
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNl l 1007 -0214l l 01 /12l l pp1 -16
Volume 17, Number 4, August 2012

Simple Algorithms for Network Visualization: A Tutorial �

Michael J. McGuf�n ��

Department of Software and IT Engineering,École de technologie suṕerieure, Montr éal, H3C 1K3, Canada

Abstract: The graph drawing and information visualization communities have developed many sophisticated tech-

niques for visualizing network data, often involving complicated algorithms that are dif�cult for the uninitiated to

learn. This article is intended for beginners who are interested in programming their own network visualizations, or

for those curious about some of the basic mechanics of graph visualization. Four easy-to-program network layout

techniques are discussed, with details given for implementing each one: force-directed node-link diagrams, arc

diagrams, adjacency matrices, and circular layouts. A Java applet demonstrating these layouts, with open source

code, is available at http://www.michaelmcguf�n.com/research/simpleNetVis/. The end of this article also brie�y

surveys research topics in graph visualization, pointing readers to references for further reading.

Key words: network visualization; graph visualization; graph drawing; node-link diagram; force-directed layout; arc
diagram; adjacency matrix; circular layout; tutorial

Introduction

Networks are increasingly encountered in numer-
ous �elds of study. A wide variety of situations
can be modelled using networks (i.e., graphs), and
many data sets are most naturally interpreted and de-
picted as networks. Comprehensive surveys of tech-
niques for network visualization are available[1,2], and
an entire discipline calledgraph drawing has ma-
tured, with its own annual conference and associated
surveys[3,4]. Several feature-rich software packages
for network visualization are freely available, including
Tulip [5,6] (http://www.tulip-software.org/), Graphviz
(http://www.graphviz.org/), Gephi (http://gephi.org/),
Pajek [7] (http://pajek.imfm.si/), and Cytoscape[8]

(http://www.cytoscape.org/).
Despite the availability of such software, researchers,

students, and others who are competent at programming

Received: ; Accepted:
� Supported by the Natural Sciences and Engineering Re-

search Council of Canada
�� To whom correspondence should be addressed.

E-mail: michael.mcguf�n@etsmtl.ca Tel: +1-514-685-6514

may wish to implement their own network visualiza-
tions. This may be to implement a visualization on a
new computing platform, or to integrate a visualization
within a larger software application. It may also be to
learn the details of network visualizations, possibly as
the �rst step of a research project. Finally, certain visu-
alization techniques, such as adjacency matrix visual-
ization, are poorly supported by existing packages, but
may be implemented from the ground up in new soft-
ware.

For those wishing to implement their own visualiza-
tions, the breadth of existing surveys of techniques[1–4],
covering hundreds of references, may be daunting. Fur-
thermore, most graph drawing algorithms that compute
the positions of nodes in a visualization are non-trivial
to implement, and some require that multiple papers be
studied before the details of a single algorithm are un-
derstood.

Fortunately, there are some basic network visualiza-
tion algorithms that are easy to understand and imple-
ment. This article discusses such algorithms, and gives
suf�cient detail for a competent programmer to imple-
ment them. Contrary to current textbooks on visual-
ization, this article presents a synthesis of matrix and



2 Tsinghua Science and Technology, August2012, 17(4): 000-000

non-matrix approaches for visualizing networks, show-
ing how they can be combined, and how an ordering al-
gorithm (the barycenter heuristic) can be used for both.

After presenting simple algorithms for computing
different graph layouts, Section 6 presents simple met-
rics for network analysis. Finally, Section 7 surveys re-
search topics in graph visualization with references to
examples in the literature, to serve as launching points
for researchers and students.

1 Force-Directed Layout of Node-Link Dia-
grams

Fig. 1 Force-directed node-link diagrams of a 43-node, 80-
edge network. Top: a low spring constant makes the edges
more �exible. Bottom: a high spring constant makes them
more stiff.

We use the termnetworkas a synonym forgraph, which
can be de�ned as an ordered pair(N;E) of a setN of
nodes and a setE of edges. In anundirected graph,
each edge is an unordered pair of nodes, i.e.,E �
ff x;ygjx;y 2 Ng. Two nodesn1;n2 2 N areadjacentif
and only if there exists an edgef n1;n2g 2 E, in which
casen1 andn2 areneighbors. Thedegreeof a node is
the number of neighbors it has. In adirected graph,
each edge is an ordered pair, i.e.,E � f (x;y)jx;y 2 Ng,
and the edge(x;y) is distinct from the edge(y;x). We
will be concerned primarily with undirected graphs.

The most common graphical representation of a net-
work is a node-link diagram, where each node is shown
as a point, circle, polygon, or some other small graph-
ical object, and each edge is shown as a line segment
or curve connecting two nodes. Many sophisticated al-
gorithms exist for computing the positions of nodes and
edges in such diagrams, such as the Sugiyama-Tagawa-
Toda algorithm[9] , which positions nodes on the levels
of a hierarchical layout. We will instead consider a class
of algorithms based onforce-directed layout[10,11] for
positioning the nodes. We imagine the nodes as physi-
cal particles that are initialized with random positions,
but are gradually displaced under the effect of various
forces, until they arrive at a �nal position. The forces
are de�ned by the chosen algorithm, and typically seek
to position adjacent nodes near each other, but not too
near.

Speci�cally, imagine that we simulate two forces:
a repulsive force betweenall pairs of nodes, and a
spring force between all pairs ofadjacentnodes. Let
d be the current distance between two nodes, and de-
�ne the repulsive force between them to beFr = Kr=d2

(a de�nition inspired by inverse-square laws such as
Coulomb's law), whereKr is some constant. If the
nodes are adjacent, let the spring force between them be
Fs = Ks(d � L) (inspired by Hooke's law), whereKs is
the spring constant andL is the rest length of the spring
(i.e., the length “preferred” by the edge, ignoring the
repulsive force).

To implement this force-directed layout, assume that
the nodes are stored in an arraynodes[] , where each
element of the array contains a positionx, y and the net
force force_x , force_y acting on the node. The
forces are simulated in a loop that computes the net
forces at each time step and updates the positions of
the nodes, hopefully until the layout converges to some
usefully distributed positions. Fig. 1 shows the results
of many iterations of such a loop. The inner body of the
simulation loop could be implemented like this:

1 L = ... // spring rest length
2 K_r = ... // repulsive force constant
3 K_s = ... // spring constant
4 delta_t = ... // time step
5
6 N = nodes.length
7
8 // initialize net forces
9 for i = 0 to N-1

10 nodes[i].force_x = 0
11 nodes[i].force_y = 0
12
13 // repulsion between all pairs



Michael J. McGuff�n: Simple Algorithms for Network Visualization: A Tutorial 3

14 for i1 = 0 to N-2
15 node1 = nodes[i1]
16 for i2 = i1+1 to N-1
17 node2 = nodes[i2]
18 dx = node2.x - node1.x
19 dy = node2.y - node1.y
20 if dx != 0 or dy != 0
21 distanceSquared = dx * dx + dy * dy
22 distance = sqrt( distanceSquared )
23 force = K_r / distanceSquared
24 fx = force * dx / distance
25 fy = force * dy / distance
26 node1.force_x = node1.force_x - fx
27 node1.force_y = node1.force_y - fy
28 node2.force_x = node2.force_x + fx
29 node2.force_y = node2.force_y + fy
30
31 // spring force between adjacent pairs
32 for i1 = 0 to N-1
33 node1 = nodes[i1]
34 for j = 0 to node1.neighbors.length-1
35 i2 = node1.neighbors[j]
36 node2 = nodes[i2]
37 if i1 < i2
38 dx = node2.x - node1.x
39 dy = node2.y - node1.y
40 if dx != 0 or dy != 0
41 distance = sqrt( dx * dx + dy * dy )
42 force = K_s * ( distance - L )
43 fx = force * dx / distance
44 fy = force * dy / distance
45 node1.force_x = node1.force_x + fx
46 node1.force_y = node1.force_y + fy
47 node2.force_x = node2.force_x - fx
48 node2.force_y = node2.force_y - fy
49
50 // update positions
51 for i = 0 to N-1
52 node = nodes[i]
53 dx = delta_t * node.force_x
54 dy = delta_t * node.force_y
55 displacementSquared = dx * dx + dy * dy
56 if ( displacementSquared

> MAX_DISPLACEMENT_SQUARED )
57 s = sqrt( MAX_DISPLACEMENT_SQUARED

/ displacementSquared )
58 dx = dx * s
59 dy = dy * s
60 node.x = node.x + dx
61 node.y = node.y + dy

Lines 8 through 61 would be inside a loop that repeats
hundreds or thousands of times, causing the nodes to
move toward their �nal positions.

