
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 2007 1

Region of Interest and Multiresolution for Volume

Rendering
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Abstract— Medical image interpretation is facing an important
challenge resulting from the continuously increasing amount of
imaging data. Innovations in medical image visualization are
necessary to assist the radiologist in interacting and navigating
effectively large multi-dimensional imaging sets.

We propose a novel wavelet splatting approach for multiresolu-
tion 3D visualization. Our method renders the context with a low
resolution at first, and then subsequently refines it progressively
to attain full resolution, while ensuring that a specific region of
interest is rendered at full resolution at all times. It is based on the
splatting approach for its computational efficiency and uses the
localization property of the wavelet transform to simultaneously
render a full resolution region of interest with a coarser context.
Lighting calculations are used in the preprocessing stage to
enhance the quality of the visualization. A special data structure
that is based on a zero-tree model is used to manipulate the
region of interest more easily. The speed-up achieved reaches
a factor of 30 compared to the time needed to display the full
resolution data. By achieving effective 3D rendering, we bring
an element of solution to the problem of the image overload.

Index Terms— 3D visualization, large data sets, medical imag-
ing, multiresolution, navigation, region of interest, volume ren-
dering, wavelet splatting

I. INTRODUCTION

ONE of the most important challenges facing medical im-

age interpretation results from the continuously increas-

ing amounts of imaging data. The increasing size of imaging

data is due mainly to enhanced capabilities of imaging modal-

ities such as multislice spiral-computed tomography. More

precise data can be obtained with less time. Also, as scanning

is becoming more effective, more data-intensive scanning

protocols, such as whole body scanning, are becoming a

trend. Therefore, the biggest challenge facing a radiologist is

interpreting this huge amount of data precisely and effectively.

According to the Society for Imaging Informatics in Medicine

(SIIM) [1], “...image overload may be the single biggest

challenge to effective, state-of-the-art practice in the delivery

of consistent and well-planned radiological services in health

care today.” The challenge is to develop a completely new

paradigm for looking at information and image data overload.

Participants in the Transforming the Radiology Interpretation

Process (TRIP) initiative [1] initiated by SIIM have identified
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E. Paquette is with LESIA, Software and IT Engineering Department, École
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innovations in medical image visualization as necessary to

make progress in managing the ever-increasing volume of

data. To illustrate the challenges, consider that a single scan

from a modern computerized tomography (CT) scanner can

generate over 2,000 images with an uncompressed memory

size of more than 1 gigabyte, assuming 2,048 images with

512 × 512 pixels at 2 bytes/pixel. These images usually

represent parallel planar cuts within a volume of interest. On

a typical radiology workstation, images can be displayed in

stack mode where navigation is possible either sequentially,

by scrolling through the slices, or non-sequentially (and more

effectively) using thumbnails or multi-planar visualization.

Image analysis by a specialist requires a mental 3D recon-

struction of the data, which is a very difficult and subjective

task. More advanced visualization techniques, such as volume

rendering [2]–[4] enable volume representation of the data to

assist in the 3D volume reconstruction in an objective way,

by displaying the data in a translucent manner. However, due

to the large amount of data to be processed, these techniques

require time-intensive computations that make efficient and

interactive visualization impossible. Innovative visualization

techniques are therefore needed to assist the radiologist: in

approaching the growing amounts of information available to

interpret, in interacting with large data sets, and in keeping

pace with innovations that promise new horizons in medical

imaging, such as effectively navigating five dimensions by

blending multi-modal dynamic images as in cardiac PET-CT

and functional cardiac MRI imaging [5]. While interpreting the

imaging data, radiologists usually follow a model for visual

search that postulates a pre-attentive global analysis followed

by fixations and discovery scanning. This model was used by

Kundel [6] to differentiate errors of search, recognition, and

decision making. Therefore, in the focusing phase, only some

structures in the data are of interest. These structures typically

occupy a small percentage of the data, but their analysis

requires contextual information like locations within a specific

organ or adjacency to sensitive structures [7]. Therefore, while

focusing on a particular region of the data, designated as

a Region Of Interest (ROI), contextual information (called

Context) surrounding that region is important. However, the

same amount of detail is not required for the Context and the

ROI. A multiresolution representation of the data enables the

exploration of low resolution representation of the data while

focusing on full resolution ROI, therefore achieving efficiency.

