
GenSession: a Flexible Zoomable User Interface
for Melody Generation

Fran�cois Cabrol1, Michael J. McGu�n 1, Marlon Schumacher2, and
Marcelo M. Wanderley3

1 �Ecole de technologie sup�erieure, Montr�eal, Canada,
francois.cabrol@live.fr , michael.mcguffin@etsmtl.ca

2 IDMIL - DCS - CIRMMT, McGill University
marlon.schumacher@music.mcgill.ca

3 IDMIL - CIRMMT, McGill University
marcelo.wanderley@mcgill.ca

Abstract. GenSession is a zoomable user interface in which short clips
of musical passages can be created and positioned on a 2-dimensional
workspace. Clips can be created by hand, or with automatic genera-
tion algorithms, and can be subsequently edited or sequenced together.
Links between clips visualize the history of how they were created. The
zoomable user interface is enhanced with an automatic re-framing mode,
and the generation algorithms used support dynamic parameters that
can be sketched as curves over time. GenSession allows melodies and
sequences of chords to be generated quickly without expert knowledge.
Initial user feedback is reported.

Keywords: zoomable user interface, ZUI, music generation, sketching

1 Introduction

Computer applications for music composition can be positioned on a spectrum
of ease-of-use. At one extreme are very easy-to-use tools, aimed at a large pop-
ulation of novice or casual users. These applications typically hide details of
their implementation and provide functionalities for prod ucing musical output
in a speci�c musical style or genre. Examples include PG Music's Band-in-a-Box
and SongSmith [14]. At the other extreme we �nd music programming environ-
ments and domain-speci�c-languages, which provide greater exibility, however
in turn may require extensive training and expertise beforeusing, for example
SuperCollider [11], athenaCL [3], or visual programming environments such as
Patchwork, OpenMusic [4] and PWGL [9]. Toward the middle of this spectrum
are tools focusing on a subset of possibilities, typically exposing speci�c compo-
sitional parameters through graphical user interfaces. These applications aim at
a balance of exibility and ease-of-use and require little or moderate training.

We propose a novel interaction style that is appropriate for tools in the
middle of this ease-of-use spectrum, and we demonstrate this style in a software
prototype called GenSession, a zoomable user interface formelody generation.

2 Fran�cois Cabrol et al.

GenSession allows a user to generate short segments of melodies (or sequences
of chords), called clips. Clips may be freely positioned within a 2D workspace,
allowing the user to group or position them according to any criteria, similar to
positioning icons on a virtual desktop. Multiple clips with di�erent generation
parameters may be created. Users may thus review multiple alternatives before
selecting among them. Users may also combine or mix the content of di�erent
clips, or use generation algorithms to create new variants based on existing clips.
Furthermore, a network of relationships between the set of clips is displayed in
the form of graph edges, enabling the user to see how each clipwas generated,
and allowing the user to visualize and retrace the history oftheir creative process
(Figure 1).

Fig. 1. The main window of the prototype. The 2D workspace displays a net work of
interrelated settings objects and clips.

GenSession also leverages concepts from Zoomable User Interfaces (ZUIs)
[5], allowing the user to zoom into a single clip (to see a piano-roll type view of
the clip) or zoom out to an overview of all clips. The user may quickly toggle
between these two views with a single keystroke, during which the zooming
is animated with a quick and smooth visual transition, making it easier for
the user to understand the relationship between the two levels of abstraction.
Furthermore, when the user is zoomed out and is dragging clips to reposition
them on the 2D workspace, our prototype supports \automatic re-framing", with
the main window automatically panning and zooming to maintain the visibility
of all clips at any time.

GenSession 3

GenSession allows a variety of parameters to be chosen by theuser and fed
into music generation algorithms. Parameters may be boolean, integer, oating
point, or even quantities that vary over time, which we call dynamic parame-
ters. Such dynamic parameters may be drawn as curves with theuser's mouse
(Figure 2), allowing the user to informally sketch out how di�erent generation
parameters (such as note duration) should vary over the course of a clip.

