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1. Introduction
Examples of Infinitely Recursive Expressions

Series

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ . . .

Infinite Products

π/2 =
2

1
× 2

3
× 4

3
× 4

5
× 6

5
× · · ·

Continued Fractions

e − 1 = 1 +
2

2 + 3
3+ 4

4+ 5
5+...

4/π = 1 +
1

2 + 32

2+ 52

2+ 72

2+...



Infinitely Nested Radicals (or Continued Roots)

K =

√

1 +

√

2 +
√

3 + . . .

Exponential Ladders (or Towers)

2 = (
√

2)
(
√

2)
(
√

2)
···

Hybrid Forms

4 = 2

√

2

√

2

√
2···

1

2
=

1
1

1
...+1+ 1

...

+ 1 + 1
1
...+1+ 1

...



Questions:

• Does the expression converge ? Are there tests, or

necessary/sufficient conditions for convergence ? Ex-

amples:

– For series,

∗ Terms must go to zero

∗ d’Alembert-Cauchy Ratio Test, Cauchy nth Root

Test, Integral Test, ...

– For infinite products,

∗ Terms must go to a value in (-1,1]

– For infinitely nested radicals,

∗ Terms can grow ! (But how fast ?)

• What does the expression converge to ? Are there

formulae or identities we can use to evaluate the limit?

Example: when −1 < r < 1,

a

1 − r
= a + ar + ar2 + ar3 + . . .



2.1 Constant Term Expansions
Assume that

√

a + b
√

a + b
√

a + . . .

converges when a ≥ 0 and b ≥ 0, and let L be the limit.

Then

L =

√

a + b
√

a + b
√

a + . . .

L =
√

a + bL

L2 − bL − a = 0

L =
b +

√

b2 + 4a

2

Hence
√

a + b
√

a + b
√

a + . . . =
b +

√

b2 + 4a

2



Observation: when a = 0, we get

√

0 + b
√

0 + b
√

0 + . . . =
b +

√

b2 + 4(0)

2

√

b

√

b
√

b
√

. . . = b

This makes sense since

√

b

√

b
√

b
√

. . . =
√

b

√√
b

√

√√
b . . .

= b
1
2b

1
4b

1
8 . . .

= b
1
2+

1
4+

1
8+...

= b1



Similarly, assume that

a +
b

a + b
a+ b

a+...

converges when a > 0 and b ≥ 0, and let L be the limit.

Then

L = a +
b

a + b
a+ b

a+...

L = a +
b

L

L2 − aL − b = 0

L =
a +

√

a2 + 4b

2



Hence

a +
b

a + b
a+ b

a+...

=
a +

√

a2 + 4b

2

But as we saw earlier,

√

a + b
√

a + b
√

a + . . . =
b +

√

b2 + 4a

2

Therefore,

√

a + b
√

a + b
√

a + . . . = b +
a

b + a
b+ a

b+...

=
b +

√

b2 + 4a

2

In addition, setting a = b = 1, we get

√

1 +

√

1 +
√

1 + . . . = 1 +
1

1 + 1
1+ 1

1+...

=
1 +

√
5

2

which is equal to the golden ratio φ.



Now assume that

n

√

a + b
n
√

a + b n
√

a + . . .

converges when a ≥ 0 and b ≥ 0, and let L be the limit.

Then

L =
n

√

a + b
n
√

a + b n
√

a + . . .

L = n
√

a + bL

Ln − bL − a = 0

Let α = a/Ln and β = b/Ln−1. Then a = αLn, b = βLn−1

and

Ln − βLn − αLn = 0

1 − β − α = 0

β = 1 − α

yielding

L =
n

√

αLn + βLn−1 n

√

αLn + βLn−1 n
√

αLn + . . .



2.2 Identity Transformations

Pushing terms through radicals,

b +
√

b2 + 4a

2
=

√

a + b

√

a + b

√

a + b
√

a + . . .

=

√

a +

√

ab2 + b3
√

a + b
√

a + . . .

=

√

a +

√

ab2 +

√

ab6 + b7
√

a + . . .

=

√

a +

√

ab2 +

√

ab6 +
√

ab14 + . . .

=

√

√

√

√

√

( a

b2

)

b2 +

√

√

√

√

( a

b2

)

b4 +

√

( a

b2

)

b8 +

√

( a

b2

)

b16 + . . .