We propose a multiresolution visualization method that

renders the Context with a low resolution at first, and sub-

sequently automatically refines it progressively to attain full
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resolution. Our approach achieves efficiency in 3D rendering

by benefiting from the assumption presented in [6], [7] that

presumes the user focuses on a small fraction of the data

at a time, while navigating the whole dataset. During the

interpretation process, the user interacts with the volume, by

changing its scale or rotating it, for example, and therefore

moving the region of interest. Even though we did not address

the problem of determining an ROI, our method brings a

contribution to the problem of interacting with a large dataset

by proposing a novel rendering algorithm to achieve efficient

3D visualization. The new algorithm allows 3D rendering

with a full resolution ROI. More work is needed to explore

intelligent 3D ROI selection during the user interaction with

the volume. Intelligent ROI selection is not new to the medical

imaging field. Automatic two-dimensional (2D) ROI selection

and a novel 2D rendering method have recently allowed

efficient 2D medical image visualization [8], [9].

Simultaneous availability of detail and context at different

resolution levels has been explored in [10] with a detail-in-

context-technique for the purpose of navigating and viewing

planar tomographic imaging data. Lamar [11] proposed a

multiresolution approach to render the ROI at full resolution

and the rest of the data—the Context—at a lower resolution.

The multiresolution representation of the data was achieved

using octrees and a pyramidal structure. On the other hand,

wavelets have been proven to be more efficient than pyra-

midal representations for a multiresolution representation of

data [12]. Wavelets have been very useful in image com-

pression in general. They have also been used to provide

multi compression levels for ROI and Context to achieve

efficient image transfer and storage. Wavelets are the basis

of the JPEG 2000 Interactive protocol (JPIP) [13] recently

adopted by Digital Imaging and Communications in Medicine

(DICOM) to enable an imaging server to transmit only the

portions of a JPEG 2000 image that are applicable to the

client’s needs, in order to achieve improvements in bandwidth

efficiency and speed when performing certain image viewing

tasks in a client/server environment, while reducing the storage

and processing requirements of the client. Therefore, JPIP

uses a wavelet representation of the images to allow a viewer

application to remotely extract a particular region of the image,

or a high- or low-quality version of the image. It also can

be used to progressively forward images of increasing fidelity.

Wavelets have also been successfully used in practice to enable

interactively transfer and visualization of image portions at

different level of resolutions [8], [9].

In this paper, we are interested in multiresolution 3D

rendering. In order to speed up the 3D rendering of large data

sets, we propose a method that allows progressive refinement

of Context rendering while ensuring that a specific ROI is

rendered at full resolution at all times. After the Context

is rendered with all possible refinements, the end result is

a 3D representation of the data set at full resolution. By

trading context resolution for efficiency, our method allows

rapid rendering of an initial lower resolution Context with full

resolution ROI. Fast rendering is very practical when the user

is navigating or manipulating the volume, such as rotating

it. Progressive refinement as proposed by [14] but applied

only on the context allows a full resolution rendering of the

complete data set to be achieved when the user is focusing.

The wavelet transform localization property, along with its

extension to represent volumetric data, make this technique

suitable to our objectives. Wavelets have been used in the

work of Krishnan et al. [15], where the data were divided into

blocks and where each block was represented independently

using the wavelet transform. The blocks were rendered at full

or low resolution depending whether they belonged to the ROI

or to the Context. While this method achieves multiresolution

rendering, it presents a disadvantage, as the use of blocks

requires reconstructing them before rendering. Moreover the

reconstruction had to deal with edge effects, either by overlap-

ping blocks or by using different wavelet filters for borders,

which tends to be very time-consuming.

