Nested Radicals

And Other Infinitely Recursive Expressions

Michael M^{C} Guffin

prepared
July 17, 1998
for
The Pure Math Club
University of Waterloo

Outline

1. Introduction
2. Derivation of Identities

2.1 Constant Term Expansions

2.2 Identity Transformations
2.3 Generation of Identities Using Recurrences
3. General Forms
4. Selected Results from Literature

1. Introduction

Examples of Infinitely Recursive Expressions

Series

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots
$$

Infinite Products

$$
\pi / 2=\frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \cdots
$$

Continued Fractions

$$
\begin{aligned}
& e-1=1+\frac{2}{2+\frac{3}{3+\frac{4}{4+\frac{5}{5+\ldots}}}} \\
& 4 / \pi=1+\frac{1}{2+\frac{3^{2}}{2+\frac{5^{2}}{2+\frac{7^{2}}{2+\ldots}}}}
\end{aligned}
$$

Infinitely Nested Radicals (or Continued Roots)

$$
K=\sqrt{1+\sqrt{2+\sqrt{3+\ldots}}}
$$

Exponential Ladders (or Towers)

$$
2=(\sqrt{2})^{(\sqrt{2})^{(\sqrt{2}) \cdots}}
$$

Hybrid Forms

$$
\begin{aligned}
& 4=2^{\sqrt{2^{\sqrt{2^{2 \cdots}}}}} \\
& \frac{1}{2}=\frac{1}{\frac{1}{\frac{1}{\cdots}+1+\frac{1}{\ldots}}+1+\frac{1}{\frac{1}{\ldots}+1+\frac{1}{\ldots}}}
\end{aligned}
$$

Questions:

- Does the expression converge ? Are there tests, or necessary/sufficient conditions for convergence ? Examples:
- For series,
* Terms must go to zero
* d'Alembert-Cauchy Ratio Test, Cauchy nth Root Test, Integral Test, ...
- For infinite products,
* Terms must go to a value in (-1,1]
- For infinitely nested radicals, * Terms can grow ! (But how fast ?)
- What does the expression converge to ? Are there formulae or identities we can use to evaluate the limit? Example: when $-1<r<1$,

$$
\frac{a}{1-r}=a+a r+a r^{2}+a r^{3}+\ldots
$$

2.1 Constant Term Expansions

Assume that

$$
\sqrt{a+b \sqrt{a+b \sqrt{a+\ldots}}}
$$

converges when $a \geq 0$ and $b \geq 0$, and let L be the limit. Then

$$
\begin{gathered}
L=\sqrt{a+b \sqrt{a+b \sqrt{a+\ldots}}} \\
L=\sqrt{a+b L} \\
L^{2}-b L-a=0 \\
L=\frac{b+\sqrt{b^{2}+4 a}}{2}
\end{gathered}
$$

Hence

$$
\sqrt{a+b \sqrt{a+b \sqrt{a+\ldots}}}=\frac{b+\sqrt{b^{2}+4 a}}{2}
$$

Observation: when $a=0$, we get

$$
\begin{gathered}
\sqrt{0+b \sqrt{0+b \sqrt{0+\ldots}}}=\frac{b+\sqrt{b^{2}+4(0)}}{2} \\
\sqrt{b \sqrt{b \sqrt{b \sqrt{\cdots}}}}=b
\end{gathered}
$$

This makes sense since

$$
\begin{aligned}
\sqrt{b \sqrt{b \sqrt{b \sqrt{\cdots}}}} & =\sqrt{b} \sqrt{\sqrt{b}} \sqrt{\sqrt{\sqrt{b}} \ldots} \\
& =b^{\frac{1}{2}} b^{\frac{1}{4}} b^{\frac{1}{8}} \ldots \\
& =b^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots} \\
& =b^{1}
\end{aligned}
$$

Similarly, assume that

$$
a+\frac{b}{a+\frac{b}{a+\frac{b}{a+\ldots}}}
$$

converges when $a>0$ and $b \geq 0$, and let L be the limit. Then

$$
\begin{gathered}
L=a+\frac{b}{a+\frac{b}{a+\frac{b}{a+\ldots}}} \\
L=a+\frac{b}{L} \\
L^{2}-a L-b=0 \\
L=\frac{a+\sqrt{a^{2}+4 b}}{2}
\end{gathered}
$$