In the repulsive computation step (lines 13-29), we
need to visit every pair of nodes once. Note, however,
that the pair of nodes corresponding toi1=3 , i2=7
would be the same as that corresponding toi1=7 ,
i2=3 . Hence, to avoid visiting the same pairs twice,
line 16 begins iterating ati2=i1+1 rather thani2=0 ,
to ensurei1 < i2 .

Similarly, in the spring force step (lines 31-48), we
avoid visiting the same adjacent pairs twice with line

37.
The computation of the repulsive and spring forces

is inspired by physical forces (Coulomb's law and
Hooke's law). However, for simplicity we do not store
a velocity for each node, and the forces serve only to
update the positions of nodes (lines 50-61) in a quasi-
physical manner, without acceleration.

If the time stepdelta_t (used at lines 53, 54) is too
small, many iterations will be needed to converge. On
the other hand, if the time step is too large, or if the net
forces generated are too large, the positions of nodes
may oscillate and never converge. Line 56 imposes a
limit on such movement. As a minor optimization, line
56 compares squares (i.e.,displacementSquared
> MAX_DISPLACEMENT_SQUAREDrather than
displacement > MAX_DISPLACEMENT), to avoid
the cost of computing a square root (unless theif
succeeds).

A minor improvement to the above pseudocode
would be to detect if the distance between two nodes
is zero (by adding anelse clause to theif statement
at line 20), and in that case to generate a small force
between the two nodes in some random direction, to
push them apart. Without this, if the two nodes happen
to have the same neighbors, they may remain forever
“stuck” to each other.

A user might interact with a force-directed layout by
selecting and moving nodes with their mouse, or by us-
ing sliders to interactively adjust the values ofL, K_r ,
K_s, or delta_t . It is not necessarily useful, how-
ever, to allow the user to adjustK_r andK_s indepen-
dently. There are in�nitely many pairs of (Kr , Ks) val-
ues that cause the layout to converge to the same �nal
“shape” (i.e., the same angles between edges, differing
only in edge lengths). A simpler user interface would
allow the user to change a single parameter correspond-
ing to a kind of ratio of the strength of the two forces.
TakingKr=Ks as this ratio is not ideal, however, because
such a ratio is not dimensionless, and the �nal shape of
the layout will depend on bothKr=Ks andL.

Fortunately, we can rewrite the force equations as
Fr = Kr=d2 = K0

r=(d=L)2, andFs = Ks(d � L) = K0
s(d �

L)=L, yielding the constantsK0
r and K0

s both in force
units. Then, the ratioR= K0

r=K0
s = Kr=(KsL3) is dimen-

sionless, and can be controlled by the user with a single
slider as a way of controlling the �nal shape of the lay-
out. This �nal shape will depend only onRand be inde-
pendent ofL, which can also be controlled by the user to
change the scale of the layout. So, given any values for



4 Tsinghua Science and Technology, August2012, 17(4): 000-000

R (chosen by the user),L (possibly also chosen by the
user), andKr (having some hardcoded value), the soft-
ware could computeKs = Kr=(RL3) and simulate the
forces using the updated constants to converge to a new
layout. Fig. 1, top and bottom, show the result of a high
and lowRvalue, respectively. (For concreteness, Fig. 1,
top, was produced withL = 50,K_r = 6250,K_s = 1,
delta_t = 0.04,R= 0.05.)

Many variations on the forces used in the layout are
possible. For example, rather than an inverse-square re-
pulsionFr = Kr=d2, we could de�neFr = Kr=dp with a
variable exponentp. It could also be interesting to ex-
periment with a tangential force that pushes apart the
neighbors of each noden, to distribute them evenly
aroundn (compare this idea to[12]). As another ex-
ample, Noack[13] proposes a model depending on the
degree of the nodes: nodes with high degree repel other
nodes more strongly, helping to spread apart clusters of
nodes.

In the pseudocode above, the computation of repul-
sive forces is a bottleneck, since it requiresO(N2) time,
whereN is the number of nodes. This bottleneck can
be eliminated by various means. For example, we
could eliminate the repulsive force, and instead simu-
late springs of lengthL between all adjacent nodes, as
well as springs of length 2L between all nodes that are
two edges apart, and possibly springs of length 3L be-
tween nodes that are three edges apart, etc., up to some
limit. (This is closely related to the approach of Ka-
mada and Kawai[14] and Gansner et al.[15].) The extra
springs would help to spread apart the network, as did
the original repulsive forces. As long as the number of
edges is not too high, and there aren't too many springs,
the computation time may be much less thanO(N2).

Also, in the above pseudocode, it is unclear how to
choose the best value fordelta_t . The GEM[16] al-
gorithm speeds up convergence by decreasing a “tem-
perature” parameter as the layout progresses, allowing
nodes to move larger distances earlier in the process,
and then constraining their movements progressively to-
ward the end.

Fig. 2 shows a force-directed layout generated for a
relatively small random graph. As can be seen, the mul-
tiple crossings of edges can make it unclear when cer-
tain edges pass close to a node or are connected to a
node. Also, in such layouts where the nodes are rather
closely packed, there isn't much room left to display
labels or other information associated with each node.
The following sections present alternative ways of de-

Fig. 2 Force-directed node-link diagram of a random 50-
node, 200-edge graph.

picting networks that address these problems.

2 Arc Diagrams and Barycenter Ordering

It is sometimes useful to layout the nodes of a network
along a straight line, in what might be calledlineariza-
tion. With such a layout, edges can be drawn as circular
arcs (Figure 3), yielding anarc diagram. This layout
leaves much room to the right of the nodes, useful for
long labels or other information to show for each node.
The nodes may also be sorted in different ways.

Arc diagrams were independently discovered and
proposed by Wattenberg[17] as a way of visual-
izing repeating substrings within a string of data,
such as repeating phrases within a piece of music
(http://www.bewitched.com/song.html). However, as
with several other visualization techniques, an earlier
example can be found in a single �gure of Bertin's work
[18], that shows a network with nodes on a linear layout
and edges drawn as 180-degree arcs. (Interestingly, in
Wattenberg's work, the thickness of arcs is varied, to
show the length of substrings.)

It is important that the arcs in the diagram all cover
the same angle, such as 180 degrees. This way, an arc
between nodesn1 andn2 will extend outward by a dis-
tance proportional to the distance betweenn1 and n2,



Michael J. McGuff�n: Simple Algorithms for Network Visualization: A Tutorial 5

Fig. 3 Arc diagrams of a 43-node, 80-edge network. Left:
with a random ordering and 180-degree arcs. Middle: after
applying the barycenter heuristic to order the nodes. Right:
after changing the angles of the arcs to 100 degrees.

making it easier to disambiguate the arcs. However, it
is not necessary that the arcs cover a 180 degree angle.
Figure 3, right, shows an arc diagram where all arcs
cover 100 degrees.