On the other hand, wavelet splatting [14], [16]–[19] has

been proven to be a very efficient way to use wavelets

for the multiresolution rendering of the data. It consists

of representing the whole data with the wavelet transform,

thus avoiding border artifacts as the data are usually inside

an empty space. Rendering is then achieved directly in the

wavelet domain and the reconstruction of the data is carried out

during the rendering phase. The focus of wavelet splatting was

on data compression. The notion of ROI, using the localization

property of the wavelet transform, was introduced as a way

to further compress the data in a preprocessing stage by

filtering the wavelet coefficients, but not as an interactive tool

to navigate inside the data.

In this paper, we use the wavelet splatting approach in a

novel way. We propose a new method to use the localization

property of the wavelet with the splatting approach in order

to achieve effective multiresolution 3D volume rendering. As

splatting enables effective 3D rendering and the localization

characteristic of the wavelet transform enables multiresolution

schemes, combining both in a novel method allows us to

provide a new 3D rendering method that offers both effective-

ness and multiresolution at the same time. Our new method

brings an element of solution to the image overload problem

facing medical imaging specialists. It assists in effectively

interacting and navigating 3D imaging volumes by rendering

large medical data sets rapidly with a region of interest that

can be interactively moved.

This paper extends our previous work [20] as we present

here an efficient way to handle the ROI and the data located

in front of or behind the ROI when the data is stored as

trees of wavelet coefficients. This paper also discusses the

optimal level of decomposition to achieve the best speed-up

while keeping enough information in the context to be able to

localize the ROI. We show that, using only a software method,

the rendering speed already allows smooth interaction with the

data.

II. MULTIRESOLUTION REPRESENTATION

A multiresolution representation of data is a structure repre-

senting the data at different levels of resolution. It is therefore

possible to have access to each level of resolution. This is

useful, for example, for segmentation where too high a reso-

lution can lead to too many segmented objects. In the context
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of volume rendering, the multiresolution representation of the

data is used to accelerate the speed of the rendering during

the manipulation phase by using low-level resolution. Once

the view point is fixed, the high-level resolution is needed to

achieve good analysis of the data.

This multiresolution representation is achieved using a

Gaussian or Laplacian pyramid [11] or a wavelet decom-

position of the data [15], [16], [18], [21], [22]. Wavelet

decomposition leads to a more compact representation of

the data. This is important because recent data acquisition

techniques give data of very high precision, requiring a large

amount of memory.

A. Using wavelets

Using the wavelet transform, a data signal can be decom-

posed into two subspaces. One, Vl, is low resolution, whereas

the other,Wl, consists of the details the low resolution lacks to

be able to gain access to the high resolution. In the context of

volume rendering, the signal is a 3D signal. A multiresolution

representation can be obtained using a separable orthonormal

wavelet basis and the tensor product.

For each subspace, a basis is created from the two basis

functions φ, the scale function, and ψ, the wavelet function,

as in (1).

f
0,0,

−→
0
(x1, x2, x3) = φ(x1)φ(x2)φ(x3),

f
0,1,

−→
0
(x1, x2, x3) = φ(x1)φ(x2)ψ(x3),

f
0,2,

−→
0
(x1, x2, x3) = φ(x1)ψ(x2)φ(x3),

f
0,3,

−→
0
(x1, x2, x3) = φ(x1)ψ(x2)ψ(x3),

f
0,4,

−→
0
(x1, x2, x3) = ψ(x1)φ(x2)φ(x3),

f
0,5,

−→
0
(x1, x2, x3) = ψ(x1)φ(x2)ψ(x3),

f
0,6,

−→
0
(x1, x2, x3) = ψ(x1)ψ(x2)φ(x3),

f
0,7,

−→
0
(x1, x2, x3) = ψ(x1)ψ(x2)ψ(x3),

fl,i,(j1,j2,j3)(x1, x2, x3) =

2−
3l
2 f

0,i,
−→
0
(2−lx1 − j1, 2

−lx2 − j2, 2
−lx3 − j3).

(1)

Once a 3D signal Iv(~x) has been decomposed, it can be

reconstructed using (2).