Fig. 2. The user has zoomed in on a settings object, to see and edit itsproperties.
This settings object generates clips with 4 bars, with targe t chords E-, B-, F]dim,
E-, respectively. Dynamic parameters appear as curves that can be sketched with the
mouse. The red curve is the percentage of generated notes that should fall on notes
of the target chords, and the green curve corresponds to rhythmic density. The semi-
transparent envelope around the green curve corresponds tothe allowed variance in
rhythmic density.

The result is an interactive music generation tool which allows musicians
without a computer music background to quickly generate newmelodies and
variants of melodies. These melodies can be reviewed, modi�ed, and recombined
with an easy-to-use graphical user interface that helps theuser keep track of
and visualize their history and relationships between clips. Our contributions
are (1) the use of a zoomable user interface, with optional automatic re-framing,
for navigating a graph of relationships between clips, (2) the ability to sketch
out curves to de�ne dynamic parameters for generation, (3) initial user feedback
from music students and researchers that partially con�rm the value of our
prototype's features.

4 Fran�cois Cabrol et al.

2 GenSession Prototype

GenSession is a Java application that uses thejavax.sound API.

2.1 General Overview

GenSession allows the user to generate short passages of music, calledclips, using
di�erent generation settings, and then listen to them, reposition them on a 2D
workspace, copy them, modify them, and delete those that areno longer desired.
In the main window (Figure 1), a panel of options appears on the left, and most
of the main window is taken up by the scene(workspace), which contains two
kinds of nodes: clips, andsettings objects(used to generate clips). Nodes are
connected by arrows to indicate which nodes were used to generate other nodes.
These arrows help the user recall the history of operations that were performed.

With the mouse, the user may freely pan and zoom within the 2D scene, or
activate an automatic re-framing mode whereby moving a clipcauses the scene
to automatically pan and/or zoom to maintain the set of all cl ips centered and
visible. The user may also select a single node and modify it through the panel
of options on the left, or zoom in on the node to see and modify details of its
settings or content. Hitting a key on the keyboard allows the user to rapidly
zoom in or out of the selected node, allowing the user to switch between a global
overview and a focused view of a single node. These keyboard-driven transitions
between \zoomed out" and \zoomed in" are smoothly animated over a period
of 0.5 seconds, which is slow enough to avoid disorienting the user, while also
fast enough to avoid slowing down the user's workow.

2.2 Settings Objects

When the GenSession application is �rst launched, the sceneis empty, with no
nodes. The user could begin by creating an empty clip and manually entering
notes in it, but a more typical usage scenario is to �rst create a settings object.
Once created, the user can zoom in on the settings object (Figure 2) to modify
its parameters.

Settings objects are used to generate clips, and contain parameters describing
the kind of clips to generate. When the user is zoomed in on a settings object,
the panel of options on the left side of the main window allowsthe user to modify
the scale and number of bars in the generated clips, as well asother parameters.
The example in Figure 2 shows options for generating clips with 4 bars, in E
minor, using the chord progression \E- B- F]dim E-". The chord progression
de�nes one target chord for each bar, and can be entered manually, or can be
inferred by the software if the user enters a cadence string like \I V II I".

Note that when generating a clip, the target chords in the chord progression
are not simply copied into the clip. Instead, the target chords provide guidance
for the generation algorithm, which we discuss later.

GenSession 5

Other parameters in the settings object include: the percentage of generated
notes that should fall on notes of the target chords (we call this p in a later sec-
tion); the rhythmic density; the fraction of generated notes that should be rests
(silences); and the number of notesK to generate together at each generated
position in time (for example, setting K = 3 will cause the generated music to
be a sequence of 3-note chords, that are not necessarily the same as the target
chords).