To program a subroutine that draws an arc covering
angleq connecting pointsA = ( x;y1) andB = ( x;y2),
we need to �nd the centerC of the arc. Figure 4 shows
a right triangle connectingA, C, and the midpoint be-
tweenA andB. The length of one side of the triangle is
d = jy1 � y2j=2, and we also have tanq=2 = d=e, hence
C = ( x+ e;(y1 + y2)=2) wheree= d=(tanq=2).

Fig. 4 An arc covering angleq, with center C.

The nodes within an arc diagram might be sorted in
various ways. For example, if each node has an asso-
ciated label, and represents an object with a size, time-
stamp, or other attribute, the nodes in the arc diagram

might be sorted alphabetically, or by size, time, etc.,
helping the user to analyze the network. Furthermore,
every node has a degree, as well as additional metrics
that can be computed (later we discuss how to compute
the clustering coef�cientand corenessof each node),
and any of these might be used to sort the nodes within
the linear ordering of an arc diagram.

We might also order the nodes to reduce the length
of the arcs, making the topology of the network eas-
ier to understand. There are many algorithms for com-
puting such an ordering (see Liiv[19] and section 4.2
of Henry [20]), however, we will discuss an easy-to-
program technique called the barycenter heuristic[9,21].
The barycenter heuristic is an iterative technique where
we compute the average position (or “barycenter”) of
the neighbors of each node, and then sort the nodes by
this average position, and then repeat. Intuitively, this
should move nodes closer to their neighbors, making
the arcs shorter.

To implement a reordering algorithm, one approach
might be to reorder the elements of thenodes[] ar-
ray used in the previous section. However, this may
not be convenient because the edges from nodes to
their neighbors are typically stored as pointers, refer-
ences, or indices (in the previous section, indices within
nodes[].neighbors[] ), and these would need to
be updated if the nodes are relocated in memory. Fur-
thermore, if each element of thenodes[] array con-
tains additional data (like a name, color, or other meta-
data for the node), then reordering the array might in-
volve moving a lot of data around the memory.

Instead, we will assume that thenodes[] array
is �xed, and use a second data structure to store
the current ordering of nodes to use for the arc di-
agram. Let this second data structure be an array
orderedNodes[] , having one element for each
node. We will use the termindex to refer to a node's
�xed location within nodes[] , andpositionto refer to
the node's current location withinorderedNodes[] .
Each element of orderedNodes[] will store
an index and an average . For example,
if orderedNodes[3].index == 7 , then
orderedNodes[3] corresponds tonodes[7] ,
and nodes[7] is to be displayed at position 3 in
the arc diagram. To �nd the index corresponding to
a given position, we can simply perform a look-up in
orderedNodes[] . To perform an inverse look-up,
we de�ne a function that computes the positionp of a
node given its indexi :



6 Tsinghua Science and Technology, August2012, 17(4): 000-000

function positionOfNode( i )
for p = 0 to N-1

if orderedNodes[p].index == i
return p

Note that this function performs a linear-time search.
A slightly more complicated, but much faster, imple-
mentation would cache the positions within the ele-
ments ofnodes[] and lazily update them:

function positionOfNode( i )
if orderedNodes[ nodes[i].position ].index != i

// The cached position is not valid.
// Update ALL the cached positions
// so they will be valid next time.
for p = 0 to N-1

nodes[ orderedNodes[p].index ].position = p
return nodes[i].position

Given either implementation above of
positionOfNode() , we can implement the
inner body of the barycenter heuristic like this:

1 // compute average position of neighbors
2 for i1 = 0 to N-1
3 node1 = nodes[i1]
4 p1 = positionOfNode(i1)
5 sum = p1
6 for j = 0 to node1.neighbors.length-1
7 i2 = node1.neighbors[j]
8 node2 = nodes[i2]
9 p2 = positionOfNode(i2)

10 sum = sum + p2
11 orderedNodes[p1].average = sum

/ ( node1.neighbors.length + 1 )
12
13 // sort the array according to the values of average
14 sort( orderedNodes, comparator )

Lines 1 through 14 would be inside a loop that it-
erates several times, hopefully until convergence to a
near-optimal ordering. Figure 3, middle, shows an arc
diagram after several iterations of the barycenter heuris-
tic to improve the ordering of nodes, thereby reducing
the length of arcs with respect to Figure 3, left.

In practice, rather than converging, the algorithm
sometimes enters a cycle. Thus, a limit on the num-
ber of iterations should be imposed, stopping the loop
if the limit is reached (one rule of thumb is to limit the
number of iterations tokN, whereN is the number of
nodes andk is a small positive constant). Simple ways
to improve the algorithm would be to (1) detect if it has
converged to an ordering that does not change with ad-
ditional iterations, and in such a case stop the loop; (2)
detect cycles, and similarly stop the loop.

Line 14 of the pseudocode sorts the contents of
orderedNodes[] according to acomparator
de�ned by the calling code. Typical program-
ming environments provide an ef�cientO(NlogN)

implementation ofsort (such asqsort in C, or
Arrays.sort() in Java) that uses a client-de�ned
comparator to determine which of a pair of array el-
ements should appear before the other. In our case,
ourcomparator should of course compare the values
of average for any two given elements to determine
their order.

The linear arrangement of nodes in an arc diagram
has many advantages. As already mentioned, there is
room to the right of each node for a long text label, if
desired. The space to the right of nodes can also be used
to display small graphics, such as line charts for each
node, possibly to show a quantity associated with the
node that evolves with time. TimeArcTrees[22] show
changes in a graph over time by drawing multiple arc
diagrams, each one at a different time, with the time axis
progressing perpendicular to the layout axis of each arc
diagram. Arc diagrams can also be incorporated as an
axis within a larger graphic or visualization, as in[23].

Also, as mentioned, the nodes within an arc diagram
can be sorted in different ways, which can be useful
for seeing relationships between nodes with speci�c at-
tribute values.

Despite the advantages of arc diagrams, and the room
available to draw labels beside nodes, if there are too
many edges that cross each other, it becomes dif�cult to
read the edges. The next section presents an alternative
visualization technique that eliminates edge crossings.

3 Adjacency Matrix Representations

An adjacency matrix (Figure 5, top) contains one row
and one column for each node of a network. Given
two nodesi and j, the cells located at(i; j) and ( j; i)
in the matrix contain information about the edge(s) be-
tween the two nodes. Typically, each cell contains a
boolean value indicating if an edge exists between the
two nodes. (In the �gures in this article, a true boolean
value is shown as a black, �lled-in cell.) If the graph
is undirected, the matrix is symmetric, i.e., the two cells
(i; j) and( j; i) correspond to the same edge. If the graph
is directed, however, the matrix is not symmetric.

Visualizing a network as a matrix has the advantage
of eliminating all edge crossings, since the edges cor-
respond to non-overlapping cells. However, in such a
visualization, the ordering of rows and columns greatly
in�uences how easy it is to interpret the matrix. Fig-
ure 5, top, has a random ordering, whereas Figure 5,
bottom, has had its rows and columns ordered according



Michael J. McGuff�n: Simple Algorithms for Network Visualization: A Tutorial 7

Fig. 5 Adjacency matrix visualizations of a 43-node, 80-
edge network. Top: with a random ordering of rows and
columns. Bottom: after barycenter ordering and adding arc
diagrams. The multiple arc diagrams are redundant, but re-
duce the distance of eye movements from the inside of the
matrix to the nearest arcs.

to the same barycenter heuristic presented in the previ-
ous section. Interestingly, by bringing nodes “closer”
to their neighbors with the barycenter heuristic, this
pushes the edges (�lled-in matrix cells) closer to the di-
agonal of the matrix, making certain patterns appear in
the positions of the cells.

