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ABSTRACT:
Intrusion Detection Systems, or IDSs, are network security tools that generate huge quan-
tities of information that are challenging to analyze. Information visualization is essential
for efficiently parsing these data to discover the underlying causes of computer security
breaches. AlertWheel is a user interface featuring a novel radial overview visualization,
as well as filtering, drilling down, and saving and annotating subsets of data, to support
the workflow of real network defense analysts. In designing AlertWheel, we identified
new ways of displaying bipartite graphs (i.e., network diagrams showing links between
two sets of nodes). The links in AlertWheel’s visualizations are positioned and shaped to
avoid occlusion of data, and three different edge bundling techniques are used to reduce
clutter.
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1 Introduction

Computers exposed to the internet are regularly scanned and attacked by outsiders. In-
trusion Detection Systems (IDS) monitor and record such activity by capturing all incom-
ing network events (or alerts) in a multidimensional dataset that stores the source, time,
and nature of each event. Automated means are available to analyze such data, how-
ever visualization of the data by human users is also valuable for security experts to gain
understanding and insight into network activity, as well as to communicate with other
stakeholders, and eventually adapt security strategies.

Data from an IDS can be visualized using various previous techniques. At one extreme is
the approach of SnortView [9], which essentially enumerates individual events in a table,
allowing all details to be seen but scaling poorly to large datasets. At another extreme are
techniques that reduce events to individual pixels [1], allowing many events to be seen at
once, but sharply constraining how much information the user can see about one event
without switching to a more detailed view. Somewhere in the middle of this spectrum is
VisAlert [6], which uses a radial visualization [4] to show the location, time, and nature
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of many events at once.

We present AlertWheel (Figure 1), which further explores the middleground of this spec-
trum. Like VisAlert, AlertWheel also uses a radial visualization, and also shows the lo-
cation, time, and nature of many events at once. However, AlertWheel’s radial layout
is better suited for visualizing attacks against a honeypot [11], our driving application.
Visualizing such attacks is useful for network analysts during the outbreak of a virulent
malware on the Internet. Furthermore, our work has led to new ways of drawing bipar-
tite graphs (Figure 2) that are visually clearer than status quo approaches and that can be
applied to other application domains. We also discuss how the design of AlertWheel is
motivated by the workflow of network defense analysts [2].

Figure 1: The AlertWheel user interface. The main view shows the radial visualization
of information. At upper right is a panel for defining filters (used to generate subsets of
data), and lower right is a panel that lists user-defined ”scenarios” (i.e., saved subsets of
data).
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2 Visualizing Bipartite Graphs

Each event or alert generated by an IDS has an associated source (address of the outside
machine which initiated the event) and category. For example, Snort is a common, open-
source IDS that defines over 30 categories of alerts (”network-scan”, ”denial-of-service”,
”trojan-activity”, etc.). One way to visualize such data is as a diagram where each alert is
shown as a link (or edge) connecting a source address to a category. This kind of diagram
corresponds to a bipartite graph, i.e., a graph made of two sets of nodes (source addresses
and categories) where all edges connect a node in one set to a node in the other set.

VisAlert [6] displays a similar bipartite graph, showing categories on the outside con-
nected to locations on the inside of a radial layout. In their case, the locations shown
are destination addresses (addresses of machines inside a network being monitored), and
showing them on the inside means that VisAlert also has room to show their topology.
However, in AlertWheel, we want to visualize source addresses in the outside world,
which can be quite numerous. We therefore place addresses on the outside of our radial
layout, where there is more room, and put categories on the inside, since they are much
fewer in number. Furthermore, VisAlert draws links as straight line edges that can lead
to much occlusion. AlertWheel instead draws links as carefully designed curves and uses
three different bundling techniques to clarify them.