Rhythmic density varies between 0 and 6, and determines the duration of
generated notes (we chose the following ad hoc mapping: a density of 0 corre-
sponds to a whole note, 1 for half note, 2 for dotted quarter note, 3 for quarter
note, 4 for dotted eighth note, 5 for eighth note, and 6 for sixteenth note). In ad-
dition to setting a value for rhythmic density, the user may also set a \variance"
parameter. For example, if the rhythmic density is set to 3, with a variance of 1,
the resulting rhythmic density would be randomly chosen in the range 3� 1 for
each note.

We distinguish between global parameters, that are constant for the entire
clip, and dynamic parameters, that vary throughout the clip. For example, both
the \percentage of notes on chords" and \rhythmic density" can be set to a
single value using a slider in the settings panel on the left,in which case they
behave as a global parameter. On the other hand, the user may instead draw a
curve for each of these parameters with a value that varies over time, de�ning
a dynamic parameter. For example, in Figure 2, the \percentage of notes on
chords" starts o� high, and then decreases to a lower value inthe later bars.

2.3 Clips

Clips are the second kind of node in the scene. When the user iszoomed in on a
clip, they see a piano-roll style view, within which they may manually edit notes.
Figure 3 shows the rows corresponding to the target chords highlighted in grey.
This highlighting can be optionally turned o�. An additiona l option highlights
all notes in the scale in a lighter shade of grey. Both kinds ofhighlighting can
make it easier for users to position notes in the piano roll.

Every clip has 2 voices, or subsets of notes, that are similar to the concept of
tracks. The voices are identi�ed by color (red or blue), and the notes of a voice
are displayed with this corresponding color.

2.4 Algorithms for Generating Clips

To generate new clips, the user must be \zoomed out" (i.e., not zoomed in on any
node), in which case the panel of options (Figure 1) containswidgets to select
and execute a generation algorithm, based on the currently selected settings
object and/or currently selected parent clip.

The generation algorithms we designed were inspired in partby Povel [13].
The basic algorithm we implemented generates notes sequentially, at temporal
positions denoted by t = 1 ; 2; 3; : : :. The timing of these temporal positions
depend on the rhythmic density, which may be �xed or dynamic, and which

6 Fran�cois Cabrol et al.

Fig. 3. When the user zooms in on a clip, a piano-roll style view is displayed, and
individual notes can be edited.

may have some \variance" allowing for random choice in note duration (i.e.,
distance between consecutive temporal positions). When the variance of the
rythmic density allows it, the algorithm will more often cho ose notes of the same
duration as the previous note, and will also more often choose note durations so
that notes fall on the beat.

Let K be the number of notes to generate together at each generatedposition
in time, as speci�ed by the user in the settings object. For example,K = 1 means
a monophonic melody is generated, andK = 3 means that 3-note chords are gen-
erated (not necessarily the same as the target chords). We denote the sequence
of generated notes as (n1;1; : : : ; n1;K); (n2;1; : : : ; n2;K); : : :, where (nt; 1; : : : ; nt;K)
is the set of simultaneous notes at temporal positiont.

Furthermore, let p be the percentage (as speci�ed by the user in the settings
object) of notes that should fall on notes of the target chords.

The �rst note, n1;1, is given a random pitch, with probability p of falling on
a note of the �rst bar's target chord, and probability p � 1 of falling somewhere
else on the clip's scale. From each notent; 1, we generatent; 2, which is used to
generatent; 3, etc., until nt;K is generated, at which pointnt; 1 is used to generate
nt +1 ;1, which is used to generatent +1 ;2, etc.

Each time the �rst note nt; 1 at a new temporal position t is generated, a 50%
coin toss decides whether the other notesnt; 2; : : : ; nt;K will have progressively
increasing or decreasing pitches. Assume that increasing pitches have been cho-
sen, for the sake of illustration. The algorithm then searches upward from nt; 1

for the next pitch that is either on the bar's target chord or on some othernote
of the scale (depending on the outcome of ap-weighted coin toss), and assigns

GenSession 7

this pitch to nt; 2. This is repeated, searching upward from eachnt;i to �nd the
next pitch to assign to nt;i +1 , repeating the p-weighted coin toss each time.