Certain subgraphs (subsets of nodes and edges in
the graph) correspond to easy-to-recognize patterns in
the adjacency matrix, given an appropriate ordering of
rows and columns. Figure 6 shows thatcliques(sub-
graphs with all possible edges connecting the nodes)
correspond to square “blocks” of �lled-in cells along
the matrix diagonal (with only the cells on the diag-
onal not �lled in, since edges do not connect a node
to itself). Furthermore, eachbiclique (pair of subsets
of nodes with edges connecting each node in one sub-
set with each node in the other subset) corresponds to
two �lled-in rectangular blocks of cells, and each clus-
ter (subset of nodes interconnected by many edges) is
recognizable as a set of �lled cells along the matrix di-
agonal. Finally, the degree of a node is shown by the
number of �lled cells within the column or row corre-
sponding to the node, as shown in Figure 5 where the
degree of the highlighted node “26” is 5.

Note that the ordering in Figure 5, bottom, was gener-
ated with the barycenter heuristic, whereas that in Fig-
ure 6 was chosen manually, to make all the desired pat-
terns visible. The visibility of patterns is very sensitive
to ordering, and the barycenter heuristic does not neces-
sarily make all such patterns visible. Worse, there may
occur cases where no single ordering makes all the pat-
terns in a network visible at the same time.

Despite these problems, Ghoniem et al.[24] demon-
strated experimentally that adjacency matrices allow
certain graph analysis tasks to be performed better than
with node-link diagrams. However, they also found
that tasks related to �nding paths between nodes were
more dif�cult with adjacency matrices. Subsequently,
Henry and Fekete[25] and Shen and Ma[26] proposed
visual ways to make paths within a matrix easier to
see. Figure 5, bottom, and Figure 7, show Henry and
Fekete's approach, called MatLink: the matrix is aug-
mented with arc diagrams drawn along the edges of the
matrix.

Henry and Fekete's MatLink visualization also al-
lows users to select a node, and then roll their cursor
over other nodes, causing the shortest path between the
two nodes to be highlighted in response.

Like arc diagrams, adjacency matrices can have infor-



8 Tsinghua Science and Technology, August2012, 17(4): 000-000

Fig. 6 Patterns corresponding to interesting subgraphs appear along the diagonal of an appropriately ordered adjacency ma-
trix.

Fig. 7 MatLink visualization of a random 50-node, 200-
edge graph, after barycenter ordering.

mation (such as labels) drawn beside each row or col-
umn. Matrices have the added advantage of also being
able to display information related to each edge within
the cells of the matrix. For example, if the edges are
weighted, this weight can be shown in the color of the
cell. Cells can also contain small graphics or glyphs, as
in Brandes and Nick's “gestaltmatrix”[27] where each
cell contains a glyph showing the evolution of the edge
over time.

An important disadvantage of using adjacency matri-
ces, however, is that the space they require isO(N2)
where N is the number of nodes, as pointed out by
Henry and Fekete[25]. We next present a technique that
allows the labels of nodes to be drawn larger than with
arc diagrams or adjacency matrices, when constrained
to a window of the same size.

4 Circular Layouts

Figures 8 and 9 depict networks by positioning nodes
on the circumference of a circle. As illustrated in Fig-
ure 8, drawing edges as curves rather than straight lines
increases the readability of the drawings. Once again,
the order chosen for the nodes greatly in�uences how
clear the visualization is. The barycenter heuristic can
again be applied to this layout, with a slight modi�ca-
tion to account for the “wrap around” of the circular
layout.

Let C be the center of the circular layout. To draw
a curved arc between pointsA andB on the circumfer-
ence, we draw a circular arc that is tangent to the lines



Michael J. McGuff�n: Simple Algorithms for Network Visualization: A Tutorial 9

Fig. 8 Circular layouts of a 43-node, 80-edge network, be-
fore (top, and bottom left) and after (middle, and bottom
right) barycenter ordering, with curved (top, and middle)
and straight (bottom) edges.

Fig. 9 Circular layout of a random 50-node, 200-edge
graph, after barycenter ordering.

AC andBC (Figure 10). The centerC0of the arc can be
found by �nding the intersection between a line through
A that is perpendicular toAC, and a line throughB that
is perpendicular toBC.

Fig. 10 A and B are two nodes connected by the arc drawn
in bold. AC and AC0are perpendicular, as areBC and BC0.

To correctly adapt the barycenter heuristic to this lay-
out, consider how to compute the “average position” of
the neighbors of a node. As an example, if one neigh-
bor is positioned at an angle of 10 degrees, and an-
other is at an angle of 350 degrees, simply taking the
numerical average yields(10+ 350)=2 = 180 degrees,
whereas the intuitively correct barycenter is at 0 degrees
(or, equivalently, 360 degrees). So, to correctly compute
the barycenter, we do not compute averages of angles.
Instead, we convert each node to a unit vector in the ap-
propriate direction, add these unit vectors together, and
�nd the angle of the vector sum. De�ne the function



10 Tsinghua Science and Technology, August2012, 17(4): 000-000

angle(p) = p * 2* pi/N giving the angle of a node
at positionp. Then, the pseudocode for the barycenter
heuristic becomes

1 // compute average position of neighbors
2 for i1 = 0 to N-1
3 node1 = nodes[i1]
4 p1 = positionOfNode(i1)
5* sum_x = cos(angle(p1))
6* sum_y = sin(angle(p1))
7 for j = 0 to node1.neighbors.length-1
8 i2 = node1.neighbors[j]
9 node2 = nodes[i2]

10 p2 = positionOfNode(i2)
11* sum_x = sum_x + cos(angle(p2))
12* sum_y = sum_y + sin(angle(p2))
13* orderedNodes[p1].average
14* = angleOfVector(sum_x,sum_y)
15
16 // sort the array according to the values of average
17 sort( orderedNodes, comparator )

The above pseudocode is very similar to the pseu-
docode given earlier for the barycenter heuristic. The
only differences appear at lines 5-6 and 11-14, marked
with stars after their line numbers. Line 14 calls a func-
tion angleOfVector() which simply computes the
angle of a vector relative to the positivex axis, and can
be implemented as:

function angleOfVector( x, y )
hypotenuse = sqrt( x * x + y * y )
theta = arcsin( y / hypotenuse )
if x < 0

theta = pi - theta
// Now theta is in [-pi/2,3 * pi/2]
if theta < 0

theta = theta + 2 * pi
// Now theta is in [0,2 * pi]
return theta

Many improvements to the basic circular layout are
proposed by Gansner and Koren[28]. In addition, Circos
[29] (http://circos.ca) is another visualization technique
that uses a circular layout and curved arcs, though not
speci�cally for visualizing network data.

