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ABSTRACT

This paper presents a new approach to facilitate reuse and remix-
ing in character animation. It demonstrates a method for automati-
cally adapting existing skeletons to different characters. While the
method can be applied to simple skeletons, it also proposes a new
approach that is applicable to high quality animation as it is able
to deal with complex skeletons that include control bones (those
that drive deforming bones). Given a character mesh and a skele-
ton, the method adapts the skeleton to the character by matching
topology graphs between the two. It proposes specific multireso-
lution and symmetry approaches as well as a simple yet effective
shape descriptor. Together, these provide a robust retargeting that
can also be tuned between the original skeleton shape and the mesh
shape with intuitive weights. Furthermore, the method can be used
for partial retargeting to directly attach skeleton parts to specific
limbs. Finally, it is efficient as our prototype implementation gen-
erally takes less than 30 seconds to adapt a skeleton to a character.

Index Terms: I.3.7 [Computer Graphics]: Animation— [I.3.5]:
Computer Graphics—Geometric algorithms, languages, and sys-
tems

1 INTRODUCTION

One of the most frequently used methods of character animation is
the use of a skeleton to drive the deformation of its associated ge-
ometry. The transformation of each bone controls how the model
is deformed through time and space. Systems like this often define
animation sequences as building blocks for later reuse and remix-
ing.

One problem that then arises is how to reuse those action blocks
for different characters. Various algorithms were developed to
adapt animations of one skeleton to others of different proportions.
While this solves the problem of reusing actions, animation stu-
dios also try to maintain similar skeletons for their different char-
acters (See Figure 1). This way, animators can work efficiently on
several skeletons and reuse special skeleton controls developed on
previous projects. Automatically adapting a skeleton to a different
character is still very much an ongoing research subject. While cer-
tain solutions are able to deal with simple skeletons with few joints,
these are usually far from the complex multilayered skeletons used
in professional animations. Transfering such skeletons manually
between characters is a tedious task. Our discussions with profes-
sional artists revealed that transferring complex skeletons such as
the ones found in this paper can take many hours. Given a source
skeleton and a target mesh, the proposed method retargets complex
skeletons in less than a minute, substantially lightening the burden
on artists.
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Figure 1: Rinky and a retargeted skeleton with inverse kinematics /
forward kinematics switches.

1.1 Contribution
This paper presents a method to use topology graphs to auto-
matically adapt complex deformation skeletons to different input
meshes. Complex skeletons are defined here as having full control
on all limbs as well as using control bones (bones that directly or
indirectly control the movement of other deforming bones). The
main contributions of our method are:

1. A multiresolution topology graph filter adapted to retargeting
constraints;

2. A precise way to detect subgraph symmetries using a shape
descriptor;

3. A robust method to match multiresolution subgraphs using the
local shape descriptor;

4. A simple weighting function for inner joint placement provid-
ing a balanced control between following the original skeleton
shape or the input mesh shape;

5. A comprehensive way to deal with control bones.

2 RELATED WORK

2.1 Skeleton Extraction
Extracting a 1D skeleton from static meshes is a well known prob-
lem with varied solutions. The following review will only cover
representative work for the most common approaches. For a more
thorough review of the field, please read the survey by Cornea
et al. [6].

Skeleton extraction methods can roughly be separated into two
main categories based on the processing method they use: a vol-
umetric method based on voxels or a geometric method based on
polygonal faces.

2.1.1 Volumetric Methods
The major advantage of volumetric methods is that since the skele-
ton extraction is based on a volumetric representation of the in-
put object, these methods can handle objects made of multiple
parts, with overlaping geometry and disconnected components (like
clothes over a body). On the other hand, thin limbs are often prob-
lematic because of the size restriction of the voxels, where a size



small enough to capture thinner sections of a mesh would result in
prohibitive runtimes. Volumetric algorithms are usually limited to
closed meshes and are noisy due to the volumetric approximations.
Approaches based on a volumetric method often use the medial sur-
face [3, 17] or the discretization of force fields [5].

2.1.2 Geometric Methods
Geometric methods use the object mesh to extract the skeleton and
thus will create disconnected graphs for disconnected overlapping
geometry. The advantage is that they are typically much faster to
compute and the resulting skeleton is smoother than that of volu-
metric methods. Geometric approaches can deal with thin limbs
at no additional runtime cost, but are often peppered with small
noisy arcs that do not represent important topology and have to be
removed.