Iv(−→x ) =
∑

−→
j ∈VM,0

c−→
j
f

M,0,
−→
j
(−→x )+

M
∑

m=1

7
∑

i=1

∑

−→
j ∈Vm,i

d
m,i,

−→
j
f

m,i,
−→
j
(−→x ). (2)

where −→x is the position inside the 3D signal, Iv the

computed signal, M the level of decomposition of

the volume,
{

VM,0, (Vm,i)i∈[1..7]

}

the set of subspaces

and {(f
M,0,

−→
j
)−→

j ∈VM,0
, (f

m,i,
−→
j
)
m∈[1..M ],i∈[1..7],

−→
j ∈Vm,i

}

the set of the basis functions of each subspace; and

{(c
M,0,

−→
j
)−→

j ∈VM,0
, (d

m,i,
−→
j
)
m∈[1..M ],i∈[1..7],

−→
j ∈Vm,i

} are the

coefficients obtained through dot product between the original

data and the basis functions.

III. REGION OF INTEREST

In general, the physician focuses on an ROI when inter-

preting medical images. The structure of interest—a tumor

or an organ, for example—often occupies less than 1% of

all the data. Limiting the visualization to an ROI reduces the

amount of data to process, but sacrifices contextual informa-

tion (Context) which is useful for understanding the location

of the ROI. Approaches that combine full-resolution ROI with

a low-resolution Context promise to preserve the diagnostic

value of the data while reducing the computation time during

the navigation phase. This phase can not be achieved at

full resolution because it requires extensive manipulation of

the data by the user, and therefore would be too slow at

full resolution. However, the user still has access to the

full resolution at anytime during navigation by changing the

rendering method, but at the cost of losing the fast interaction.

A. Data structure for easy multiresolution access

First, the ROI must be defined. The simplest way is to

consider a rectangular parallelepiped within the data space,

so that its main axes are the axes of the data. To find which

coefficients of the decomposed data are important to the

reconstruction of the ROI, the localization property of the

wavelet decomposition is used.

For example, when the 3D data are decomposed twice with

the Haar wavelet, the coefficients needed to reconstruct an

ROI of size 4 × 4 × 4 voxels (i.e., 3D pixels) are: one low

resolution coefficient c2,0, seven detail coefficients of level

2 {d2,i,0}i∈[1..7], and 7 × 8 detail coefficients of level 1

{d1,i,j}i∈[1..7],j∈[0..7]. This relation between the coefficients

of each subspace can be used to represent the transformed 3D

data with trees. The roots of these trees are the coefficients of

the subspace of lower resolution. To each of these coefficients

are linked the seven detail coefficients of the same level of

decomposition. To each of the latter coefficients are linked

the eight detail coefficients of lower level decomposition. This

operation is repeated until all the coefficients have been added

to the trees.

When the data is decomposed twice, the structure of Fig. 1

is obtained.

Fig. 1. Structure of the data when using a hierarchical representation of the
coefficients

As all the trees have the same depth, this structure can be

stored linearly as in Fig. 2, while maintaining easy access to

the position of the roots.

This structure can also be used to easily compress the data

by pruning the trees when the subtrees are only zeros. This
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Fig. 2. Storage of the data

may happen when there is an empty or homogeneous space

inside the data. In such a case, a particular value ZTREE is

used to indicate that the subtree is empty. If this technique is

used and if the data is stored as before, it is more difficult

to retrieve the roots of each tree, without going through all

the subtrees. In the case of rendering with an ROI, it is very

important to have fast access to these roots as they give the

position of the ROI. Therefore, we use a look-up table to store

the position of the roots inside the data.

The structure using the hierarchical representation of the

data is utilized in some compression techniques, such as

Embedded Zerotree of Wavelets (EZW) by Shapiro [23]. As

each tree enables the reconstruction of a different part of the

data, we propose to add a look-up table for fast access to the

roots of the trees, and thus to a particular region of the data.

B. Selection of the region of interest

The ROI is selected by defining the position of the centre,

and the size along the three axes of the volume. A border is

displayed on the data to show where the ROI is. For the sake

of simplicity, and because the user interface is not the goal of

this paper, we did not consider the use of orthogonal views,

which should help the user select the ROI.

C. Displaying the region of interest

Once the ROI has been selected in the data space, one must

be careful with the data that lies in front of and behind the ROI.