5 Comparison of Layout Techniques

The following table contrasts the layout techniques ac-
cording to several criteria:

node-link circular arc adjacency
diagram layout diagram matrix MatLink

Height of each node's label O(1=
p

N) O(p=N) O(1=N) O(k1=N) O(k2=N)
(best) (worst)

Easy to perceive paths yes somewhat somewhat no somewhat
Avoids edge crossings no no no yes yes

Avoids ambiguity from edges no yes yes yes yes
passing close to nodes

Can depict an ordering of nodes no yes yes yes yes
Can depict information somewhat somewhat somewhat yes yes

about each edge
Node labels all have the same yes no yes yes yes
orientation, for easier reading

The �rst row of the table quanti�es the space ef�-
ciency of each layout. This is done by assuming that
each layout is con�ned to �ll the same 1� 1 square,
and by calculating the height of the labels on the nodes
as a function of the numberN of nodes. For exam-
ple, in a node-link diagram, if we assume the nodes
are distributed uniformly, then each node should be
surrounded by an area of roughly(1=

p
N) � (1=

p
N)

within which a label can be displayed without over-
lapping neighboring nodes (although such labels will,
generally, overlap edges). The height of such a label,
therefore, will be proportional to 1=

p
N. The height of

the labels in the other layouts is alwaysO(1=N), but
with different hidden constants. In particular, in an ad-
jacency matrix, the hidden constant isk1 < 1 because
margins must be reserved for the row and column la-
bels; and with MatLink, the hidden constant isk2 < k1

since even larger margins must be reserved to display
the arcs. Thus, the columns of the above table are or-
dered left-to-right, from best to worst space ef�ciency
in terms of label height.

To explain the second to last row in the above table,
we point out that information such as edge type or edge
weight can be depicted in node-link diagrams and other
non-matrix layouts by varying the color, thickness, or
opacity of edges. However, this has a limited ability to
convey information. Matrix-based layouts, on the other
hand, can display richer information (such as a glyph)
for each edge, because an entire cell is available for each
edge.

Designers may thus choose a layout from the above
table based on whatever criteria are most important to
them. Generally speaking, node-link diagrams may of-
ten be best for showing the topology of the network in
a clear and simple manner, so long as the network is
not too dense. Matrix-based layouts are potentially best
for dense networks, since they eliminate all inter-edge
occlusion. Arc diagrams may be best for integration
with other visual information, since they can be laid out
along a single axis of a larger diagram. Circular layouts
may be best for making labels on the nodes larger than
is possible with arc diagrams.

A Java applet demonstrating these lay-
outs, with open source code, is available at
http://www.michaelmcguf�n.com/research/simpleNetVis/.



Michael J. McGuff�n: Simple Algorithms for Network Visualization: A Tutorial 11

6 Elementary Node Metrics

Visualizations are often enriched by computing auto-
matic analyses of the data. For example, nodes in a lay-
out might be colored and/or ordered according to met-
rics of how important or central each node is. One such
metric is simply the degree deg(n) of the noden, i.e.,
the number of neighborsn has. Nodes with a high de-
gree can be expected to be more important. In this sec-
tion, we explain two other metrics that can be computed
rather easily for each node.

The �rst is the clustering coef�cientof the node,
which is a measure of how interconnected the neighbors
of a node are. If a noden hask = deg(n) neighbors, then
there are up tok(k � 1)=2 edges between those neigh-
bors. The clustering coef�cient ofn is the fraction of
such edges actually present. A clustering coef�cient of
zero means none are present (i.e., none ofn's neigh-
bors are neighbors of each other), and a coef�cient of
1.0 means thatn and its neighbors form acomplete sub-
graph. If m is the number of edges present between the
neighbors, the clustering coef�cient ism=(k(k � 1)=2),
and can be computed with the following algorithm:

function clusteringCoefficient( i )
node = nodes[i]
deg = node.neighbors.length
if deg == 0

return 0 // this is arbitrary
if deg == 1

return 1 // this is arbitrary
count = 0 // num. edges present between neighbors
for j = 0 to deg-2

i2 = node.neighbors[j]
node2 = nodes[i2]
for k = j+1 to deg-1

i3 = node.neighbors[k]
node3 = nodes[i3]
if edgeExistsBetween(node2,node3)

count = count + 1
return count / (deg * (deg-1) / 2)

The last metric we discuss is related to thek-core de-
compositionof a graph[30,31]. To obtain thek-core of
a graph, we remove all nodes with degree lower thank,
updating the degrees of remaining nodes as we remove
lower-degree nodes. Figure 11 shows an example. Be-
cause all nodes in that �gure initially have a degree of 1
or greater, the 1-core is the entire graph. Imagine then
removing all nodes of degree 1 (such as nodes “41” and
“42”), as well as all nodes whose degree has been re-
duced to 1 by the removal of other nodes (speci�cally,
node “40”). When nodes can no longer be removed,
we are left with the 2-core. We then remove nodes of
degree 2 to obtain the 3-core, etc. Notice that node

“18” initially has degree 6, but it is not part of a 6-core
or even the 3-core, because its neighbors “19” through
“22” are removed for having a degree of only 2, causing
the degree of “18” to drop to 2 and requiring it to also
be removed and excluded from the 3-core.

Fig. 11 k-core decomposition of a graph. Shaded regions
show the 1-core, 2-core, 3-core, and 4-core.

We then de�ne thecorenessof a node as the highest
integerk for which it is a member of thek-core. For
example, the coreness of node “18” is 2, whereas the
nodes “00” through “04” as well as “12” through “17”
have a coreness of 4.

The three metrics mentioned, degree, clustering coef-
�cient, and coreness, are just three of the many metrics
that have been proposed in the literature. (Another often
used metric is betweenness, which is more complicated
to compute. An ef�cient algorithm for it is given by
Brandes[32].) Any of these metrics can be used to clas-
sify nodes within a graph, and can be indicated using
colors, or using a numerical label beside each node, or
can be used to sort the nodes within an arc diagram or
other ordered layout. We can also position nodes on a
2D plane by mapping one metric to thex-axis and an-
other metric to they-axis. Such an approach is some-
times called an attribute-driven layout, an excellent ex-
ample of which is found in GraphDice[33], a system
where the user may choose to map any metric or at-
tribute to either thex or y axes.

Much more information about network analysis, es-



12 Tsinghua Science and Technology, August2012, 17(4): 000-000

pecially analysis of social networks, can be found in
Wasserman and Faust[34].

7 Further Reading

Readers interested in learning more are encouraged to
consult von Landesberger et al.[2] , which is the most re-
cent and comprehensive survey of research on network
visualization. Nevertheless, in this section we provide
a brief, and necessarily incomplete, sampling of some
interesting topics for research, at times citing examples
of recent work.

7.1 Alternative Layouts and Visual Representations

We have already seen that the barycenter heuristic can
be used to reorder arc diagrams, matrices, and circular
layouts. The barycenter heuristic is only one of many
reordering algorithms (Liiv[19] and section 4.2 of Henry
[20]). A comprehensive analysis and comparison of dif-
ferent reordering algorithms, in terms of performance,
convergence, quality, etc., is still lacking in the litera-
ture.

Another useful network layout not discussed in the
previous sections is based on concentric circles, e.g.,
where the user selects some focal node(s) for the cen-
ter, and other nodes are assigned to progressively larger
circles based on a breadth-�rst traversal. Yee et al.[35]

present an example of this with cleverly designed ani-
mated transitions when the focal node changes.

Attribute-driven layouts position nodes based on
computed metrics and/or associated attributes of the
nodes. Two recent examples include[33,36], which
plot nodes within scatterplots and parallel coordinates.
A closely-related way of visually representing a net-
work is presented by Kairam et al.[37], who generate
heatmaps as a function of network topology.

Many metrics can be computed on nodes to quantify
the “importance” of different nodes. Examples of met-
rics are discussed in[2,33,34,36–38]. A comprehensive
survey and comparison of graph metrics is still lacking
in the literature.

Hive plots [38] are an interesting variant of the linear
arc diagrams already discussed, and might inspire fur-
ther variants in layout.

Researchers have also proposed hybrid approaches.
For example, some hybrid approaches are used to ap-
ply the most appropriate representation to different sub-
sets of the data. TopoLayout[39] detects subgraphs with
speci�c characteristics and applies an appropriate node-
link layout algorithm to each subgraph. Other hybrid

approaches mix matrix and node-link representations
[40,41] or display variants of the standard adjacency ma-
trix [42,43].