As seen in Figure 1, the outer nodes of the radial layout are XS13334, XS40066, etc.,
which are anonymized AS (autonomous systems) nodes, corresponding to ranges of IP
addresses of source locations, or ”Bundles” (groupings) of such AS nodes. On the inside
of the layout are colored pie slices representing categories of alerts: the largest, yellow
slice is ”misc-activity”. Colors show the severity of the alert category (red being the most
severe). Each link from an AS node to a category corresponds to at least one alert, with
the thickness of the link proportional to the logarithm of the number of alerts. As shown
in Figure 3(left), each link is made of two stems connected by a circular midsection (all
three parts aligned with a polar coordinate system). To make the edges easy to distin-
guish, the radius of the circular midsection is varied according to the node it is connected
to. In Figure 1, there are 6 categories, hence 6 different radii for the circular midsections.
As can also be seen, each outer stem can split and merge with multiple circular midsec-
tions at different radii; each circular midsection can be contributed to by multiple outer
stems, each circular midsection leads to a single inner stem, and each inner stem can be
contributed to by circular midsections at only one radius.

Edge bundles are groups of edges that merge and/or split, and have been used to reduce
clutter in diagrams [8, 10, 12]. Examples are shown in Figure 3(right). For the purposes of
discussing previous work, we distinguish bundles at the stems (or endpoints) of edges,
and bundles at the midsections of edges. In some previous work [8], midsection bundles
are used in a way that creates ambiguity. For example, in Figure 3(right), it is unclear
if node A is connected to node C, or D, or some other node. Other previous work has
used midsection bundles in unambiguous ways: confluent drawings [3] use midsection
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bundles to replace the edges between bicliques (i.e., complete bipartite subgraphs). If the
midsections in Figure 3(right) followed the conventions of confluent drawings, it would
imply that A is connected to both C and D, and B is also connected to both C and D.
Another type of bundling found in previous literature is what we call stem bundling
[10], which by its nature cannot create ambiguity. The work of [12] is the only previous
work we know of that uses both stem bundles and midsection bundles, however it avoids
introducing ambiguity by not completely overlapping edge segments; instead, the user
may zoom in on bundles to resolve individual edges.

The radial layout in AlertWheel is unique in that it uses both stem bundling, and un-
ambiguous midsection bundling, with edge segments truly overlapping (thus saving
space). In addition, AlertWheel also uses a 3rd kind of bundling which we call neigh-
borhood bundling. This is seen in Figure 1, in the outer nodes that are shaded in gray: each
gray node represents a group of nodes that have the same neighbors on the inside of the
layout. For example, ”Bundle (57)” near the top of the layout is a group of 57 different AS
nodes, all of which are originators of events of the same 2 categories: ”misc-activity” (the
largest pie slice) and ”shellcode-detect” (the 3rd largest slice). Drawing a single stem for
this group of 57 nodes greatly simplifies the visualization, without introducing any am-
biguity. Such neighborhood bundling has been called edge compression in previous work
[14], although it had not been previously combined with other bundling techniques. Fig-
ure 4 shows the same data as in Figure 1, but without neighborhood bundling, illustrating
the affect it has on clutter. Figure 2(g) and (h) also show the difference, before and after,
neighborhood bundling. In Figure 2, each of the nodes C, E, and F have the same neigh-
bors {G, H, J}, and hence are grouped together in Figure 2(h).

We note that 300 nodes on the outer circle is close to the maximum of what the radial
overview can show, assuming a diameter of 1000 pixels (close to the maximum vertical
resolution on typical displays) and assuming a minimum desired size of about 10 pixels
per node (1000×π/10 ≈ 300). Fortunately, neighborhood bundling helps avoid this limit.

In AlertWheel, there is one circular midsection bundle for each inner node (4 in Figure
2(g), 6 in Figure 1). We could have instead made each midsection bundle correspond to
one outer node, but this would imply a greater number of distinct radii for the midsection
bundles (and hence more crowding), since the outer nodes are more numerous. Details
on the positioning of edges and outer nodes are reported in Dumas et al. [5].

3 Additional Features of AlertWheel

As already mentioned, the pie slices at the center of Figures 1 and 4 correspond to alert
categories, each of which is colored by severity. The angle covered by the pie slice is
proportional to the number of alerts for that category, and pie slices are ordered by angle.
Each pie slice also contains circular arcs indicating the time of each alert, with the center
corresponding to the earliest possible time, and the outer circumference of the pie slices
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corresponding to the latest possible time. It is possible for the user to click on a pie slice
to expand it, revealing the IDS signatures corresponding to the alerts in that pie slice’s
category.