The use of blending is a solution proposed by Lamar [11].

This is not suitable with the use of wavelet splatting with the

Haar wavelet, as the Haar wavelet is sharp and gives blocky

rendering at low resolution. This artifact is not a problem

outside the ROI, as long as it gives us enough information

on the localization of the ROI. We will discuss here two other

possibilities: rendering all the data in front and behind the ROI

at full resolution (Fig. 3(a)), or not rendering the data at all

(Fig. 3(b)).

(a) Region of interest with data
in front of and behind at full
resolution

(b) Region of interest only

Fig. 3. Comparison of the rendering while displaying or not displaying the
data in front of and behind the region of interest

In order to be able to hide the data that lies in front of

and behind the ROI, the depth position of the data in the

visualization space is required. For this purpose, we compute

the “modified ROI,” the rectangular parallelepiped whose main

axes are those of the visualization space, and which encloses

the “original ROI” (see Fig. 4).

Fig. 4. Transformation of the region of interest from data space to
visualization space. The coordinate system for the visualization space is
(~u,~v, ~n), whereas the one for the data is (~x, ~y, ~z)

IV. IMPLEMENTATION WITH WAVELET SPLATTING

The rendering process was implemented using the wavelet

splatting method [19].

A. Rendering from wavelet space

The wavelet splatting technique proposed by Gross and

Lippert [16]–[19] comes from the fact that when we compute

the values without taking opacity into account, it is possible

to permute the projection and the reconstruction of a wavelet-

decomposed volume. The reconstruction formula is presented

in (3).

Iv(
−→x ) =

∑

−→
j ∈VM,0

c
M,

−→
j
f

M,0,
−→
j
(−→x )+

M
∑

m=1

7
∑

i=1

∑

−→
j ∈Vm,i

d
m,i,

−→
j
f

m,i,
−→
j
(−→x ). (3)

The way to project a volume onto a screen is presented

in (4).

I(−→w ,−→n ) =

∫ Sout

s=Sin

Iv(
−→w + s−→n )ds. (4)

where −→w is the position on the screen, −→n is the direction of

projection and I(−→w ,−→x ) is the corresponding intensity.

Combining (3) and (4), leads to (5).

I(−→w ,−→n ) =

∫ Sout

s=Sin

∑

−→
j ∈VM,0

c
M,

−→
j
f

M,0,
−→
j
(−→w + s−→n )+

M
∑

m=1

7
∑

i=1

∑

−→
j ∈Vm,i

d
m,i,

−→
j
f

m,i,
−→
j
(−→w + s−→n )ds. (5)
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As the coefficients do not depend on the direction of inte-

gration, the integration and reconstruction can be permuted,

which leads to (6)

I(−→w ,−→n ) =
∑

−→
j ∈VM,0

c
M,

−→
j

∫ Sout

s=Sin

f
M,0,

−→
j
(−→w + s−→n )ds+

M
∑

m=1

7
∑

i=1

∑

−→
j ∈Vm,i

d
m,i,

−→
j

∫ Sout

s=Sin

f
m,i,

−→
j
(−→w + s−→n )ds. (6)

Thus, the rendering process consists of a weighted sum of

integrals that depend only on the wavelet basis chosen. These

integrals are called wavelet footprints, and the rendering is

done through the weighted accumulations of the footprints.

Because of the scale property of the wavelet functions, only

height footprints are generated whereas the others are derived

from them using shifting and subsampling.

1) Advantages of the rendering method: This rendering

method presents two main advantages. First, the rendering is

processed directly from wavelet space. Therefore, no recon-

struction, even local, of the data is necessary, leading to a

low-cost processing task.

Moreover, this method allows the level of detail on the final

images to be easily increased, by adding the footprints that

correspond to the details of the wavelet decomposition. There

is, therefore, no need to re-compute what has been done for

the low resolution.

2) Choice of the wavelet: This method can be applied to

many wavelet bases. Requiring that the rendering phase be

as fast as possible implies that the footprints must be small.