Set α = a/b2. Then
√

αb2 +

√

αb4 +

√

αb8 +
√

αb16 + . . . =
b +

√

b2 + 4a

2

=
b +

√

b2 + 4αb2

2

=
b

2

(

1 +
√

1 + 4α
)



Setting α = 2, b = 1/2,
√

√

√

√

√

√

2

22
+

√

√

√

√

√

2

24
+

√

√

√

√

2

28
+

√

2

216
+ . . . = 1

√

√

√

√

√

√

2

21
+

√

√

√

√

√

2

22
+

√

√

√

√

2

24
+

√

2

28
+ . . . =

√
2

This can be rewritten as

21−2−1
=

√

21−20
+

√

21−21
+

√

21−22
+ . . .

And generalized to

21−2k
=

√

21−2k+1
+

√

21−2k+2
+

√

21−2k+3
+ . . .

Letting k → −∞,

2 =

√

√

√

√

. . . +

√

21−2−1
+

√

21−20
+

√

21−21
+ . . .



Transformations for ”pushing” terms through radicals:

√

√

√

√

a0 + b0

√

a1 + b1

√

a2 + b2

√

a3 + . . .

=

√

√

√

√

a0 +

√

a1b20 +

√

a2b21b40 +
√

a3b22b41b80 + . . .

n

√

√

√

√

a0 + b0
n

√

a1 + b1
n

√

a2 + b2
n
√

a3 + . . .

=
n

√

√

√

√

√

a0 +
n

√

√

√

√

a1bn
0 +

n

√

a2bn
1bn2

0 +
n

√

a3bn
2bn2

1 bn3

0 + . . .



2.3 Generation of Identities Using Recurrences

Srinivasa Ramanujan (1887-1920)

1 − 5

(

1

2

)3

+ 9

(

1 × 3

2 × 4

)3

− 13

(

1 × 3 × 5

2 × 4 × 6

)3

+ . . . = 2/π

1

1 + e−2π

1+ e−4π

1+e−6π

1+...

=





√

5 +
√

5

2
−

√
5 + 1

2



 e(2π/3)

(

1 +
1

1 × 3
+

1

1 × 3 × 5
+ . . .

)

+
1

1 + 1
1+ 2

1+ 3
1+...

=

√

πe

2



Problem:

? =

√

1 + 2

√

1 + 3

√

1 + 4
√

1 + . . .

Ramanujan claimed:

x + n =

√

n2 + x

√

n2 + (x + n)
√

n2 + (x + 2n)
√

. . .

Setting n=1 and x=2 we find

3 =

√

1 + 2

√

1 + 3

√

1 + 4
√

1 + . . .



Notice

[a + b] =

√

b2 + a2 + 2ab =
√

b2 + a[a + b + b]

Expanding the square-bracketed portions,

[x + n] =

√

n2 + x[x + n + n]

=

√

n2 + x

√

n2 + (x + n)[x + 2n + n]

=

√

n2 + x

√

n2 + (x + n)

√

n2 + (x + 2n)[x + 3n + n]

.

.

.

=

√

n2 + x

√

n2 + (x + n)

√

n2 + (x + 2n)
√

. . .

Basic Idea:

• Find a ”telescoping” recurrence relation

• Use it to generate an infinitely recursive expression

• Hope that it converges (!)



Consider a more familiar recurrence relation
[

1

k

]

=
1

k(k + 1)
+

[

1

k + 1

]

Expanding the square-bracketed portions,

[

1

n

]

=
1

n(n + 1)
+

[

1

n + 1

]

=
1

n(n + 1)
+

1

(n + 1)(n + 2)
+

[

1

n + 2

]

.

.

.

=
1

n(n + 1)
+

1

(n + 1)(n + 2)
+

1

(n + 2)(n + 3)
+ . . .

In this case, the infinite expansion is valid.



Consider the recurrence
[

21−2k
]

=

√

21−2k+1
+

[

21−2k+1
]

which expands into

[

21−2k
]

=

√

21−2k+1
+

√

21−2k+2
+

√

21−2k+3
+ . . .

Next, consider the recurrence

[

1 + 2−2k+1
]

=

√

21−2k+1
+

[

1 + 2−2k+2
]

which expands into

[

1 + 2−2k+1
]

=

√

21−2k+1
+

√

21−2k+2
+

√

21−2k+3
+ . . .

How can two identities have the same right hand side but

different left hand sides ? Answer: in the second identity,

the infinite expansion is not valid.



Another example (this time of a valid expansion). The

recurrence

[n! + (n + 1)!] =
√

n!2 + n! [(n + 1)! + (n + 2)!]

expands into

[n! + (n + 1)!] =

√

n!2 + n!

√

(n + 1)!2 + (n + 1)!

√

(n + 2)!2 + . . .

Recalling that Γ(k + 1) = k! for natural k, we can gener-

alize to

[Γ(x) + Γ(x + 1)] =

√

Γ2(x) + Γ(x)

√

Γ2(x + 1) + Γ(x + 1)
√

. . .