Oncent;K has been generated, the algorithm then generatesnt +1 ;1 from nt; 1,
the same way it generatednt; 2 from nt; 1: a 50% coin toss to choose whether to
move upward or downward in pitch, and a p-weighted coin toss to determine
whether nt +1 ;1 will fall on the bar's target chord or on some other note of the
scale. (Note that, from temporal position t to t + 1, we may have moved into a
new bar with a new target chord, or we may still be in the same bar.)

The above algorithm can be executed to create a new clip from asettings
object. There are also 3 variants of the above basic algorithm:

Variant 1: \Keep existing rhythm, generate new pitches": th is reuses the
rhythm of an existing selected clip, and generates new pitches in the newly
generated child clip. The child clip is then shown linked with arrows to both its
parent settings object and parent original clip.

Variant 2: \Keep existing pitches, generate new rhythm": similar to the �rst
variant, this results in a child clip with two parents: a sett ings object, and the
original clip. In this case, the total duration of the modi�e d notes may no longer
match the total number of bars, so the algorithm will compensate by either
truncated the end of the child's notes if they extend past thelast bar, or �ll in
the end with generated pitches if the modi�ed notes don't reach the end of the
last bar.

Variant 3: for each note in a parent clip, this variant randomly chooses to
either change the note's pitch, or the note's duration, or change both, or change
neither. The probabilities for each outcome are currently �xed in the source
code, but could easily be exposed with sliders similar to theother generation
parameters.

Finally, with each of the 4 generation algorithms above (thebasic algorithm,
and the 3 variants), the user has the choice of having each voice (red or blue)
in the generated child clip be copied from the parent clip or generated with the
algorithm.

2.5 Timeline

In Figure 1, along the top of the 2D scene, there is a timeline widget that can
be used to play a sequence of consecutive clips. The user can drag clips into the
timeline in any order, and hit \Play" to listen to the resulti ng piece.

2.6 Additional Features

The user may select two existing clips, and combine them intoa single child clip,
made with the blue voice of one parent and the red voice of the other parent
(Figure 4).

Each clip also has a \regeneration" option that, when turned on, causes the
content of the clip to be regenerated on-the-y when the clip is played. Such
clips can be dragged into the timeline between other clips with �xed content, in

8 Fran�cois Cabrol et al.

Fig. 4. The user has de�ned two settings objects, one with an increasing rhythmic
density, the other with a decreasing rhythmic density, and ge nerated one clip with
each of them. Next, the user combines the two clips into a child clip, made with the
blue voice of one parent, and the red voice of the other.

which case they behave somewhat like an improvised clip thatsounds di�erent
each time the piece is played (but always with the same targetchord sequence).

Once a clip has been generated, the user can experiment with changes to the
scale or changes to the (target) chord progression, causingindividual notes to
update. This is done using the panel of widgets on the left of Figure 3, after
zooming in on the clip. For example, if the scale is initially C major, and the
�rst bar's target chord is C major, the user can change the �rst bar's target
chord to C minor, in which case all the E notes in that bar are changed to E[.
Alternatively, the user may change the scale from C major to C(natural) minor,
in which case all E notes in the bar become E[, and all B notes in the bar become
B[.

Finally, GenSession can save MIDI �les, as well as output a live MIDI signal
to a MIDI port, with each voice on a di�erent channel. This all ows the use of
GenSession in conjunction with other tools such as Ableton Live.

GenSession 9

2.7 Source Code and Video Demonstration

The source code for our prototype, as well as a video demonstrating its features,
can be found at
http://hifiv.ca/ ~francoiscabrol/GenSession/

3 Initial User Feedback

To evaluate our interface, one of us (Cabrol) conducted individual meetings with
7 users having some professional relationship with music: 3master's students in
music and technology, 1 master's student in acoustics, 2 Ph.D. students doing
research related to music and technology, and 1 artist who has performed exper-
imental music at concerts. 2 of these users are experienced musicians, 3 of them
are less experienced intermediary musicians, and 2 of them have very limited
knowledge of music theory. None of them had seen our prototype before the
meetings.