A popular approach, strongly rooted in Morse theory, is through
the construction of a Reeb graph: a data structure that explicitly rep-
resents the topology of a shape. Reeb graphs are strictly 1D struc-
tures; it is therefore important to pair them with a 3D space embed-
ding algorithm. This can be done during the graph generation [13]
or as a post processing pass [2] using the pairing between the ge-
ometry and the graph’s arcs or using contour constriction [16], for
example. Other methods like fuzzy clustering [11] make a more ex-
tensive use of the geometric information to first segment the mesh
into common patches and then use these for skeletonization. A
more recent approach using a geometric method is to repeat mesh
contractions through constrained Laplacian smoothing [1]. Unlike
Reeb graphs, this method is noise and pose invariant and does not
depend on a global weighting function.

Some approaches typically used with a volumetric method are
also applicable to geometric methods. The shape diameter func-
tion [15], related to the medial surface, is one of them.

Our implementation uses Reeb graphs because of their relative
simplicity of creation. As a geometric method, their ability to treat
thin limbs as well as thick ones, was also considered essential for
dealing with full featured skeletons.

2.2 Deformation Skeleton Generation and Retargeting
Generating a deformation skeleton from a mesh or adapting an
existing one is also a much studied topic in character animation.
While certain methods are based on an implicit definition of the
skeleton, like the one used in the game Spore [9], this review will be
limited to those that are based on generic static mesh input because
they are closer in application to the goal of the technique presented
here and are the most common in animation. Generating or retar-
geting a skeleton both require solving a lot of the same problems
(such as joint placement), therefore, the techniques used are often
similar.

A recent retargeting method [3] is based on simple template
skeleton embedding. Skeletons are roughly detailed without
smaller limbs like fingers and without any control bones. Embed-
ding in this case is based on packing spheres on the medial surface
of the input mesh. Since a volumetric model is used, limbs have
a minimum thickness below which they are undetected. On the up
side, this technique is well suited for cases where a very simple
skeleton is enough such as for children and other non-professional
animators. Moreover, it does not exclusively depend on the topol-
ogy of the mesh, and as such can embed skeletons on models that
do not necessarily match in shape.

Some methods use knowledge of anatomy [7] to help in gen-
erating usable skeletons. These algorithms are usually limited to
the human skeleton, but tend to give better results for their specific
case, due to their hyperspecialization.

Other deformation skeleton generation approaches are based on
extracting a topology graph from a mesh and creating bones on the
resulting arcs. These solutions can also be combined with human

anatomical studies [17] or can be made to work with more generic
biped and quadruped rules [2]. Graph-based skeleton generation
algorithms often have difficulty with the automatic subdivision of
arcs (adding inner joints): knees and elbows are typically problem-
atic. While templates or anatomic rules can help with this problem,
they do not solve it in a very satisfying manner when limb propor-
tions are out of the ordinary (in a cartoon character, for example).

The algorithm presented in this paper is a graph-based retarget-
ing algorithm. As such, it alleviates the limb subdivision and joint
placement problems by using information from the source skeleton.

3 ALGORITHM OVERVIEW

Here is a simplified view of the algorithm, also illustrated in Fig-
ure 2.

A. Extract topological graph from mesh
• Generate topology graph from mesh geometry

• Filter and build multiresolution structure

• Detect and tag symmetries

B. Extract graph from skeleton
• Generate topology graph from skeleton hierarchy

• Detect and tag symmetries

• Link control bones to graph

C. Retarget skeleton to mesh
• Match arcs between the skeleton graph and the mul-

tiresolution mesh graph

• Place inner joints, balancing between fitness to the
mesh graph and to the original skeleton

• Transfer position updates to linked control bones

Mesh

Mesh Graph

Skeleton

Skeleton Graph

Matching

Joint Placement

A B

C

Figure 2: Algorithm overview.

4 SKELETONIZATION

Generating the 1D skeleton graph from the input 1D skeleton is
quite simple as the skeleton is already a graph. Nevertheless, both
the mesh graph and the skeleton graph will need to share a common
starting node that will be used to bootstrap the matching method.
This node is identified by the user both on the mesh (selecting a
vertex) and on the skeleton (selecting a joint). This node will be
referred to as the head node. The head node needs to lie on the pri-
mary symmetry axis as it will be used at other steps of the method.
The head node is typically selected on the head of the character.