Hence

$$
a+\frac{b}{a+\frac{b}{a+\frac{b}{a+\ldots}}}=\frac{a+\sqrt{a^{2}+4 b}}{2}
$$

But as we saw earlier,

$$
\sqrt{a+b \sqrt{a+b \sqrt{a+\ldots}}}=\frac{b+\sqrt{b^{2}+4 a}}{2}
$$

Therefore,

$$
\sqrt{a+b \sqrt{a+b \sqrt{a+\ldots}}}=b+\frac{a}{b+\frac{a}{b+\frac{a}{b+\ldots}}}=\frac{b+\sqrt{b^{2}+4 a}}{2}
$$

In addition, setting $a=b=1$, we get

$$
\sqrt{1+\sqrt{1+\sqrt{1+\ldots}}}=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}}=\frac{1+\sqrt{5}}{2}
$$

which is equal to the golden ratio ϕ.

Now assume that

$$
\sqrt[n]{a+b \sqrt[n]{a+b \sqrt[n]{a+\ldots}}}
$$

converges when $a \geq 0$ and $b \geq 0$, and let L be the limit. Then

$$
\begin{gathered}
L=\sqrt[n]{a+b \sqrt[n]{a+b \sqrt[n]{a+\ldots}}} \\
L=\sqrt[n]{a+b L} \\
L^{n}-b L-a=0
\end{gathered}
$$

Let $\alpha=a / L^{n}$ and $\beta=b / L^{n-1}$. Then $a=\alpha L^{n}, b=\beta L^{n-1}$ and

$$
\begin{gathered}
L^{n}-\beta L^{n}-\alpha L^{n}=0 \\
1-\beta-\alpha=0 \\
\beta=1-\alpha
\end{gathered}
$$

yielding

$$
L=\sqrt[n]{\alpha L^{n}+\beta L^{n-1} \sqrt[n]{\alpha L^{n}+\beta L^{n-1} \sqrt[n]{\alpha L^{n}+\ldots}}}
$$

2.2 Identity Transformations

Pushing terms through radicals,
$\begin{aligned} \frac{b+\sqrt{b^{2}+4 a}}{2} & =\sqrt{a+b \sqrt{a+b \sqrt{a+b \sqrt{a+\ldots}}}} \\ & =\sqrt{a+\sqrt{a b^{2}+b^{3} \sqrt{a+b \sqrt{a+\ldots}}}}\end{aligned}$
$=\sqrt{a+\sqrt{a b^{2}+\sqrt{a b^{6}+b^{7} \sqrt{a+\ldots}}}}$
$=\sqrt{a+\sqrt{a b^{2}+\sqrt{a b^{6}+\sqrt{a b^{14}+\ldots}}}}$
$=\sqrt{\left(\frac{a}{b^{2}}\right) b^{2}+\sqrt{\left(\frac{a}{b^{2}}\right) b^{4}+\sqrt{\left(\frac{a}{b^{2}}\right) b^{8}+\sqrt{\left(\frac{a}{b^{2}}\right) b^{16}+\ldots}}}}$
Set $\alpha=a / b^{2}$. Then

$$
\begin{aligned}
\sqrt{\alpha b^{2}+\sqrt{\alpha b^{4}+\sqrt{\alpha b^{8}+\sqrt{\alpha b^{16}+\ldots}}}} & =\frac{b+\sqrt{b^{2}+4 a}}{2} \\
& =\frac{b+\sqrt{b^{2}+4 \alpha b^{2}}}{2} \\
& =\frac{b}{2}(1+\sqrt{1+4 \alpha})
\end{aligned}
$$

Setting $\alpha=2, b=1 / 2$,

$$
\begin{aligned}
& \sqrt{\frac{2}{2^{2}}+\sqrt{\frac{2}{2^{4}}+\sqrt{\frac{2}{2^{8}}+\sqrt{\frac{2}{2^{16}}+\ldots}}}}=1 \\
& \sqrt{\frac{2}{2^{1}}+\sqrt{\frac{2}{2^{2}}+\sqrt{\frac{2}{2^{4}}+\sqrt{\frac{2}{2^{8}}+\ldots .}}}}=\sqrt{2}
\end{aligned}
$$

This can be rewritten as

$$
2^{1-2^{-1}}=\sqrt{2^{1-2^{0}}+\sqrt{2^{1-2^{1}}+\sqrt{2^{1-2^{2}}+\ldots}}}
$$

And generalized to

$$
2^{1-2^{k}}=\sqrt{2^{1-2^{k+1}}+\sqrt{2^{1-2^{k+2}}+\sqrt{2^{1-2^{k+3}}+\ldots}}}
$$

