on Hu-

man Factors in Computing Systems (CHI), 2009.

[53] Michel Beaudouin-Lafon, Wendy E. Mackay,

Peter Andersen, Paul Janecek, Mads Jensen,

Michael Lassen, Kasper Lund, Kjeld Mortensen,

Stephanie Munck, Anne Ratzer, Katrine Ravn,

Søren Christensen, and Kurt Jensen. CPN/Tools:

A post-WIMP interface for editing and simulating

coloured petri nets. In Proc. International Con-

ference on Application and Theory of Petri Nets

(ICATPN), pages 71–80, 2001.

[54] Michael J. McGuffin and Ravin Balakrishnan. In-

teractive visualization of genealogical graphs. In

Proceedings of IEEE Symposium on Information

Visualization (InfoVis), pages 17–24, 2005.

[55] Michael J. McGuffin and Igor Jurisica. Inter-

action techniques for selecting and manipulating

subgraphs in network visualizations. IEEE Trans-

actions on Visualization and Computer Graphics

(TVCG), 15(6):937–944, 2009.

[56] Nelson Wong, Sheelagh Carpendale, and Saul

Greenberg. EdgeLens: An interactive method for

managing edge congestion in graphs. In Proceed-

ings of IEEE Symposium on Information Visual-

ization (InfoVis), pages 51–58, 2003.

[57] Nelson Wong and Sheelagh Carpendale. Sup-

porting interactive graph exploration using edge

plucking. In Proceedings of Visualization and

Data Analysis (VDA), 2007.

[58] Nathalie Henry Riche, Tim Dwyer, Bongshin Lee,

and Sheelagh Carpendale. Exploring the design

space of interactive link curvature in network dia-

grams. In Proceedings of ACM Advanced Visual

Interfaces (AVI), 2012.

[59] Mathias Frisch, Jens Heydekorn, and Raimund

Dachselt. Investigating multi-touch and pen ges-

tures for diagram editing on interactive surfaces.

In Proceedings of ACM International Conference

on Interactive Tabletops and Surfaces (ITS), 2009.

[60] Sebastian Schmidt, Miguel A. Nacenta, Raimund

Dachselt, and Sheelagh Carpendale. A set of

multi-touch graph interaction techniques. In Pro-

ceedings of ACM International Conference on In-

teractive Tabletops and Surfaces (ITS), 2010.

[61] Emden R. Gansner, Yehuda Koren, and Stephen C.

North. Topological fisheye views for visualizing

large graphs. IEEE Transactions on Visualization

and Computer Graphics (TVCG), 11(4):457–468,

2005.

[62] Yaniv Frishman and Ayellet Tal. Multi-level

graph layout on the GPU. IEEE Transactions

on Visualization and Computer Graphics (TVCG),

13(6):1310–1319, 2007.

[63] Frank van Ham and Adam Perer. “search,

show context, expand on demand”: Supporting

large graph exploration with degree-of-interest.

IEEE Transactions on Visualization and Computer

Graphics (TVCG), 15(6):953–960, 2009.

Michael J. McGufffin: Simple Algorithms for Network Visualization: A Tutorial 17

[64] Basak Alper, Nathalie Henry Riche, Gonzalo

Ramos, and Mary Czerwinski. Design study

of LineSets, a novel set visualization technique.

IEEE Transactions on Visualization and Computer

Graphics (TVCG), 17(12):2259–2267, 2011.

[65] Jeffrey Heer and Adam Perer. Orion: A sys-

tem for modeling, transformation and visualiza-

tion of multidimensional heterogeneous networks.

In Proceedings of IEEE Visual Analytics Science

and Technology (VAST), 2011.

[66] Zhicheng Liu, Shamkant B. Navathe, and John T.

Stasko. Network-based visual analysis of tabular

data. In Proceedings of IEEE Visual Analytics Sci-

ence and Technology (VAST), 2011.

[67] Daniel Archambault, Helen C. Purchase, and

Bruno Pinaud. Difference map readability for dy-

namic graphs. In Proceedings of Symposium on

Graph Drawing (GD), pages 50–61, 2010.

[68] Daniel Archambault, Helen C. Purchase, and

Bruno Pinaud. Animation, small multiples, and

the effect of mental map preservation in dy-

namic graphs. IEEE Transactions on Visualization

and Computer Graphics (TVCG), 17(4):539–552,

2011.

[69] Loutfouz Zaman, Ashish Kalra, and Wolfgang

Stuerzlinger. The effect of animation, dual view,

difference layers, and relative re-layout in hierar-

chical diagram differencing. In Proc. Graphics In-

terface (GI), pages 183–190, 2011.

[70] Steffen Hadlak, Hans-Jörg Schulz, and Heidrun

Schumann. In situ exploration of large dynamic

networks. IEEE Transactions on Visualization and

Computer Graphics (TVCG), 17(12):2334–2343,

2011.

[71] Ji Soo Yi, Niklas Elmqvist, and Seungyoon Lee.

TimeMatrix: Analyzing temporal social networks

using interactive matrix-based visualizations. In-

ternational Journal of Human-Computer Interac-

tion, 26:1031–1051, 2010.

[72] Martin Rosvall and Carl T. Bergstrom. Mapping

change in large networks. PLoS ONE, 5(1), 2010.

[73] Khairi Reda, Chayant Tantipathananandh, An-

drew Johnson, Jason Leigh, and Tanya Berger-

Wolf. Visualizing the evolution of community

structures in dynamic social networks. Computer

Graphics Forum, 30(3):1061–1070, 2011.

[74] Bongshin Lee, Catherine Plaisant, Cynthia Sims

Parr, Jean-Daniel Fekete, and Nathalie Henry.

Task taxonomy for graph visualization. In Pro-

ceedings of AVI workshop BEyond time and er-

rors: novel evaLuation methods for Information

Visualization (BELIV), 2006.

[75] Danny Holten, Petra Isenberg, Jarke J. van Wijk,

and Jean-Daniel Fekete. An extended evaluation

of the readability of tapered, animated, and tex-

tured directed-edge representations in node-link

graphs. In Proceedings of IEEE Pacific Visualiza-

tion (PacificVis), pages 195–202, 2011.

[76] Tim Dwyer, Bongshin Lee, Danyel Fisher,

Kori Inkpen Quinn, Petra Isenberg, George

Robertson, and Chris North. A comparison

of user-generated and automatic graph layouts.

IEEE Transactions on Visualization and Computer

Graphics (TVCG), 15(6):961–968, 2009.