Generating the 1D mesh graph from the 3D mesh is much more
complex. The goal is to contract the mesh onto itself, replacing 3D



limbs (fingers, ears, tail, head, torso, etc.) with curves that fit the
geometry. In order to extract this skeleton, the proposed method
computes a Reeb graph. For our Reeb graph computation, the user
first selects a vertex (the head node) on the mesh. From the head
node, distances are computed for every node using a harmonic func-
tion based on geodesic distance extrema [2]. The graph generation
algorithm is based on Pascucci et al. [13] with slight modifications
to better deal with lower resolution meshes. The topology graph is
embedded in 3D along the contracted mesh. The 3D embedding of
a point along the topology graph corresponds to its associated 3D
position along the contracted mesh. Figure 2 and Figure 6 display
examples of Reeb graphs positioned along their 3D embeddings.

The retargeting algorithms do not depend on properties specific
to Reeb graphs; any other topology graph algorithm that correctly
preserves all limbs would be equally suitable. As such, this process
will not be explained in detail as the indicated literature provides
enough information for implementation.

4.1 Filtering
The mesh topology graph typically exhibits too many arcs for our
purpose since arcs are created for most topological features of the
mesh, big or small. It is thus filtered to remove arcs representing un-
wanted or unneeded features. Note that filtering is only applied to
the mesh graph since retargeting needs all the nodes and arcs from
the skeleton graph. As with previous graph filtering methods [2],
it is important to remove smaller arcs first in order to keep relevant
details. The filtering attribute used is the length of the arcs’ path
along their 3D embeddings; arcs shorter than a controlled threshold
are filtered out. While different attributes could have been used,
like the difference in weight between both end nodes, it was ex-
perimentally found that using the embedding length of arcs gives a
progressive filtering that follows the spatial importance of the mesh
more closely, especially with regards to arcs that curve around in
3D space. This last property of filtering by length is important for
the next step of the algorithm.

4.2 Multiresolution Filtering
Multiresolution filtering removes the need to tweak a global filter-
ing threshold until the graph shape matches the skeleton. More im-
portantly, it enables the matching algorithm to deal with situations
where a single filtering factor would give incorrect results. This
case is discussed later in Section 6.1.

The technique used here is different from the multiresolution
Reeb graph method used by Hilaga et al. [10] and the persistence
hierarchy used by Pascucci et al. [13] on one major point: Con-
nected limb placement requires that graph nodes present on more
than one resolution level stay fixed in 3D space.

This restriction on node placement is achieved with the following
prune/merge method, illustrated in Figure 3.

• Internal arcs (a) are merged to their node closest to the head
node.

• External arcs (b) are pruned entirely.
• Arcs connected by a degree 2 node (c) are merged so that the

extent of the graph does not shrink.

Multiresolution filtering is done by copying the high resolution
base Reeb graph multiple times. Then, each resolution level is fil-
tered with a progressively increasing threshold on arc length, leav-
ing a coarsely detailed graph at the lowest level while each addi-
tional level adds more and more details. Nodes and arcs are linked
to their corresponding counterpart at preceding and subsequent res-
olutions to facilitate navigation between levels.

The filtering threshold varies linearly between zero (no filtering)
and a user selected value. A typical value of 10% of the graph
was experimentally determined. The implementation uses a fixed
number (10) of multiresolution levels which was enough for all of
the presented test cases.

Internal
Filtering

External
Filtering

Normal
Node
Merge

Result

a

b

c

c

Figure 3: Filtering internal and external arcs of a subtree.

5 SYMMETRY

Symmetry detection applies to the mesh and skeleton graphs. For
the mesh graph, it is computed independantly at each resolution
level. The proposed approach is inspired by the simple tree depth
and first child degree comparison [2], but is more robust by compar-
ing full subtree shape instead. Like in the depth and child degree
method, the user has manually selected a head node lying on the
primary symmetry axis. The proposed method is not overly sen-
sitive to the position of this node, but it must lie roughly on the
geometrical axis of symmetry if the algorithm is to correctly iden-
tify geometrical symmetries. For humanoid models, any node from
the top of the head is usually good enough. After selecting the
head node, the algorithm works down recursively, grouping sub-
trees with similar shape into symmetry groups, continuing recur-
sively on each child node. A symmetry level is also assigned to
each arc corresponding to how far along the graph they are from
the primary symmetry axis; 1 being on the primary axis and in-
creasing as it reaches secondary symmetries. This simple method
is based on the following assumptions: (a) the graph is actually a
tree, and as such all arcs are oriented away from the head node,
and (b) the subtree shape descriptors of two symmetric subtrees are
equivalent. Such restrictions are easy to enforce and are common
in the industry.