Letting $k \rightarrow-\infty$,

$$
2=\sqrt{\ldots+\sqrt{2^{1-2^{-1}}+\sqrt{2^{1-2^{0}}+\sqrt{2^{1-2^{1}}+\ldots}}}}
$$

Transformations for "pushing" terms through radicals:

$$
\begin{gathered}
\sqrt{a_{0}+b_{0} \sqrt{a_{1}+b_{1} \sqrt{a_{2}+b_{2} \sqrt{a_{3}+\ldots}}}} \\
=\sqrt{a_{0}+\sqrt{a_{1} b_{0}^{2}+\sqrt{a_{2} b_{1}^{2} b_{0}^{4}+\sqrt{a_{3} b_{2}^{2} b_{1}^{4} b_{0}^{8}+\ldots}}}} \\
=\sqrt[n]{a_{0}+\sqrt[n]{a_{1} b_{0}^{n}+\sqrt[n]{a_{2} b_{1}^{n} b_{0}^{n^{2}}+\sqrt[n]{a_{3} b_{2}^{n} b_{1}^{n_{1}^{2} b_{0}^{n^{3}}+\ldots}}}}}
\end{gathered}
$$

2.3 Generation of Identities Using Recurrences

Srinivasa Ramanujan (1887-1920)

$$
\begin{gathered}
1-5\left(\frac{1}{2}\right)^{3}+9\left(\frac{1 \times 3}{2 \times 4}\right)^{3}-13\left(\frac{1 \times 3 \times 5}{2 \times 4 \times 6}\right)^{3}+\ldots=2 / \pi \\
\frac{1}{1+\frac{e^{-2 \pi}}{1+\frac{e^{-4 \pi}}{1+\frac{e^{-6 \pi}}{1+\ldots}}}}=\left(\sqrt{\frac{5+\sqrt{5}}{2}}-\frac{\sqrt{5}+1}{2}\right) e^{(2 \pi / 3)} \\
\left(1+\frac{1}{1 \times 3}+\frac{1}{1 \times 3 \times 5}+\ldots\right)+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{1+\ldots}}}}=\sqrt{\frac{\pi e}{2}}
\end{gathered}
$$

Problem:

$$
?=\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+\ldots}}}}
$$

Ramanujan claimed:

$$
x+n=\sqrt{n^{2}+x \sqrt{n^{2}+(x+n) \sqrt{n^{2}+(x+2 n) \sqrt{\cdots}}}}
$$

Setting $n=1$ and $x=2$ we find

$$
3=\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+\ldots}}}}
$$

Notice

$$
[a+b]=\sqrt{b^{2}+a^{2}+2 a b}=\sqrt{b^{2}+a[a+b+b]}
$$

Expanding the square-bracketed portions,

$$
\begin{aligned}
{[x+n] } & =\sqrt{n^{2}+x[x+n+n]} \\
& =\sqrt{n^{2}+x \sqrt{n^{2}+(x+n)[x+2 n+n]}} \\
& =\sqrt{n^{2}+x \sqrt{n^{2}+(x+n) \sqrt{n^{2}+(x+2 n)[x+3 n+n]}}} \\
& \cdot \\
& \cdot \\
& =\sqrt{n^{2}+x \sqrt{n^{2}+(x+n) \sqrt{n^{2}+(x+2 n) \sqrt{\cdots}}}}
\end{aligned}
$$

Basic Idea:

- Find a "telescoping" recurrence relation
- Use it to generate an infinitely recursive expression
- Hope that it converges (!)

Consider a more familiar recurrence relation

$$
\left[\frac{1}{k}\right]=\frac{1}{k(k+1)}+\left[\frac{1}{k+1}\right]
$$

Expanding the square-bracketed portions,

$$
\begin{aligned}
{\left[\frac{1}{n}\right] } & =\frac{1}{n(n+1)}+\left[\frac{1}{n+1}\right] \\
& =\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}+\left[\frac{1}{n+2}\right] \\
& \vdots \\
& =\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+2)(n+3)}+\ldots
\end{aligned}
$$

In this case, the infinite expansion is valid.