It is also possible for the user to create multiple subwindows within the main window
(Figure 5), each of which contains a radial overview or a detailed list view. Having mul-
tiple radial overviews is useful for comparing different subsets of data, for example, ac-
tivity on different days. The user may also configure one radial overview to show source
locations on the outer circle, and configure another radial overview to show destination
locations on the outer circle, as shown in Figure 5. Each of the subwindows can have a fil-
ter applied to it to show only a subset of alerts. Filters are defined in the upper right panel
of the main window (visible in Figures 1,5,6). Each filter is formed of one or more clauses,
and multiple filters can be defined. Each filter can also be shared across multiple subwin-
dows (to view the same subset of data in different subwindows), or each subwindow can
have a different filter applied to it.

The clauses available to define a filter are: time interval, ”classification” (i.e. the alert
categories), signature, source AS node, source IP address, destination IP address, and
scenario (which we explain later). For example, a filter could be defined that covers alerts
between December 23 and December 24, 2008, and that are from AS node XS31222, and
that originate from IP addresses which are themselves originators of ”misc-activity” or
”shellcode-detect” category alerts. These filters are defined in a tree menu of checkboxes
in the filter panel. To limit the size of the tree menu, rather than listing all possible dates,
IP addresses, etc., the tree menu only displays values explicitly added by the user.

Within each subwindow, the user may select one category (shown in green in Figure
5), or one AS node (shown in green in Figure 6). This causes links not connected to
that node to be almost completely faded out, allowing the user to visually filter links
through selection. Each subwindow has its own selection state. At the same time, rolling
the cursor over nodes, without selected them, causes them to highlight with a ”datatip”
providing more details, and the highlighting is coordinated across all subwindows, to
reinforce the conceptual links between them.

The detailed list view (Figure 5, bottom subwindow) can be placed in a subwindow or can
take up the entire window, and can also have a filter applied to it, just as with the radial
overview. Each detailed view also has highlighting coordinated with other subwindows.
The columns in the detailed view are: source IP address, alert, time, status (which we
explain later), severity (low, medium, or high), and destination IP address. The user can
sort the list by any column, and scroll the list. The resulting enumeration is compara-
ble to SnortView [9], but with some differences. Most significantly, we show the mapping
from source IP addresses to alerts, and from destination IP addresses to alerts, as bipartite
graphs, and employ another novel way of drawing the connecting edges, shown in Figure
2(c). This reduces clutter and clarifies which alerts share the same source or destination
IP addresses (Figure 5, bottom subwindow). Note that this situation is somewhat simpler
than in Figure 2(c), though, because each alert corresponds to only one source (and desti-
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nation) IP address, meaning that the vertical edge bundles can be ordered in such a way
that the source (and destination) IP address can have very short stems without occluding
any other vertical bundles.

4 Design Principles Behind AlertWheel

VisAlert [6] proposed a W3 principle, whereby the visualization should show what event
happened when and where. This is supported by AlertWheel: the event category shown
in the center of the radial overview answers the ”what” question, the arcs within each
pie slice indicate ”when”, and ”where” is indicated by the source location on the out-
side of the radial overview. All three questions are also answered within our detailed
list view. Note also that, with the AlertWheel interface, the ”where” question can be an-
swered either in terms of source address or destination address (for example, Figure 5 has
two radial overviews, the left showing sources and the right showing destinations), or in
terms of both source and destination in our detailed list view.

Another design principle for visualization is ”Overview first, zoom and filter, then details-
on-demand” [13]. The radial overview in each subwindow of AlertWheel can be zoomed
and rotated by the user, making labels and small details more visible. The pie slices at
the center can be expanded, filters can be applied, rolling over a node causes a datatip to
appear to provide more details, the user may select a node to fade out other links, and
the detailed list view provides details about each alert. In addition, the user may double-
click on an alert in the detailed list view to popup a dialog box containing the raw packet
information.