Indeed, the rendering phase can be decomposed into two main

operations: the computation of the footprints, i.e., the integrals

in (6); and the projection of the footprints, i.e., the sums

in (6). The second operation is the most time-consuming. It

depends linearly on the size of the footprints, which depends

quadratically on the length of the support of the wavelet

functions.

Moreover, in the context of rendering with an ROI, the

number of coefficients in this region must be as small as

possible for the rendering process to be fast, as the region

is rendered at full resolution and requires many footprints to

be splatted. Therefore, the size of the support of the wavelet

must be small. The ROI is rendered at full resolution, so a

high-order wavelet is not necessary to achieve good quality;

indeed, it would increase only the quality of the Context.

Hence, the Haar wavelet is the better candidate as it is

the wavelet basis with the smallest support size. According

to Gargantini [24], it is also the best wavelet for perfect

reconstruction.

3) Footprints generation and projection: The footprints are

generated using a splatting approach. As the Haar wavelet,

which contains sharp discontinuities, is used, the splatting

approach was preferred to a Fourier transform slice ap-

proach [14], [18]. Indeed, Horbelt [25] shows that the Fourier

transform slice is better suited for wavelets of higher order.

First, the position of the footprints in the visualization space

is computed. This is important because it enables us to know

if the footprint is in front of or behind the ROI. Then, the

projection is made using a bi-linear interpolation as the pixels

of the footprint are not aligned with those of the screen pixels.

B. Supports preprocessing

The wavelet splatting technique produces an efficient x-ray-

like projection. To get an improved shading model, we propose

using a simple model like the one from Phong-Blinn [26], [27],

and with pre-integrated opacity like the one from Levoy [28]

(Fig. 5).

Many other preprocessing tasks, such as blurring, edge

detection, and histogram stretching, could be used. While im-

proving the quality of the rendered data, they will not penalize

speed during the manipulation phase. Indeed, whatever the

complexity of the preprocessing tasks, the rendering phase

stays the same.

(a) X-ray-like rendering (b) Enabling shadows

Fig. 5. Increasing quality of rendering with preprocessed lighting and
shadows

V. RESULTS AND DISCUSSION

The technique has been applied to a data set consisting of

1,200 slices of 274 × 434 pixels encoded as 16-bit integers.

During the acquisition, the aorta was emphasized in order to

show an aneurysm. This aneurysm represented a region of

64 × 40 × 40 voxels or about only 0.07% of the whole data.

After having been preprocessed and transformed into wavelet

space, the voxels were then encoded as 32-bit floats to avoid,

as far as possible, any effect due to compression. Compression

is not the main purpose of this paper and is part of our future

work.

Next, we will independently discuss the impact of the level

of decomposition and the size of the ROI on the rendering

speed.

A. Influence of the level of decomposition

When increasing the level of decomposition, one can expect

a speed-up of the rendering time. Indeed, while the footprints

become larger by a factor of 4, the number of coarse co-

efficients decreases by a factor of 8. If only the footprint

accumulation is taken into account, a speed-up by a factor

of 2 can be expected.

But two other factors may influence the rendering speed:

the percentage of zeros in the coarse coefficients may vary,

and the computation of the footprints cannot be negligible if

the level of decomposition is high (because the footprints will
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become large). The impact of those problems is discussed in

detail in the following paragraphs.

In the context of ROI-based rendering, an increased level of

decomposition leads to an increased number of footprints to

be displayed in the ROI to reconstruct the full resolution ROI.

Therefore, if two levels of decomposition give similar speed-

ups at low resolution, the coarser one should be preferred.

When the level of decomposition increases, the representa-

tion into trees may be more efficient and enable larger subtrees

(corresponding to larger holes inside the data) to be eliminated.

Thus, the compression ratio should also increase.

TABLE I

INFLUENCE OF THE LEVEL OF DECOMPOSITION ON SPEED-UP AND

COMPRESSION RATIO. THE LEVEL 1 OF DECOMPOSITION IS TAKEN AS THE

REFERENCE. THE RELATIVE NUMBER OF SPLATS USED AND THE

PROPORTIONAL TIME TAKEN TO GENERATE THE FOOTPRINTS ARE ALSO

GIVEN.