Consider the recurrence

$$
\left[2^{1-2^{k}}\right]=\sqrt{2^{1-2^{k+1}}+\left[2^{1-2^{k+1}}\right]}
$$

which expands into

$$
\left[2^{1-2^{k}}\right]=\sqrt{2^{1-2^{k+1}}+\sqrt{2^{1-2^{k+2}}+\sqrt{2^{1-2^{k+3}}+\ldots}}}
$$

Next, consider the recurrence

$$
\left[1+2^{-2^{k+1}}\right]=\sqrt{2^{1-2^{k+1}}+\left[1+2^{-2^{k+2}}\right]}
$$

which expands into

$$
\left[1+2^{-2^{k+1}}\right]=\sqrt{2^{1-2^{k+1}}+\sqrt{2^{1-2^{k+2}}+\sqrt{2^{1-2^{k+3}}+\ldots}}}
$$

How can two identities have the same right hand side but different left hand sides ? Answer: in the second identity, the infinite expansion is not valid.

Another example (this time of a valid expansion). The recurrence

$$
[n!+(n+1)!]=\sqrt{n!^{2}+n![(n+1)!+(n+2)!]}
$$

expands into

$$
[n!+(n+1)!]=\sqrt{n!^{2}+n!\sqrt{(n+1)!^{2}+(n+1)!\sqrt{(n+2)!^{2}+\ldots}}}
$$

Recalling that $\Gamma(k+1)=k$! for natural k, we can generalize to

$$
[\Gamma(x)+\Gamma(x+1)]=\sqrt{\Gamma^{2}(x)+\Gamma(x) \sqrt{\Gamma^{2}(x+1)+\Gamma(x+1) \sqrt{\cdots}}}
$$

3. General Forms

Consider a "continued power" of the form

$$
a_{0}+b_{0}\left(a_{1}+b_{1}\left(a_{2}+b_{2}\left(a_{3}+\ldots\right)^{p_{2}}\right)^{p_{1}}\right)^{p_{0}}
$$

Setting $p_{j}=1$ and $b_{j}=1$, we get a series

$$
a_{0}+a_{1}+a_{2}+a_{3}+\ldots
$$

Setting $p_{j}=1$ and $a_{j}=0$, we get an infinite product $b_{0} b_{1} b_{2} b_{3} \ldots$

Setting $p_{j}=-1$, we get a continued fraction

$$
a_{0}+\frac{b_{0}}{a_{1}+\frac{b_{1}}{a_{2}+\frac{b_{2}}{a_{3}+\ldots}}}
$$

Setting $p_{j}=1$ and $b_{j}=1 / c_{j}$, we get an ascending continued fraction

$$
a_{0}+\frac{a_{1}+\frac{a_{2}+\frac{a_{3}+\ldots}{c_{2}}}{c_{1}}}{c_{0}}
$$

Setting $p_{j}=1 / n$, we get a nested radical

$$
a_{0}+b_{0} \sqrt[n]{a_{1}+b_{1} \sqrt[n]{a_{2}+b_{2} \sqrt[n]{a_{3}+\ldots}}}
$$

Setting $p_{j}=-1 / n$, we get a hybrid form

$$
a_{0}+\frac{b_{0}}{\sqrt[n]{a_{1}+\frac{b_{1}}{\sqrt[n]{a_{2}+\frac{b_{2}}{\sqrt[n]{a_{3}+\ldots}}}}}}
$$

Observation: series, infinite products, continued fractions and nested radicals are all special cases of this generalized "continued power" form !

Question: can another general form be found for which exponential ladders are also a special case ?

We can imagine constructing the expression

$$
a_{0}+b_{0}\left(a_{1}+b_{1}\left(a_{2}+b_{2}\left(a_{3}+\ldots\right)^{p_{2}}\right)^{p_{1}}\right)^{p_{0}}
$$

by starting with a "seed" term and repeating the following steps:

- Raise to the exponent p_{j}
- Multiply by b_{j}
- Add a_{j}

Of these 3 operations, only the first is non-commutative. What if we change the ordering of the operands in the first step ? Then we would constuct an expression like

$$
a_{0}+b_{0} p_{0}^{a_{1}+b_{1} p_{1}^{a_{2}+b_{2} p_{2}^{a_{3}+\ldots}}}
$$

Setting $a_{j}=0$ and $b_{j}=1$, we get an exponential ladder

What other things can we generalize ?

- Identities. Example (constant term expansion):

$$
L=\sqrt[n]{\alpha L^{n}+\beta L^{n-1} \sqrt[n]{\alpha L^{n}+\beta L^{n-1} \sqrt[n]{\alpha L^{n}+\ldots}}}
$$

becomes
$L=\left(\alpha L^{1 / p}+\beta L^{1 / p-1}\left(\alpha L^{1 / p}+\beta L^{1 / p-1}\left(\alpha L^{1 / p}+\ldots\right)^{p}\right)^{p}\right)^{p}$ where $\beta=1-\alpha$.