AlertWheel’s features also support real analyst tasks. [2] give an overview of how an-
alysts work in the real-world, describing how analysts distill a dataset in stages, first
beginning with the raw data, then extracting from that all interesting activity, then from
that extracting suspicious activity, then from that events, from that incidents, and from that
intrusion sets. Each subsequent stage results in a smaller subset of data. AlertWheel has
built-in support for this workflow of staged drilling down and analysis. As already de-
scribed, the user may define one or more filters to generate subsets of data. The user may
then save a given subset as a scenario. The scenario panel (Figure 5, bottom right) lists all
saved scenarios. When the user creates a scenario (i.e., to save the subset of data currently
being viewed), a dialog box is popped up in which the user may give the scenario a name,
description, and tags, and also selects whether this scenario is considered raw data, inter-
esting activity, suspicious activity, ... or an intrusion set, according to the hierarchy defined
by [2]. The user may return to a saved scenario at a later time to review it further. In addi-
tion, once one or more scenarios are saved, the filter panel allows the user to create a new
filter with a clause saying whether to include or exclude data from one or more existing
scenarios, enabling further drill-down and complex queries. Finally, within the detailed
list view, the ”Status” column indicates whether an individual alert has been saved as
part of a scenario. For example, in Figure 5, bottom, two events are seen to be marked
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with a status of ”Incident”, meaning they were saved within an Incident-type scenario.
This makes it easier for analysts to review the alerts within the detailed view, to check if
all interesting alerts have been recorded within scenarios (and of what type) or if some
have been missed.

Although not currently supported, it would be simple to extend AlertWheel to allow for
searching for scenarios according to keywords or tags, and to share scenarios collabora-
tively with other analysts, which are other important needs described by [2].

5 Case Study

We have worked with data from three research honeypot machines. Honeypots are ma-
chines made to appear to the outside world as part of a network (e.g., inside an enterprise
network), but that are actually safely isolated, and used as bait to monitor and study the
activity of attackers. Our honeypots have gathered much data about real world attacks
that were attempted on them. We are interested in understanding how malevolent soft-
ware like viruses, worms and botnets (a) operate and (b) propagate over the internet. In
the former case, we would like to understand the infection scenarios used by these mal-
wares. In the latter case, we would like to see how many machines are infected and their
geographic distribution. We now show how AlertWheel can be used to analyze honeypot
data.

An attack can usually be divided into 5 stages: reconnaissance, probing, attack, dig-in,
and migration. The first stage involves scanning the network for potential targets. For
example, ranges of IP addresses might be scanned with simple PING requests. Once an
attacker receives a response, they know a system is located at the given address, and
next try to learn more about it. In this second stage, the attacker generally probes the
machine for a vulnerable service that could be exploited, allowing them to access data on
the machine or to take control of it. To do this, the attacker may execute several (valid
or invalid) requests. Once a vulnerable service is discovered, the third stage involves
launching the actual attack. If the attacker succeeds in exploiting the vulnerable service,
the attacker usually attempts to take control of the machine (dig-in), and might then try
to migrate to neighboring systems.

In the case of honeypot data, it is likely that the IDS alerts correspond to the first 3 stages
of an attack. It is not surprising, then, that most alerts are classified in the ”misc-activity”
category (Figure 1), since this category includes PING requests.

Although a PING alert does not imply an attack, it is suspicious on a honeypot, since
outsiders should have no legitimate reason to PING a honeypot. Nevertheless, many
analysts ignore PING requests at the start of their analysis. With AlertWheel, we can filter
out all PING requests by first applying a filter that removes alerts in the ”misc-activity”
category.
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Doing this with a sample of the honeypot data reveals many severe-level alerts originat-
ing from the AS node XS40066 (Figure 6, top left). Applying an additional filter to only see
alerts from this address (Figure 6, bottom) reveals bands of activity within the pie slices at
the center, indicating clear temporal periods of attack, especially from the outside address
68.60.232.17 (selected in green in Figure 6, bottom left).