We started the meetings by demonstrating the main features of the prototype
for approximately 15 minutes. This demonstration was the same for each user,
and involved generating clips with a melody on the blue voice, then generating
clips with rhythm chords on the red voice, and then combining clips to merge
together the melodies and chord accompaniment into a singleclip.

Next, the participant was invited to freely interact with th e prototype. In
most cases, the meeting lasted a total of 1 hour, but most users were interested
in using the prototype longer, or using it again at a subsequent meeting, or in
obtaining a copy of the code. Two users spent a total of 2 hourseach using the
prototype.

When using the prototype, users started with an empty scene.They were
invited to create anything they like, to explore and do as they wished, with
help being provided by Cabrol whenever the user needed it. Most users roughly
recreated the steps that had been shown to them in the demonstration: creating
settings objects, then generating clips, then combining di�erent voices of clips.
However, each user chose di�erent scales and chord progressions, and di�erent
users also played with the rhythmic density in di�erent ways. A critical step for
the user to generate clips is to �rst choose a scale and (target) chord progression
in the settings object. Novice and intermediate users foundthis step challenging,
and all users suggested having an easier way to do this, for example, an interface
that would suggest chord progressions, or one that would allow the user to hear
previews of chords and then drag them into a progression.

Users liked the zoomable user interface (ZUI) a lot, and theyliked seeing
thumbnail representations of the clips when zoomed out, enabling them to dis-
tinguish clips more easily. The automatic re-framing mode was also very well-
liked. One user stated that they would very much like to have asimilar feature
in another music editing program that they use regularly.

All users found the prototype \easy to use", but also found that it took some
time to learn the various features of the user interface. After 30-45 minutes of

10 Fran�cois Cabrol et al.

use, most had learned the main features, and were interestedin using it given
more time and opportunity. As one user summed up, \Good interface, easy to
use, but requires a training time like every music production tool to understand
all the functions." Generally speaking, the users with beginner and intermediate
experience in music found that the prototype allowed for easy creation of inter-
esting sounding pieces, whereas the more experienced musicians thought the tool
would be appropriate for experimental use and for teaching musical concepts to
others. 4 of the 7 users stated they would like to have a similar application for
themselves to compose or just to experiment.

4 Future Directions

As indicated by the user feedback we obtained, it would be useful to have a
mechanism to make it easier to hear previews of chords and progressions, and
possibly even automatically suggest chord progressions. Automatic suggestions
might be generated in a partially stochastic fashion, possibly based on parame-
ters describing the desired \tension".

Future work could allow the user to connect the GenSession user interface
to other generation modules, possibly de�ned in external software, or possibly
through a plugin architecture. Rule-based algorithms [8] and genetic algorithms
[6, 15] would both be useful sources of material. As Papadopoulos and Wiggins
[12] state, \Systems based on only one method do not seem to bevery e�ec-
tive. We could conclude that it will become more and more common to `blend'
di�erent methods and take advantage of the strengths of eachone."

To help users manage large collections of clips, features could be added for
performing automatic layout on demand, based on graph drawing algorithms
[7]. Users might also be allowed to select groups of clips andcollapse them into
a \meta node". Additionally, techniques from virtual deskt op interfaces that
enable users to collect icons together into \piles" [10, 1] could be adapted for
working with sets of clips. This leads to a related question of how to provide the
user with a meaningful \musical thumbnail" of the contents of a pile of clips:
perhaps when the user hovers their cursor over a pile or collection of clips, a
randomly chosen clip, or intelligently-chosen subset, could be played.