- Recurrences. Example:

$$
\left[2^{1-2^{k}}\right]=\sqrt{2^{1-2^{k+1}}+\left[2^{1-2^{k+1}}\right]}
$$

becomes

$$
\left[2 \frac{p^{k}-1}{2^{k-1}-p^{k}}\right]=\left(22^{\frac{p^{k+1}-1}{p^{k}-p^{k+1}}}+\left[22^{\frac{p^{k+1}-1}{p^{k}-p^{k+1}}}\right]\right)^{p}
$$

- Transformations. Example:

$$
\begin{gathered}
\sqrt[n]{a_{0}+b_{0} \sqrt[n]{a_{1}+b_{1} \sqrt[n]{a_{2}+b_{2} \sqrt[n]{a_{3}+\ldots}}}} \\
=\sqrt[n]{a_{0}+\sqrt[n]{a_{1} b_{0}^{n}+\sqrt[n]{a_{2} b_{1}^{n} b_{0}^{n^{2}}+\sqrt[n]{a_{3} b_{2}^{n} b_{1}^{n^{2} b_{0}^{n^{3}}+\ldots}}}}}
\end{gathered}
$$

becomes

$$
\begin{gathered}
\left(a_{0}+b_{0}\left(a_{1}+b_{1}\left(a_{2}+b_{2}\left(a_{3}+\ldots\right)^{p}\right)^{p}\right)^{p}\right)^{p} \\
=\left(a_{0}+\left(a_{1} b_{0}^{p-1}+\left(a_{2} b_{1}^{p} b_{0}^{p-2}+\left(a_{3} b_{2}^{p^{-1}} b_{1}^{p_{1}^{p}} b_{0}^{p-3}+\ldots\right)^{p}\right)^{p}\right)^{p}\right)^{p}
\end{gathered}
$$

- Convergence Tests. Example: Is there a generalized ratio test like the one used with series ?

4. Selected Results from Literature Infinite Products
A) If $-1<x<1$, then

$$
\prod_{j=0}^{\infty}\left(1+x^{2^{j}}\right)=\frac{1}{1-x}
$$

Incidentally, this identity can be generated with the recurrence

$$
\left[\frac{1}{1-x}\right]=(1+x)\left[\frac{1}{1-x^{2}}\right]
$$

B) If $F_{n}=2^{2^{n}}+1=$ the nth Fermat number, then

$$
\prod_{n=0}^{\infty}\left(1-\frac{1}{F_{n}}\right)=\frac{1}{2}
$$

C) If the factors of an infinite product all exceed unity by small amounts that form a convergent series, then the infinite product also conveges.

Exponential Ladders

If $0.06599 \approx e^{-e} \leq x \leq e^{1 / e} \approx 1.44467$, then

$$
x^{x^{x^{x}}}
$$

converges to a limit L such that $L^{1 / L}=x$.

Herschfeld's Convergence Theorem (restricted), published 1935. When $x_{n}>0$ and $0<p<1$, the expression

$$
\lim _{k \rightarrow \infty} x_{0}+\left(x_{1}+\left(\ldots+\left(x_{k}\right)^{p} \ldots\right)^{p}\right)^{p}
$$

converges if and only if $\left\{x_{n}^{p^{n}}\right\}$ is bounded.

Special case: $p=1 / 2$. Then

$$
\lim _{k \rightarrow \infty} x_{0}+\sqrt{x_{1}+\sqrt{\cdots+\sqrt{x_{k}}}}
$$

converges if and only if $\left\{x_{n}^{2^{-n}}\right\}$ is bounded.
"Souped-up" ratio test (due to Dixon Jones, 1988). When $x_{n}>0$ and $p>1$, the continued power

$$
\lim _{k \rightarrow \infty} x_{0}+\left(x_{1}+\left(\ldots+\left(x_{k}\right)^{p} \ldots\right)^{p}\right)^{p}
$$

converges if

$$
\frac{x_{n+1}^{p}}{x_{n}} \leq \frac{(p-1)^{p-1}}{p^{p}}
$$

for all sufficiently large n.

Observation: as $p \rightarrow 1$, we almost get back d'Alembert's ratio test for series.