Level of decomposition 1 2 3 4 5

Speed-up at low resolution 1 3.7 7.2 7.5 3.8

Compression ratio 1 2 2.5 2.5 2.5

Relative number of splats 1 1

5.2

1

25.3

1

113.9

1

535

Footprints generation time 0.0054 0.124 1.696 13.89 57.14

Table I summarizes the relative speed-up and compression

ratio when the level of decomposition is increased. The speed-

up is computed against the level 1 of decomposition of the

data, as only the decomposition level is of interest in this

analysis. This shows that a level 3 of decomposition is the

best choice for our implementation. After three levels of

decomposition, as the compression ratio stays the same, no

additional subtrees are eliminated, which shows that the data

set does not have holes (or other homogeneous regions) of

16 × 16 × 16 voxels. More important is the fact that the

rendering process is not faster, and can even be slower. This

comes from the two factors cited previously: the size of the

footprints is too large not to take into account the footprint

generation phase, as it takes more than 57% of the rendering

time at level 5, and the number of non-zero coarse coefficients

decreases by a factor of less than 8 (about 5).

For the rendering to be efficient, the ROI must be easily

localized. Therefore, the quality of the image in the Context

must be good enough to keep the information on the local-

ization of the ROI. Fig. 6 shows the quality of the image at

low resolution for levels 1, 2, 3, and 4 of decomposition of

the data. Levels 1 and 2 provide good image quality but we

saw that they were not the most efficient. Whereas a level 4 of

decomposition leads to too coarse a representation, a level 3

of decomposition leads to an image quality still good enough

to understand the data. It is possible, for example, to see the

hip bones, and find which one is the left.

In the context of ROI-based rendering, an increased level

of decomposition leads to an increased number of footprints

to be displayed in the ROI. The speed-up from level 2 to 3

is important enough not to take into account the increased

number of footprints of the ROI. The appropriate level with

respect to the quality of the Context depends on the resolution

of the input data, while the appropriate level with respect to

speed depends on both the size of the ROI relative to the whole

volume and the level of decomposition.

(a) (b)

(c) (d)

Fig. 6. Influence of the level of decomposition on the quality of image at
low resolution from level 1 (a) to 4 (d)

B. Influence of the size of the region of interest

The method proposed took as a hypothesis that the ROI was

only a small part of the full data. The smaller the ROI, the

faster the method is. An investigation was made to find out

how small the ROI must be in order to achieve interactive

manipulation of the data. An order of decomposition of

level 3 was chosen, according to the results of the previous

investigation. The ROI was chosen as cubic, centered on the

spine and pelvis (because of the absence of big holes in this

region), and was grown from 8 × 8 × 8 voxels until

it completely covered the data. At each step, the ROI was

increased by adding 8 pixels to every dimension. The data in

front of and behind the ROI was not displayed. The rendering

speed was computed at multiple angles, and the one used to

compute the speed-up was the median value (see Fig. 7). The

speed-up is computed relatively to the time required to render

the data with the wavelet splatting method, with a level 3 of

decomposition, at full resolution (i.e., all the footprints have

been projected). The results are presented in Fig. 8.

The curve is asymptotic as the ROI is growing. As the size

of the ROI becomes larger than 15%, this corresponds to an

ROI of more than 50% × 50% × 50%, which is so large

that it would make more sense to render the whole data set at

full resolution.

An ROI representing 0.8% of the whole data can already

achieve good speed-up, as a factor of 10 is obtained in this

case. A value of 0.8% may sound small, but the ROI has

considerable size. It represents a parallelepiped that is 20% ×
20% × 20% of the whole dataset, that is 240 × 55 × 87
voxels. For the aneurysm ROI that represents less than 0.1%
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(a) 212 × 212 × 212 pixels (b) 128 × 128 × 128 pixels

(c) 128 × 128 × 128 pixels (d) 72 × 72 × 72 pixels

Fig. 7. ROI used to compute the speed-up at different sizes and angles

Fig. 8. Influence of the size of the region of interest on speed-up

of the data, a region of 64 × 48 × 48 voxels, a speed-up

factor of 30 is obtained. In our implementation the full data

was rendered at a speed of 0.3 images per second on a 1.6 GHz

Pentium-M. Using the region of interest around the aneurysm

led to a speed of 9 images per second which is already fast

enough to move the data interactively.