5.1 Shape Descriptor
To allow for efficient and robust symmetry detection and skeleton
matching, a shape descriptor is proposed. A subtree shape descrip-
tor is defined here as the number of nodes for each level going down
from the root node of a subtree. A single node with two children
would have a shape of {1, 2} (Figure 4 left). If one child had two of
its own while the other had three, the shape would become {1, 2, 5}
(Figure 4 right). The shape descriptor is defined for nodes, but also
for arcs. The shape descriptor of an arc is equal to the descriptor of
its first node going towards the leaves of the tree.

{1, 2} {1, 2, 5}

Figure 4: Shape descriptor of a subtree.

While this does not make any distinction as to which nodes the
furthest children are connected to, it has proven robust enough for
all tested cases. Moreover, using subtree shape for symmetry de-
tection is computationally equivalent to the depth and child degree
method [2] while being a better indicator for similarity. Figure 5 il-
lustrates a case where using our shape descriptor correctly identifies
symmetries while the depth and child method fails to do so.



Figure 5: Symmetry detection with subtree shape descriptors. The
two subtrees on the left and right have the same shape {1, 2, 3}
while the one in the middle is alone with {1, 2, 2}. Using depth and
degree, all three subtrees would show depth: 3, degree: 2.

5.2 Grouping
Since the shape descriptor only finds topological symmetries, our
implementation further subdivides groups of symmetric arcs using
a length variation threshold C. Subgroups are created when the
difference between the length of the longest and shortest arcs is
greater than C. This enables different arcs with the same subtree
shape but different lengths to be correctly checked for symmetry,
as shown in Figure 6.

Length grouping can also be supplemented with combinatorial
axial and radial symmetry tests. If a group of topologically symmet-
ric subtrees is not geometrically symmetric, the different subgroups
are tested to see if there is an axial or radial symmetry between
them. This would be useful in cases where, for example, a charac-
ter’s tail is the same length as his legs; only the legs would share
a geometric axial symmetry. Nevertheless, length grouping alone
was enough to correctly subdivide the groups in all of our tests.

Figure 6: Butterfly (in purple) together with its topology graph. The
two posterior legs and tail have the same subtree shape, but the
length difference falls outside the threshold. Therefore the two legs
are grouped into an axial symmetry while the tail is left alone.

5.3 Tagging
For a more stable and consistent retargeting, the proposed approach
introduces symmetry tags. Arcs in axial symmetry groups are au-
tomatically tagged as left and right while arcs in radial symmetry
groups are ordered by arc length and then numbered. The type of
symmetry is also expressed using tags as shown in Figure 6: pri-
mary symmetry in red, axial symmetry in orange and no symme-
try in yellow. These tags are used during the retargeting process
which helps in keeping the correspondence with existing animation
blocks. The left and right tags are computed based on the principal
axis (X, Y or Z) closest to the vector from one limb to the other.
The limb to the positive side of the axis is labeled as left while the
limb on the negative side is labeled as right. The legs, arms, ears,
etc. of both the mesh and the skeleton will all be consistant but

might be inverted as our implementation does not assume the fac-
ing direction of the character. If needed, the user could provide this
direction to the algorithm in order to determine which direction of
the axis (positive or negative), corresponds to the actual left and
right of the character.

6 RETARGETING

To address the retargeting problem, we propose a multiresolution
matching method together with a joint placement method. Com-
pared to previous retargeting methods, the proposed method is more
robust. Furthermore, previous approaches were restricted to defor-
mation bones while the proposed method handles deformation as
well as control bones. Sections 6.1 to 6.2 describe the robust de-
formation bones retargeting while Section 6.3 describes the control
bones retargeting.

6.1 Multiresolution Matching
The first step of the retargeting process is matching arcs of the
skeleton graph to those of the multiresolution mesh graph. The
mesh topology graph typically has several arcs that represent details
not found in the skeleton we are trying to retarget. As mentionned
in Section 4.2, identifying relevant arcs is a difficult task. For ex-
ample, retargeting the various skeletons of Figure 7 will require the
matching method to keep a different subset of the mesh arcs. The

Figure 7: The arc by arc local shape matching is effective and versa-
tile. The various skeleton configurations (top) can all be retargeted
to the same mesh (bottom).

third skeleton of Figure 7 is an example where the method keeps the
small arcs at the base of the “T” shape while removing the larger
arcs at the top of the “T” shape.