7.2 Simpli�ed Visual Representations

Edge bundling has received much recent attention
in the literature; a few examples are[28,44–47]. Edge
bundling involves routing curved edges so that they
overlap and share some of their length, to reduce vi-
sual clutter. The results can be aesthetically pleasing,
but often introduce ambiguity, since each edge entering
a bundle may exit in many different ways.

There are also related methods for visual simpli�-
cation that do not introduce any ambiguity. These in-
clude edge concentration[48], edge compression[49], the
“tracks” in con�uent drawings[50], and power graphs
[51]. A key idea for many of these techniques is identi-
fying bicliques in the graph and replacing each biclique
with a visually simpler representation.

7.3 Interaction Techniques

Several rapid interaction techniques have been pro-
posed for navigating through networks[52] or perform-
ing other operations via popup widgets[42,53–55], some
of which involve interaction using both hands simulta-
neously.

Interaction techniques involving curved edges have
also been explored, such as EdgeLens[56], and Edge
Plucking[57]. A survey of these and related techniques
is given in[58].

Multitouch interaction has become a popular topic
in human-computer interaction, and a few multitouch
techniques for interacting with networks have been pro-
posed[59,60].

To date, there is no consistent and unifying user in-
terface that combines the best of all these interaction
techniques.

7.4 Dealing with Large Networks

The force-directed layout paradigm presented earlier
in this article does not scale well to large graphs. To
scale better with larger graphs, a common approach is to
compute a hierarchical clustering of the graph and per-
form a multilevel layout. Archambault et al.[39] brie�y
survey such techniques, and propose their own hybrid
layout algorithm.

Topological �sheye views[61] exploit hierarchical
clustering to render a view of the network that de-
pends interactively on the user's current focus: parts of
the network further from the focus are rendered more



Michael J. McGuff�n: Simple Algorithms for Network Visualization: A Tutorial 13

coarsely.
GPU programming has been used to signi�cantly ac-

celerate layout computations, as described by Frishman
and Tal[62], allowing larger networks to be visualized.

It has also been proposed that, in some situations, the
user may not be interested in seeing an overview of an
entire large network. Instead, the user can be shown a
single initial node, from which the user can expand out-
ward, toward neighbors of interest, expanding the con-
text as desired[63].

7.5 Graphs with Auxiliary Information

Graphs may be associated with additional informa-
tion that can be visualized beside, or on top of, the
graph. For example, one recent approach for visual-
izing subsets of nodes is given in[64], which also sur-
veys other approaches for visualizing subsets. This is
related to the challenge of visualizing ahypergraph, i.e.,
a graph withhyperedgesthat can be incident on more
than 2 nodes each.

7.6 Graphs from Multidimensional Data

Imagine a relational data table listing sales of prod-
ucts, with one column for the client identi�er, one col-
umn for the product identi�er, and other columns for
price, date, etc. Each row of the table corresponds to a
sale. From such a table, we might want to generate a
bipartite network of links between clients and products
sold to them, or we might instead want to generate a net-
work of clients with edges between two clients if they
bought the same product. Orion[65] and Ploceus[66] are
prototype software systems that allow such graphs to be
easily generated from a relational database and subse-
quently transformed.

Work in this vein can be thought of as a comple-
ment to attribute-driven layouts: GraphDice[33] and
other attribute-driven layouts[36] display a network us-
ing multidimensional visualization techniques (namely,
scatterplots and parallel coordinates), whereas Orion
and Ploceus visualize multidimensional data as net-
works.

7.7 Dynamic Graphs

Other recent work[22,67–70] visualizes networks that
change over time, using small multiples, animation, or
by showing the differences between two instances of the
graph (e.g., at timest andt + 1). Some visualizations of
dynamic graphs extend the adjacency matrix to show
the temporal dimension[27,71]. Others identify clusters
within the graph and show overall changes of the clus-

ters over time (e.g., merging and splitting)[72,73], rather
than emphasizing detailed topological information —
an appropriate approach for large dynamic graphs.

7.8 Evaluation

Lee et al.[74] identify several tasks related to visual-
ization and analysis of graphs. Such a reference list of
tasks can help make the design and evaluation of user
interfaces more systematic.

Many perceptual questions surrounding graph visu-
alization have been investigated, and many still remain
to be explored. One recent example is by Holten et al.
[75], who compared different ways of depicting directed
edges.

Another recent user study[76] compared layouts of
node-link diagrams generated algorithmically versus
those arranged manually by users.

8 Conclusion

We have presented some elementary layout and analysis
algorithms, and given a brief sampling of research top-
ics within network visualization. Hopefully, this will
whet the appetite of readers, encouraging them to track
down some interesting references and try their hand at
programming some of the algorithms given. The graph
visualization literature is already quite large and still
growing, but many challenges remain, and real-world
applications are found wherever graphs can be used to
model relationships or data.

References

[1] Ivan Herman, Guy Melançon, and M. Scott Mar-
shall. Graph visualization and navigation in in-
formation visualization: A survey.IEEE Trans-
actions on Visualization and Computer Graphics
(TVCG), 6(1):24–43, 2000.

[2] T. von Landesberger, A. Kuijper, T. Schreck,
J. Kohlhammer, J. J. van Wijk, J.-D. Fekete, and
D. W. Fellner. Visual analysis of large graphs. In
EuroGraphics: State of the Art Report, 2010.

[3] Giuseppe Di Battista, Peter Eades, Roberto
Tamassia, and Ioannis G. Tollis.Graph Draw-
ing: Algorithms for the Visualization of Graphs.
Prentice-Hall, 1999.

[4] Michael Kaufmann and Dorothea Wagner, editors.
Drawing Graphs: Methods and Models. Springer,
2001.



14 Tsinghua Science and Technology, August2012, 17(4): 000-000

[5] David Auber. Tulip: A huge graph visualization
framework, 2004. A chapter (pp. 105–126) in
Michael J̈unger and Petra Mutzel, editors, Graph
Drawing Software, Springer.

[6] D. Auber, D. Archambault, R. Bourqui, A. Lam-
bert, M. Mathiaut, P. Mary, M. Delest, J. Dubois,
and G. Melançon. The Tulip 3 framework: A scal-
able software library for information visualiza-
tion applications based on relational data. Techni-
cal Report RR-7860, INRIA Bordeaux Sud-Ouest,
2012.

[7] Vladimir Batagelj and Andrej Mrvar. Pajek – pro-
gram for large network analysis.Connections,
21(2), 1998.

[8] Paul Shannon, Andrew Markiel, Owen Ozier,
Nitin S. Baliga, Jonathan T. Wang, Daniel Ram-
age, Nada Amin, Benno Schwikowski, and Trey
Ideker. Cytoscape: A software environment for
integrated models of biomolecular interaction net-
works. Genome Research, 13:2498–2504, 2003.

[9] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko
Toda. Methods for visual understanding of hier-
archical system structures.IEEE Transactions on
Systems, Man, and Cybernetics, SMC-11(2):109–
125, February 1981.

[10] Peter Eades. A heuristic for graph drawing.Con-
gressus Numerantium, 42:149–160, 1984.

[11] Thomas M. J. Fruchterman and Edward M. Rein-
gold. Graph drawing by force-directed placement.
Software: Practice and Experience, 21(11):1129–
1164, 1991.

[12] Chun-Cheng Lin and Hsu-Chun Yen. A new force-
directed graph drawing method based on edge-
edge repulsion.Journal of Visual Languages and
Computing, 29(1):29–42, 2012.

[13] Andreas Noack. Energy-based clustering of
graphs with nonuniform degrees. InProceedings
of Symposium on Graph Drawing (GD), 2005.