Finally, features to help users understand the di�erences between two clips
could be bene�cial, perhaps by highlighting the di�erent no tes between a pair
of chosen clips, similar to how di�erent versions of a text �l e can be compared
by visual \di�" tools. Highlighting di�erences in individu al notes could help the
user immediately see where the clips di�er without having to listen to a playback
of both clips. In addition, highlighting di�erences in chor d progressions or keys
between two clips could help the user check if two clips are \compatible" before
merging them into a single clip. Di�erence highlighting could be done in response
to cursor rollover: the clip under the curser, and all its neigboring clips, could
have the di�erences in their notes highlighted. Di�erencescould also be visualized
at the level of entire collections of clips: users may bene�tfrom a visualization
showing how a scene has evolved over time, i.e., showing which clips have been

GenSession 11

deleted or created. Techniques for this could be adapted from previous work on
the visualization of dynamic graphs [2, 16].

Acknowledgments. We thank the researchers and musicians who gave us their
time and feedback. This research was funded by NSERC.

References

1. Agarawala, A., Balakrishnan, R.: Keepin' it real: Pushing t he desktop metaphor
with physics, piles and the pen. In: Proceedings of ACM Conference on Human
Factors in Computing Systems (CHI). pp. 1283{1292 (2006)

2. Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and
the e�ect of mental map preservation in dynamic graphs. IEEE T ransactions on
Visualization and Computer Graphics (TVCG) 17(4), 539{552 (2 011)

3. Ariza, C.: An Open Design for Computer-Aided Algorithmic M usic Composition:
athenaCL. Ph.D. thesis (2005)

4. Assayag, G., Rueda, C., Laurson, M., Agon, C., Delerue, O.: Computer-assisted
composition at IRCAM: From PatchWork to OpenMusic. Computer Music Journal
23(3), 59{72 (1999)

5. Bederson, B.B., Hollan, J.D.: Pad++: A zooming graphical int erface for exploring
alternate interface physics. In: Proc. ACM Symposium on User I nterface Software
and Technology (UIST). pp. 17{26 (1994)

6. Biles, J.A.: GenJam: A genetic algorithm for generating jazz solos. In: Proceedings
of the International Computer Music Conference (ICMC). pp. 131{131 (1994)

7. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall (1999)

8. Gwee, N.: Complexity and heuristics in rule-based algorith mic music composition.
Ph.D. thesis, Department of Computer Science, Louisiana State University, Baton
Rouge, Louisiana (2002)

9. Laurson, M., Kuuskankare, M., Norilo, V.: An overview of PWGL , a visual pro-
gramming environment for music. Computer Music Journal 33(1) , 19{31 (2009)

10. Mander, R., Salomon, G., Wong, Y.Y.: A `pile' metaphor for supporting casual
organization of information. In: Proceedings of ACM Confer ence on Human Factors
in Computing Systems (CHI). pp. 627{634 (1992)

11. McCartney, J.: Rethinking the Computer Music Language: Su perCollider. Com-
puter Music Journal 26(4) (2002)

12. Papadopoulos, G., Wiggins, G.: AI methods for algorithmic c omposition: A survey,
a critical view and future prospects. In: AISB Symposium on Mus ical Creativity.
pp. 110{117 (1999)

13. Povel, D.: Melody generator: A device for algorithmic mus ic construction. Journal
of Software Engineering & Applications 3, 683{695 (2010)

14. Simon, I., Morris, D., Basu, S.: MySong: automatic accompaniment generation
for vocal melodies. In: Proc. ACM Conference on Human Factor s in Computing
Systems (CHI). pp. 725{734 (2008)

15. Unehara, M., Onisawa, T.: Interactive music composition system-composition of
16-bars musical work with a melody part and backing parts. In: IEEE International
Conference on Systems, Man and Cybernetics (SMC). vol. 6, pp. 5736{5741 (2004)

12 Fran�cois Cabrol et al.

16. Zaman, L., Kalra, A., Stuerzlinger, W.: The e�ect of animat ion, dual view, dif-
ference layers, and relative re-layout in hierarchical dia gram di�erencing. In: Pro-
ceedings of Graphics Interface (GI). pp. 183{190 (2011)