Here’s a summary of the multiresolution matching method.

• Starting from the head nodes (blue)

1. For each arc from the current node

1.1 Match the skeleton arc to a mesh arc using symmetry
tags and levels.

1.2 Check the corresponding mesh arcs at increasingly finer
resolution levels to find an equal local shape.

1.3 The next node is the following node along the arc.

1.4 Check the corresponding mesh nodes at coarser resolu-
tion levels to find the coarsest node that has an equal
local shape.

1.5 Recursively work on the next node (step 1).

Algorithm 1 presents further details of the matching method. Fig-
ure 8 presents an example of this process and the accompanying
video [14] also presents further examples. The matching algorithm
compares arcs using symmetry levels and tags and the shape de-
scriptor. While the full shape descriptor was used when detect-
ing symmetry, the matching only uses the first two numbers of the
shape descriptor. This is called the local shape descriptor (LShape
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Figure 8: Multiresolution matching example. Head nodes in blue. Symmetry axis colored when they are matched.

Algorithm 1: Match(nodeM , nodeS, arcS)
/* Given a skeleton arc (arcS) connected to a skeleton node
(nodeS), find a matching mesh arc (arcM) connected to the
mesh node (nodeM). */
foreach unused arcM do

if SymLevelTags(arcM) = SymLevelTags(arcS) then
/* symmetry level & tags match */
while LShape(arcS) 6= LShape(arcM) do

arcM ← arcM at finer resolution
if LShape(arcS) = LShape(arcM) then

/* symmetry level & tags + local shape match */
nodeM ← new node reached through arcM
nodeS ← new node reached through arcS
mark arcM (at all resolutions) and arcS as used
nodeCM ← nodeM at coarser resolution
while LShape(nodeS) = LShape(nodeCM) do

nodeM ← nodeCM
nodeCM ← nodeM at coarser resolution

foreach unused arcS connected to nodeS do
Match(nodeM , nodeS, arcS)

in Algorithm 1) and it provides the information needed to match the
current skeleton arc to the relevant mesh arc. Using the local shape
enables the method to match to different resolution levels on an arc
by arc basis. As previously mentionned, in the third example in Fig-
ure 7 the two smaller lower arcs need to be kept while the longer
ones at the top need to be removed. This is a case where a unique
filtering threshold would not yield the correct result, while the mul-
tiresolution matching does. The Match function is first called using
the skeleton and mesh head nodes previously indicated by the user,
processing all its connected skeleton arcs.

This matching method handles cases where the mesh graph or
the skeleton graph have more arcs than the other. The multiresolu-
tion matching takes care of cases where the mesh graph has more
arcs than needed, as was shown in Figure 7. Also, the matching
algorithm can easily detect superfluous skeleton arcs and remove
them automatically, like the antennas in Figure 9 or the fifth finger
in the humanoid of Figure 10. Nevertheless, this subgraph match-
ing method limits the retargeting to situations when the topology of
the mesh makes sense with respect to that of the skeleton. While
this is commonly the case, it is less generic than the method used
by Baran and Popović [3] which can retarget a simple humanoid
skeleton to a donut for example.

6.2 Joint Placement
The matching method determines the correspondance between
skeleton arcs and mesh arcs. While the arcs now correspond, the
position of the skeleton joints still have to be set. This positioning
is trivial for skeleton arcs made of a single bone: the extremities of
the bone are positioned at the first and last 3D embedding positions
of the mesh arc. The positioning is much more complex for skele-
ton arcs that contain two bones or more. Such arcs correspond to
the legs of the insects in Figure 9 where four joints have to be po-
sitioned along each leg of the insect. Considering such a skeleton
arc matched to a mesh arc, the corresponding skeleton bones will
be positioned in 3D along the mesh arc 3D embeddings. Consider a
skeleton arc with t bones and t +1 joints and consider mesh arc em-
beddings composed of an ordered list of points V = [v1,v2, . . . ,vm].
Each of the t +1 joints will be assigned an index ki ∈{1, . . . ,m} cor-
responding to an embedding position vki with respect to the mesh.
The first joint is positioned at vk1 = v1. Each of the t−1 inner joints
between the t bones are assigned to a specific vki ∈ {v2, . . . ,vm−1}.
Finally, the last joint is assigned to vkt+1 = vm. The inner joint
positions vk2 ,vk3 , . . . ,vkt are selected by minimizing the following
weight cost:

weight =
t−1

∑
i=1

γθ |θi|︸ ︷︷ ︸
angle

+
t

∑
i=1

[
γl |li|2︸ ︷︷ ︸

length

+ γxxi

]
︸︷︷︸

distance

(1)