[14] Tomihisa Kamada and Satoru Kawai. An algo-
rithm for drawing general undirected graphs.In-
formation Processing Letters, 31(1):7–15, 1989.

[15] Emden R. Gansner, Yehuda Koren, and Stephen
North. Graph drawing by stress majorization.

In Proceedings of Symposium on Graph Drawing
(GD), 2004.

[16] Arne Frick, Andreas Ludwig, and Heiko Mehldau.
A fast adaptive layout algorithm for undirected
graphs. InProceedings of Symposium on Graph
Drawing (GD), 1994.

[17] Martin Wattenberg. Arc diagrams: Visualizing
structure in strings. InProceedings of IEEE
Symposium on Information Visualization (Info-
Vis), pages 110–116, 2002.

[18] Jacques Bertin. Śemiologie graphique: Les di-
agrammes, Les réseaux, Les cartes. Éditions
Gauthier-Villars, Paris, 1967. (2nd edition 1973,
English translation 1983).

[19] Innar Liiv. Seriation and matrix reordering meth-
ods: An historical overview.Statistical Analysis
and Data Mining, 3(2):70–91, April 2010.

[20] Nathalie Henry.Exploring Social Networks with
Matrix-based Representations. PhD thesis, Uni-
versit́e Paris Sud, France, and University of Syd-
ney, Australia, 2008.

[21] Erkki Mäkinen and Harri Siirtola. The barycenter
heuristic and the reorderable matrix.Informatica,
29(3):357–363, 2005.

[22] Martin Greilich, Michael Burch, and Stephan
Diehl. Visualizing the evolution of compound di-
graphs with TimeArcTrees.Computer Graphics
Forum, 28(3):975–982, 2009.

[23] A. Johannes Pretorius and Jarke J. van Wijk.
Visual analysis of multivariate state transition
graphs. IEEE Transactions on Visualization
and Computer Graphics (TVCG), 12(5):685–692,
2006.

[24] Mohammad Ghoniem, Jean-Daniel Fekete, and
Philippe Castagliola. On the readability of graphs
using node-link and matrix-based representations:
Controlled experiment and statistical analysis.In-
formation Visualization, 4(2):114–135, 2005.

[25] Nathalie Henry and Jean-Daniel Fekete. MatLink:
Enhanced matrix visualization for analyzing so-
cial networks. InProceedings of IFIP TC13 In-
ternational Conference on Human-Computer In-
teraction (INTERACT), pages 288–302, 2007.



Michael J. McGuff�n: Simple Algorithms for Network Visualization: A Tutorial 15

[26] Zeqian Shen and Kwan-Liu Ma. Path visualiza-
tion for adjacency matrices. InProceedings of
Eurographics/IEEE-VGTC Symposium on Visual-
ization (EuroVis), pages 83–90, 2007.

[27] Ulrik Brandes and Bobo Nick. Asymmetric rela-
tions in longitudinal social networks.IEEE Trans-
actions on Visualization and Computer Graphics
(TVCG), 17(12):2283–2290, 2011.

[28] Emden Gansner and Yehuda Koren. Improved cir-
cular layouts. InProceedings of Symposium on
Graph Drawing (GD), pages 386–398, 2006.

[29] Martin I. Krzywinski, Jacqueline E. Schein, Inanc
Birol, Joseph Connors, Randy Gascoyne, Doug
Horsman, Steven J. Jones, and Marco A. Marra.
Circos: An information aesthetic for comparative
genomics.Genome Research, 2009.

[30] Vladimir Batagelj and Matja�z Zaver�snik. An O(m)
algorithm for cores decomposition of networks,
2003. http://arxiv.org/abs/cs/0310049v1.

[31] Ignacio Alvarez-Hamelin, Luca Dall'Asta,
Alain Barrat, and Alessandro Vespignani.
k-core decomposition: a tool for the vi-
sualization of large scale networks, 2005.
http://arxiv.org/abs/cs/0504107v2.

[32] Ulrik Brandes. A faster algorithm for between-
ness centrality.Journal of Mathematical Sociol-
ogy, 25(2):163–177, 2001.

[33] Anastasia Bezerianos, Fanny Chevalier, Pierre
Dragicevic, Niklas Elmqvist, and Jean-Daniel
Fekete. GraphDice: A system for exploring mul-
tivariate social networks.Computer Graphics Fo-
rum, 29(3):863–872, 2010.

[34] Stanley Wasserman and Katherine Faust.Social
Network Analysis. Cambridge University Press,
1994.

[35] Ka-Ping Yee, Danyel Fisher, Rachna Dhamija,
and Marti Hearst. Animated exploration of dy-
namic graphs with radial layout. InProceedings
of IEEE Symposium on Information Visualization
(InfoVis), pages 43–50, 2001.

[36] Christophe Viau, Michael J. McGuf�n, Yves
Chiricota, and Igor Jurisica. The FlowVizMenu

and parallel scatterplot matrix: Hybrid multidi-
mensional visualizations for network exploration.
IEEE Transactions on Visualization and Computer
Graphics (TVCG), 16(6):1100–1108, 2010.

[37] Sanjay Kairam, Diana MacLean, Manolis Savva,
and Jeffrey Heer. GraphPrism: Compact visual-
ization of network structure. InProceedings of
ACM Advanced Visual Interfaces (AVI), 2012.

[38] Martin Krzywinski, Inanc Birol, Steven J. M.
Jones, and Marco A. Marra. Hive plots – ratio-
nal approach to visualizing networks.Brie�ngs in
Bioinformatics, 2011. http://www.hiveplot.com/.

[39] Daniel Archambault, Tamara Munzner, and David
Auber. TopoLayout: Multilevel graph layout
by topological features. IEEE Transactions on
Visualization and Computer Graphics (TVCG),
13(2):305–317, 2007.

[40] Nathalie Henry, Jean-Daniel Fekete, and
Michael J. McGuf�n. NodeTrix: A hybrid
visualization of social networks.IEEE Transac-
tions on Visualization and Computer Graphics
(TVCG), 13(6):1302–1309, 2007.

[41] Sébastien Ru�ange, Michael J. McGuf�n, and
Christopher P. Fuhrman. TreeMatrix: A hybrid
visualization of compound graphs.Computer
Graphics Forum, 31(1):89–101, 2012.

[42] Anastasia Bezerianos, Pierre Dragicevic, Jean-
Daniel Fekete, Juhee Bae, and Ben Watson. Ge-
neaQuilts: A system for exploring large genealo-
gies. IEEE Transactions on Visualization and
Computer Graphics (TVCG), 16(6):1073–1081,
2010.

[43] Juhee Bae and Benjamin A. Watson. Developing
and evaluating quilts for the depiction of large lay-
ered graphs.IEEE Transactions on Visualization
and Computer Graphics (TVCG), 17(12):2268–
2275, 2011.

[44] Danny Holten. Hierarchical edge bundles: Visual-
ization of adjacency relations in hierarchical data.
IEEE Transactions on Visualization and Computer
Graphics (TVCG), 12(5):741–748, 2006.

[45] Danny Holten and Jarke J. van Wijk. Force-
directed edge bundling for graph visualiza-
tion. Computer Graphics Forum (EuroVis 2009),
28(3):983–990, 2009.



16 Tsinghua Science and Technology, August2012, 17(4): 000-000

[46] Sergey Pupyrev, Lev Nachmanson, and Michael
Kaufmann. Improving layered graph layouts with
edge bundling. InInternational Symposium on
Graph Drawing (GD), 2010.

[47] Ozan Ersoy, Christophe Hurter, Fernando V.
Paulovich, Gabriel Cantareira, and Alexandru
Telea. Skeleton-based edge bundling for graph vi-
sualization. IEEE Transactions on Visualization
and Computer Graphics (TVCG), 17(12):2364–
2373, 2011.