3. General Forms
Consider a ”continued power” of the form

a0 + b0(a1 + b1(a2 + b2(a3 + . . .)p2)p1)p0

Setting pj = 1 and bj = 1, we get a series

a0 + a1 + a2 + a3 + . . .

Setting pj = 1 and aj = 0, we get an infinite product

b0b1b2b3 . . .

Setting pj = −1, we get a continued fraction

a0 +
b0

a1 + b1

a2+
b2

a3+...

Setting pj = 1 and bj = 1/cj, we get an ascending con-

tinued fraction

a0 +
a1 +

a2+
a3+...

c2
c1

c0

Setting pj = 1/n, we get a nested radical

a0 + b0
n

√

a1 + b1
n

√

a2 + b2
n
√

a3 + . . .



Setting pj = −1/n, we get a hybrid form

a0 +
b0

n

√

√

√

√

a1 + b1

n

√

a2+
b2

n√a3+...

Observation: series, infinite products, continued fractions

and nested radicals are all special cases of this generalized

”continued power” form !

Question: can another general form be found for which

exponential ladders are also a special case ?



We can imagine constructing the expression

a0 + b0(a1 + b1(a2 + b2(a3 + . . .)p2)p1)p0

by starting with a ”seed” term and repeating the following

steps:

• Raise to the exponent pj

• Multiply by bj

• Add aj

Of these 3 operations, only the first is non-commutative.

What if we change the ordering of the operands in the

first step ? Then we would constuct an expression like

a0 + b0p
a1+b1p

a2+b2p
a3+...
2

1
0

Setting aj = 0 and bj = 1, we get an exponential ladder

p
p
p
p···
3

2
1

0



What other things can we generalize ?

• Identities. Example (constant term expansion):

L =
n

√

αLn + βLn−1 n

√

αLn + βLn−1 n
√

αLn + . . .

becomes

L = (αL1/p+βL1/p−1(αL1/p+βL1/p−1(αL1/p+. . .)p)p)p

where β = 1 − α.

• Recurrences. Example:

[

21−2k
]

=

√

21−2k+1
+

[

21−2k+1
]

becomes


2
pk−1

pk−1−pk



 =



2
pk+1−1

pk−pk+1 +



2
pk+1−1

pk−pk+1









p



• Transformations. Example:

n

√

√

√

√

a0 + b0
n

√

a1 + b1
n

√

a2 + b2
n
√

a3 + . . .

=
n

√

√

√

√

√

a0 +
n

√

√

√

√

a1bn
0 +

n

√

a2bn
1bn2

0 +
n

√

a3bn
2bn2

1 bn3

0 + . . .

becomes

(a0 + b0(a1 + b1(a2 + b2(a3 + . . .)p)p)p)p

= (a0 + (a1b
p−1
0 + (a2b

p−1
1 bp−2

0 + (a3b
p−1
2 bp−2

1 bp−3
0 + . . .)p)p)p)p

• Convergence Tests. Example: Is there a generalized

ratio test like the one used with series ?



4. Selected Results from Literature
Infinite Products

A) If −1 < x < 1, then

∞
∏

j=0

(

1 + x2j
)

=
1

1 − x

Incidentally, this identity can be generated with the re-

currence
[

1

1 − x

]

= (1 + x)

[

1

1 − x2

]

B) If Fn = 22n
+ 1 = the nth Fermat number, then

∞
∏

n=0

(

1 − 1

Fn

)

=
1

2

C) If the factors of an infinite product all exceed unity

by small amounts that form a convergent series, then the

infinite product also conveges.



Exponential Ladders

If 0.06599 ≈ e−e ≤ x ≤ e1/e ≈ 1.44467, then

xxxx···

converges to a limit L such that L1/L = x.



Herschfeld’s Convergence Theorem (restricted), published

1935. When xn > 0 and 0 < p < 1, the expression

lim
k→∞

x0 + (x1 + (. . . + (xk)
p . . .)p)p

converges if and only if {xpn

n } is bounded.

Special case: p = 1/2. Then

lim
k→∞

x0 +

√

x1 +
√

. . . +
√

xk

converges if and only if {x2−n

n } is bounded.



”Souped-up” ratio test (due to Dixon Jones, 1988). When

xn > 0 and p > 1, the continued power

lim
k→∞

x0 + (x1 + (. . . + (xk)
p . . .)p)p

converges if

x
p
n+1

xn
≤ (p − 1)p−1

pp

for all sufficiently large n.

Observation: as p → 1, we almost get back d’Alembert’s

ratio test for series.