θi→ angle joint i− initial angle joint i

li→
length bone i− initial length bone i

initial length bone i

xi→
maximum distance from bone i to the mesh arc 3D
embeddings from V at indexes between ki and ki+1

The γ user defined parameters control whether the result should
conform more to the original shape of the skeleton (parameters γθ

and γl) or to the shape of the mesh (parameter γx). The difference in
joint angle term ∑

t−1
i=1 γθ |θi| will penalize changes from the skele-

ton’s joint angles. The bone length difference (length bone i - initial
length bone i) is not very meaningful since the same difference is
significant for a small bone while it is negligible for a large bone.
Instead, we use a relative measure: the length difference as a ra-
tio of the original length

(
length bone i−initial length bone i

initial length bone i

)
. When

using the ratio directly, it is very difficult to properly adjust the γl
parameter for some meshes, such as the mesh of Figure 9(c). The
squared ratio

(
|li|2
)

provides an amplification which is useful in
situations where the bone length of the original skeleton and the re-
targeted skeleton differ in a significant manner. The distance term



∑
t
i=1 γxxi will penalize bone lengths and skeleton poses that do not

fit the mesh. This is computed as the maximal distance from a bone
to the corresponding mesh arc 3D embeddings.

Hard restrictions are also enforced in the solver algorithm to pre-
vent backtracking on the arc and zero-length bones (i < j→ ki <
k j). The problem is translated into the solveInnerJoints function
(Algorithm 2) that finds the best inner joint positions given the
position of the previous two joints and the remaining number of
inner joints to position. Solving the problem is done by calling
solveInnerJoints(1,1, t−1).

Algorithm 2: solveInnerJoints(kp, kc, j)

kp, kc ∈ {1, . . . ,m−1}: previous, current joint position indexes
j ∈ {0, . . . , t−1}: number of inner joints left
if j > 0 then

result.weight← ∞

foreach kn← all position indexes for next joint do
weight← AngleCost(kp, kc, kn) // γθ |θi|

+ LengthCost(kc, kn) // γl |li|2
+ DistanceCost(kc, kn) // γxxi

if weight≥ result.weight then
/* skip recursion: weight too high */

else
child← solveInnerJoints(kc, kn, j - 1)
weight← weight + child.weight
if weight < result.weight then

result.weight← weight
result.positions← [kn : child.positions]

else /* j = 0 */
kn← m // last joint on arc
result.weight← AngleCost(kp, kc, kn) // γθ |θi|

+ LengthCost(kc, kn) // γl |li|2
+ DistanceCost(kc, kn) // γxxi

return result

Comparatively, the method used by Baran and Popović [3] also
uses bone length and distance penalities, but relies on the orienta-
tion of bones instead of the angle of each joint, which renders it
sensitive to the orientation of limbs in the target mesh such as the
arms from a vertical orientation to a horizontal orientation in Fig-
ure 10.

6.2.1 Optimizing the Placement Problem

The complex combinatorial problem of joint placement is reduced
to a simpler problem using the dynamic programming technique
called memoization. Since solveInnerJoints is a recursive function
and most of the recursive calls will be done several times, the mem-
oization approach caches the intermediate results, transforming the
exponential runtime of the brute force algorithm into a quadratic
one. While this approach is still exhaustive, tests done using heuris-
tic methods (gradient descent and simulated annealing) showed a
noticeable loss in quality without a useful decrease in runtime.

6.3 Control Bones

Control bones are defined as non-deforming bones that are used to
drive deforming bones, to add a common parent to disconnected
bone chains or other such purposes. These kinds of bone are very
frequent in animation-quality skeletons because they enable users to
create more flexible skeleton hierarchies, more easily controllable
actions (finger flex, foot roll, foot skating prevention, etc.) and are
generally considered essential for professional animation. The ac-
companying video [14] shows the effect of various types of control

bones. Most known approaches to the retargeting problem do not
deal with control bones.