Analyzing the corresponding data in the details view (Figure 6, bottom), a recurring pat-
tern of attack becomes apparent. The attacker is exploiting a known vulnerability of
the RPC DCOM service in Windows XP/NT/2000/2003, detected by the Snort IDS as
”NETBIOS DCERPC NCACN-IP-TCP ISystemActivator RemoteCreateInstance attempt”
(listed in the details view at the bottom of Figure 6). The attacker simply sends a mal-
formed request on an RPC port of the server, causing a buffer overflow. The attacker then
sends shell commands (shellcode), which can then execute operations with administra-
tor privileges. The subsequent alert ”ATTACK-RESPONSES Microsoft cmd.exe banner”
shows that the attack succeeded, and the attacker accessed the Windows shell (this suc-
cess was actually only simulated by the honeypot). It is likely that the attacker attempted
this attack several times, possibly varying the attack each time, perhaps because they
were unsatisfied with the responses from the server. It is possible to test this hypothe-
sis by accessing the raw details about alert packets by double-clicking on an alert in the
details view.

The foregoing case study illustrates the ease with which the user can filter and analyze
almost 40000 alerts on a single screen, and rapidly detect concrete attacks. Furthermore,
this example only used a fraction of AlertWheel’s functionality, which allows for great
flexibility in the way filters can be defined and in the way views can be combined.

6 Conclusions

AlertWheel incorporates multiple coordinated views showing both overviews and details
of IDS data, allowing for zooming, expansion, filtering, and saving of subsets with user-
defined annotations. Our user interface follows previous design principles [13, 6] and
supports a realistic workflow [2].

We have also introduced news ways of drawing bipartite graphs (Figure 2) that are ap-
plied in both our radial overview and detailed list view, and in the case of the radial
overview we combine three bundling techniques without introducing any ambiguity,
which is unique in the literature. These methods of displaying bipartite graphs could,
of course, be applied outside network security.

The case study presented shows how AlertWheel can analyze attacks on honeypots from
the Internet. However, AlertWheel could also be used to visualize IDS alerts generated
inside a corporate intranet. In such a case, the outer circle would represent the addresses
of infected computers in the enterprise that are generating malicious traffic toward any
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local or distant target. AlertWheel could also initially show the bipartite graph of outside
address × attack type, and then transition to showing the bipartite graphs for outside
address × internal address or internal address × attack type in order to investigate at-
tacks against a whole corporate network. Such approaches would eventually have to be
evaluated with experienced network analysts.
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Figure 2: The same bipartite graph shown in different ways. (a) Status-quo approach. (b)
Each edge starting on the left leads to a vertical bundle, and each vertical bundle leads to
a single node on the right. (c,d) Variations on (b) that make the connections from vertical
bundle to node on the right more visually distinct. (e) A variation inspired by Figure 3
in [7], where each node on the left corresponds to a horizontal bundle, and each node on
the top corresponds to a vertical bundle. (f) A radial layout with a naı̈ve way of drawing
edges that scales poorly. (g) An improved way of drawing edges: each edge starting on
an outer node leads to a circular bundle, and each circular bundle leads to a single inner
node. (h) A further improvement that groups together nodes having the same neighbors.
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Figure 3: Left: the three parts of a link in a radial layout of a bipartite graph. Right:
more generally, in network diagrams that use edge bundling, we can distinguish between
analogous parts of each link.

Figure 4: The same data as in Figure 1, but with no grouping of the 228 AS nodes (i.e., no
neighborhood bundling).
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Figure 5: Three subwindows. The upper left subwindow shows source AS nodes on the
outside of the radial layout; the upper right subwindow shows the same data but with
the destination IP address shown on the outside of the radial layout. Together, these two
views allow the user to simultaneously see the source, category, and destination infor-
mation for the alerts. The bottom subwindow shows the detailed list view of the same
data.
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Figure 6: Two stages in the case study described in the text. The radial overviews at left
show source nodes on the outside, and the radial overviews on the right show the three
destination (honeypot) machines on the outside. Top: the user has selected the XS40066
AS node, shown in green. Bottom: a filter shows only the IP source addresses for XS40066,
and one in particular, 68.60.232.17, is selected in green.
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