For comparison, with the normal splatting method without

opacity integration during the rendering phase (to make the

rendering faster with an image quality equal to the one used

in wavelet splatting), the data were rendered at 0.16 images per

second on the same computer, i.e., about two times slower than

the full resolution rendering with wavelet splatting. It is also

worth noting that without using a specific data structure for the

normal splatting method, the memory limit of the computer

(512MB) required to use a quantization of the data, which

leads to a little loss of information.

VI. CONCLUSION

We are proposing a novel volume rendering method that

uses a multiresolution approach for rendering a full resolution

Region of Interest within a low resolution Context while al-

lowing the context resolution to improve progressively towards

full resolution. Our method achieves fast 3D rendering of large

data sets by allowing an initial Context to be rendered with a

low resolution while ensuring that a specific ROI is rendered

at full resolution at all times. Subsequently, Context is refined

to achieve a complete full 3D rendering. Our method brings

an element of a solution to the significant challenge facing

medical image interpretation as a result of the constantly

increasing amounts of imaging data. It is based on the idea

that the radiologist often focuses on an ROI when interpreting

medical images. By limiting the visualization to an ROI

without sacrificing the contextual information, our method

reduces the computational time and achieves efficiency in

volume rendering, while preserving the diagnostic value of the

presentation. The problem of determining an ROI has not been

addressed, and additional work is needed to explore intelligent

3D ROI selection during the user interaction with the volume.

The proposed method uses a 3D wavelet decomposition of

the volumetric data. The wavelet coefficients are arranged and

manipulated as tree structures to allow a compact representa-

tion of the data. The localization property of the wavelet trans-

form is used to identify all wavelet coefficients that belong to a

specific ROI within the volumetric data. The volume rendering

operation is accomplished in the compressed domain thus

reducing the computational time. This is possible because the

wavelet transform and the projection are both linear operations

that can be permuted. By considering all wavelet coefficients

that contribute to the ROI from all resolution levels, a full

resolution rendering of the ROI is obtained. The rendering

process also uses the wavelet coefficients of the Context from

a low-resolution level to achieve a multiresolution volume

rendering. Our method allows the level of details outside the

ROI to be progressively increased by incrementally adding

the footprints from the details of the wavelet decomposition.

Furthermore, in order to increase the visual quality of the

rendered image without penalizing speed, we have used, in

a preprocessing phase, a model that integrates opacity and

improves shading.

In addition to demonstrating that the proposed method suc-

cessfully achieved multiresolution volume rendering, we have

discussed the optimal depth of the wavelet decomposition to

attain best performance. We have also analyzed the impact of

the ROI size on performance. We showed that, for a relatively

small ROI, our multiresolution approach can improve the

rendering speed considerably. A speed-up of a factor of 30 has

been obtained using an ROI representing 10% × 10% × 10%
of the whole dataset.

The proposed method could be further improved. While

already providing good performance and fast rendering, speed

could be further improved using specialized graphics hard-

ware. Our approach could be extended to store the footprints as

textures, as proposed by Lippert [18], and to use the graphics

hardware, as this has been proven to be very efficient [22].

Although the main objective in this paper was multires-

olution volume rendering, rather than volume compression

for efficient storage and rapid transfer time, our wavelet

decomposition scheme, combined with the tree representation,

are very useful to manage the data in a compressed and

compact way, especially when dealing with large data sets.

The octree provides satisfactory and efficient representation of

the data. However other approaches based on quantization and
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statistical compression methods could be explored in order to

attain better compression rates. The impact of such approaches

on image quality and decompressing speed would also need

to be investigated.
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Sébastien Piccand Sébastien Piccand is a PhD student at the University of
Limerick, Ireland. His research interests include sound and image processing,
visualization and evolutionary learning.

He holds a Master of Telecommunication Engineering degree from the
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