These bones also need to be repositioned but since their posi-
tion is rarely dictated directly by the shape of the character (as is
the case with its deforming skeleton), it leaves us with a different
problem. The approach used is to link each control bone to a single
deforming bone before retargeting and to propagate the transforma-
tion from deforming bone to the control bones. When considering
a control bone, the method first tries to find a deformation bone
which is constrained by the control bone. If there is no such bone,
the method checks if the control bone has a parent. Again, if there
is no such bone, the method tries to find a child bone. Deforming
bones are thus selected using the following priorities:

1. Constraint target bone: Bones used as inverse kinematics and
Pole targets, action controls and the like. Such a control bone
is linked to the constraint owner.

2. Parent bone: Bones with a parent, like those in chains of con-
trol bones. Such a control bone is linked to its parent. If
the parent bone is also a control bone, the method follows
the links to the last control bones and then to the deformation
bone linked to this last control bone. The current control bone
is linked to this deformation bone.

3. Child bone: Bones with children, like root bones. Since such
a control bone can be parent of many child bones, the method
needs to select the relevant one. The bone is thus linked to
its child on the first symmetry level. This links a spinal chord
root to the spine instead of the legs.

At linking time, the offset between the control bone and deform-
ing bone is calculated. Control bones are then repositioned by de-
riving a rotation and scaling factor from the transformation of their
deforming bone. The offset and length of control bones are scaled
and the bones themselves are then rotated with respect to the tip of
their deforming bone.

This technique is generic and could be paired with other methods
of transforming skeletons: mixed with other retargeting techniques
or even as a way of automatically adjusting control bones when an
artist modifies deforming bones and joints.

7 RESULTS

7.1 Implementation
Implementation has been done using the Open Source software
Blender [4] for mesh and skeleton processing. Blender provides
an automatic skinning function to attach a skeleton to a mesh using
bone heat equilibrium [3]. This skinning approach was used for all
of our tests. Solving the harmonic equation for Reeb graph node
weights is done by a sparse matrix direct solver using SuperLU [8]
through the OpenNL library [12]. The algorithm currently used for
Reeb graph generation can result in embedding problems such as
arcs that sometimes puncture through the surface of the mesh. Nev-
ertheless, methods to solve these problems have been devised and
it would be strictly a matter of applying one of the known solu-
tions [1, 13] to fix them.

User input is limited to simple parameters (joint placement
weights, Section 6.2, and length variation threshold) as well as in-
dicating one matching head node on the mesh and the skeleton.

7.2 Applications
The following images show our retargeting results:

• A biped rig with inverse kinematics (IK) / forward kinematics
(FK) switches retargeted to a squirrel (Figure 1).

• A generic insect rig retargeted to a butterfly mesh and a fly
mesh (Figure 9) to showcase the joint placement algorithm in
multi-jointed limbs. In these cases, the penalty function was
given more weight to the shape of the target mesh than the
original skeleton.



(a) (b) (c)

Figure 9: (a) Butterfly mesh and retargeted skeleton (b) The generic insect rig used (antennas were removed when retargeting to the fly) (c) Fly
mesh and retargeted skeleton.

• A full featured human skeleton with IK and pole constraints,
finger flexors and foot roll controls retargeted to a cartoon
character, Figure 10(a), as well as partial retargeting for the
arm, Figure 10(b), and the leg, Figure 10(c). In these cases,
joint placement is better when the limbs are half bent since
the weight function forces the joint to position itself where
the limb is bent. We consider this skeleton to be complex be-
cause of its many limbs and control bones. Furthermore, this
skeleton was provided by a professional animation studio and
has been used in animated shorts and commercials.

The accompanying video [14] also features other retargeting exam-
ples and animation sequences. As can be seen in these examples
and in the video, the proposed multiresolution filtering, symmetry
grouping, symmetry tagging, and shape descriptor provide a robust
retargeting method. Also note that the method can retarget skele-
tons that present a large geometric difference from the meshes (see
Figure 10).

7.3 Performance
7.3.1 Graph from Mesh
Weight calculation on the mesh is done using the well known Dijk-
stra’s SPF algorithm. The complexity of this operation is O(e logv)
where v is the number of vertices and e the number of edges.

The theoretical lower bound for Reeb graph creation is
O(v logv). Post processing filtering is at worst O(n2) where n is
the number of nodes in the graph which, barring degenerate cases,
makes it faster than the former.