[48] Frances J. Newbery. Edge concentration: A
method for clustering directed graphs. InProceed-
ings International Workshop on Software Con�g-
uration Management (SCM), pages 76–85, 1989.

[49] Frank van Ham, Martin Wattenberg, and Fer-
nanda B. Víegas. Mapping text with phrase nets.
IEEE Transactions on Visualization and Computer
Graphics (TVCG), 15(6):1169–1176, 2009.

[50] Matthew Dickerson, David Eppstein, Michael T.
Goodrich, and Jeremy Yu Meng. Con�uent draw-
ings: Visualizing non-planar diagrams in a planar
way. InInternational Symposium on Graph Draw-
ing (GD), 2003.

[51] Lo�̈c Royer, Matthias Reimann, Bill Andreopou-
los, and Michael Schroeder. Unraveling protein
networks with power graph analysis.PLoS Com-
putational Biology, 4(7), 2008.

[52] Tomer Moscovich, Fanny Chevalier, Nathalie
Henry, Emmanuel Pietriga, and Jean-Daniel
Fekete. Topology-aware navigation in large net-
works. InProceedings of ACM Conference on Hu-
man Factors in Computing Systems (CHI), 2009.

[53] Michel Beaudouin-Lafon, Wendy E. Mackay,
Peter Andersen, Paul Janecek, Mads Jensen,
Michael Lassen, Kasper Lund, Kjeld Mortensen,
Stephanie Munck, Anne Ratzer, Katrine Ravn,
Søren Christensen, and Kurt Jensen. CPN/Tools:
A post-WIMP interface for editing and simulating
coloured petri nets. InProc. International Con-
ference on Application and Theory of Petri Nets
(ICATPN), pages 71–80, 2001.

[54] Michael J. McGuf�n and Ravin Balakrishnan. In-
teractive visualization of genealogical graphs. In
Proceedings of IEEE Symposium on Information
Visualization (InfoVis), pages 17–24, 2005.

[55] Michael J. McGuf�n and Igor Jurisica. Inter-
action techniques for selecting and manipulating
subgraphs in network visualizations.IEEE Trans-
actions on Visualization and Computer Graphics
(TVCG), 15(6):937–944, 2009.

[56] Nelson Wong, Sheelagh Carpendale, and Saul
Greenberg. EdgeLens: An interactive method for
managing edge congestion in graphs. InProceed-
ings of IEEE Symposium on Information Visual-
ization (InfoVis), pages 51–58, 2003.

[57] Nelson Wong and Sheelagh Carpendale. Sup-
porting interactive graph exploration using edge
plucking. In Proceedings of Visualization and
Data Analysis (VDA), 2007.

[58] Nathalie Henry Riche, Tim Dwyer, Bongshin Lee,
and Sheelagh Carpendale. Exploring the design
space of interactive link curvature in network dia-
grams. InProceedings of ACM Advanced Visual
Interfaces (AVI), 2012.

[59] Mathias Frisch, Jens Heydekorn, and Raimund
Dachselt. Investigating multi-touch and pen ges-
tures for diagram editing on interactive surfaces.
In Proceedings of ACM International Conference
on Interactive Tabletops and Surfaces (ITS), 2009.

[60] Sebastian Schmidt, Miguel A. Nacenta, Raimund
Dachselt, and Sheelagh Carpendale. A set of
multi-touch graph interaction techniques. InPro-
ceedings of ACM International Conference on In-
teractive Tabletops and Surfaces (ITS), 2010.

[61] Emden R. Gansner, Yehuda Koren, and Stephen C.
North. Topological �sheye views for visualizing
large graphs.IEEE Transactions on Visualization
and Computer Graphics (TVCG), 11(4):457–468,
2005.

[62] Yaniv Frishman and Ayellet Tal. Multi-level
graph layout on the GPU. IEEE Transactions
on Visualization and Computer Graphics (TVCG),
13(6):1310–1319, 2007.

[63] Frank van Ham and Adam Perer. “search,
show context, expand on demand”: Supporting
large graph exploration with degree-of-interest.
IEEE Transactions on Visualization and Computer
Graphics (TVCG), 15(6):953–960, 2009.



Michael J. McGuff�n: Simple Algorithms for Network Visualization: A Tutorial 17

[64] Basak Alper, Nathalie Henry Riche, Gonzalo
Ramos, and Mary Czerwinski. Design study
of LineSets, a novel set visualization technique.
IEEE Transactions on Visualization and Computer
Graphics (TVCG), 17(12):2259–2267, 2011.

[65] Jeffrey Heer and Adam Perer. Orion: A sys-
tem for modeling, transformation and visualiza-
tion of multidimensional heterogeneous networks.
In Proceedings of IEEE Visual Analytics Science
and Technology (VAST), 2011.

[66] Zhicheng Liu, Shamkant B. Navathe, and John T.
Stasko. Network-based visual analysis of tabular
data. InProceedings of IEEE Visual Analytics Sci-
ence and Technology (VAST), 2011.

[67] Daniel Archambault, Helen C. Purchase, and
Bruno Pinaud. Difference map readability for dy-
namic graphs. InProceedings of Symposium on
Graph Drawing (GD), pages 50–61, 2010.

[68] Daniel Archambault, Helen C. Purchase, and
Bruno Pinaud. Animation, small multiples, and
the effect of mental map preservation in dy-
namic graphs.IEEE Transactions on Visualization
and Computer Graphics (TVCG), 17(4):539–552,
2011.

[69] Loutfouz Zaman, Ashish Kalra, and Wolfgang
Stuerzlinger. The effect of animation, dual view,
difference layers, and relative re-layout in hierar-
chical diagram differencing. InProc. Graphics In-
terface (GI), pages 183–190, 2011.

[70] Steffen Hadlak, Hans-Jörg Schulz, and Heidrun
Schumann. In situ exploration of large dynamic
networks.IEEE Transactions on Visualization and

Computer Graphics (TVCG), 17(12):2334–2343,
2011.

[71] Ji Soo Yi, Niklas Elmqvist, and Seungyoon Lee.
TimeMatrix: Analyzing temporal social networks
using interactive matrix-based visualizations.In-
ternational Journal of Human-Computer Interac-
tion, 26:1031–1051, 2010.

[72] Martin Rosvall and Carl T. Bergstrom. Mapping
change in large networks.PLoS ONE, 5(1), 2010.

[73] Khairi Reda, Chayant Tantipathananandh, An-
drew Johnson, Jason Leigh, and Tanya Berger-
Wolf. Visualizing the evolution of community
structures in dynamic social networks.Computer
Graphics Forum, 30(3):1061–1070, 2011.

[74] Bongshin Lee, Catherine Plaisant, Cynthia Sims
Parr, Jean-Daniel Fekete, and Nathalie Henry.
Task taxonomy for graph visualization. InPro-
ceedings of AVI workshop BEyond time and er-
rors: novel evaLuation methods for Information
Visualization (BELIV), 2006.

[75] Danny Holten, Petra Isenberg, Jarke J. van Wijk,
and Jean-Daniel Fekete. An extended evaluation
of the readability of tapered, animated, and tex-
tured directed-edge representations in node-link
graphs. InProceedings of IEEE Paci�c Visualiza-
tion (Paci�cVis), pages 195–202, 2011.

[76] Tim Dwyer, Bongshin Lee, Danyel Fisher,
Kori Inkpen Quinn, Petra Isenberg, George
Robertson, and Chris North. A comparison
of user-generated and automatic graph layouts.
IEEE Transactions on Visualization and Computer
Graphics (TVCG), 15(6):961–968, 2009.