7.3.2 Graph from Skeleton
Skeleton graph creation is O( j) where j is the number of joints
while its post processing (including control bones linking) is O( j2).
Because of the smaller number of joints compared to the size of the
input mesh, this step is always dwarfed by others: the slowest test
case is the full human skeleton, taking only 2 milliseconds.

7.3.3 Retargeting Skeleton to Mesh
Matching has an upper bound of O(ak∆M) where a is the number
of arcs in the skeleton graph, k the number of levels and ∆M the
maximum node degree of the multiresolution mesh graph.

Inner joint placement is a combinatorial problem of potential
complexity O(mt) where t is the number of inner joints to position
and m the number of embedding points to consider. Memoization
(a dynamic programming principle) reduces the problem to filling
in a cache table of O(tm2) complexity in time and space, trading
off higher memory consumption for a faster runtime. Furthermore,
inner joint placement for different arcs is inherently easy to paral-
lelize and has been implemented to take full advantage of today’s
multi-core processors.

7.3.4 Global Runtime
The element that has the largest impact on runtime is the input itself.
For skeletons with a lot of inner joints, runtime is dominated by the
retargeting joint placement while large meshes will have a longer
mesh graph creation (See Table 1).

Models and skeletons used are production grade, having been
used in professional animation work (short movies, advertisements,
etc.). Runtime performance on high poly characters are comparable
to other solutions [3] while being much faster in other cases and
offering unprecedented results in skeleton complexity and control
bone repositioning.

Table 1: Performance (CoreTM2 Duo 2.4GHz / 4 GB RAM).

Model Faces Joints Graph Retarget Total
Butterfly 2,428 51 0.3s 1.5s 1.8s

Fly 8,834 41 1.2s 4.5s 6.0s
Rinky 8,562 42 1.9s 0.4s 2.7s
Toon 27,232 136 7.5s 23.8s 32.6s

7.4 Comparison
Table 2 shows a point by point comparison with other methods
for reusing skeletons between characters. This shows that the pre-
sented method, while not topologically independant like Baran and
Popović [3], is better suited to handle professional level animation
characters especially with its use of multiresolution matching and
its handling of control bones.

8 CONCLUSION AND FUTURE WORK

This paper presented a method to retarget skeletons to meshes. The
method proposes a simple and effective shape descriptor to compare
graph subtrees. It introduces an algorithm that matches the skele-
ton to the mesh using the shape descriptor and a robust symmetry
tagging and grouping. Skeleton joints are then positioned using the
developed penalty function with control between mesh and skele-
ton shapes. A linking system is also proposed to reposition control
bones. The method is intuitive with few simple parameters: head
node, length variation threshold and weight balancing parameters.
It can handle complex skeletons with control bones and was applied
to data from real production work. While professional artists need
hours to retarget skeletons such as the humanoid presented in this
paper, the proposed method requires less than one minute of com-
putation. Finally, compared to previous work, the method provides
better joint placement and can handle skeletons of greater complex-
ity.



Figure 10: (a) Cartoon character with retargeted skeleton. (b) Cartoon arm with retargeted skeleton: IK and pole constraints as well as finger
flex controls. (c) Cartoon leg with retargeted skeleton: reverse foot rig and roll controls.

Table 2: Comparison with previous work.

Baran and
Popović [3]

Aujay
et al. [2]

Proposed
Method

Skeletonization volumetric geometric geometric

Skeleton
Complexity

simple
skeletons

biped /
quadruped
templates

full-featured
professional
skeletons

Control Bones no no yes

Joint Placement fixed
weights

fixed
template

controlable
and balanced
weights

Filtering n/a single
threshold

multi-
resolution

Topology
Independant fully no

through
multi-
resolution

Orientation
Independant no yes yes

A change to the joint placement approach that might yield bene-
fits would be to remove the assumption that start and end joints on
limbs must correspond to those of the underlying mesh arc. This
could give better results for forking limbs, like hands, which tend
to be positioned a bit too far up. However, such a change would
remove the independent status of each retargeted arc, most likely
complicating the placement problem by a non-negligible factor.
Mesh segmentation algorithms could also be used as guides for the
inner joint placement problem. On the other hand, such algorithms
are typically much slower than the current runtime.

A completely different issue is how to deal with deforming bones
not based on topology like those used for muscle bulges and facial
deformations. Those might be dealt with by mixing the control
bone linking mechanism and a procedure to recognize the underly-
ing attached mesh shapes. This would however introduce a depen-
dency on the mesh originally attached to the skeleton.
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