SIGGRAPH2004 CoGIP: A Course on 2D Computer Graphics and Image Processing Eric Paquette, LESIA

Computer Graphics

Computer Graphics (CG)

 90 % Computer Science curricula
 10 % mandatory
 a vast discipline

only a subset in one course

Target for CoGIP

- Undergraduate level
- Computer Science like programs
- 1st CG course
 - many ways to introduce CG
 - [Brown et al. 1988], [Cunningham 2002], [Grissom et al. 1995], [Larrondo-Petrie et al. 1994]

1st CG Course

Others 19%

CG - HCI 3%

Typical 3D CG course

3D CG

73%

- [Wolfe 1999], [Hitchner et al. 1999]
- Text books

HCI: Human Computer Interaction

CoGIP

CoGIP Course

- 2D CG and Image Processing course
 - color
 - sampling
 - vector / raster graphics
 - filtering
 - 2D transformations

Overview

SIGGRAPH2004

- Motivation
- Topics
- Labs
- Discussion
- Conclusion

Why?

Applications

 web, user interface, visualization, reports, presentations, promotional material, CG content creation, games, special effects, ...

- Typical Computer Scientists
 - manipulate images and 2D more often than 3D

Why?

Quality presentation

2D graphics / images
Capture
digital camera, scanner, camcorder, ...

Reproduction

ink jet, laser, film, monitor, lithography, Web, ...

Overview

- Motivation
- Topics
 - covered topics
 - relationships
 - book
- Labs
- Discussion
- Conclusion

- Color
 - perception, models, transformation
- Sampling
 - aliasing / antialiasing
- Acquisition / reproduction
- Vector primitives
 - lines, polylines, parametric curves, etc.
 - rasterization
- Filling
- Filtering
- 2D transformations

- Color
 - perception, models, transformation
- Sampling
 - aliasing / antialiasing
- Acquisition / reproduction
- Vector primitives
 - lines, polylines, parametric curves, etc.
 - rasterization
- Filling
- Filtering
- 2D transformations

- Color
 - perception, models, transformation
- Sampling
 - aliasing / antialiasing
- Acquisition / reproduction
- Vector primitives
 - lines, polylines, parametric curves, etc.
 - rasterization
- Filling
- Filtering
- 2D transformations

- Color
 - perception, models, transformation
- Sampling
 - aliasing / antialiasing
- Acquisition / reproduction
- Vector primitives
 - lines, polylines, parametric curves, etc.
 - rasterization
- Filling
- Filtering
- 2D transformations

- Color
 - perception, models, transformation
- Sampling
 - aliasing / antialiasing
- Acquisition / reproduction
- Vector primitives
 - lines, polylines, parametric curves, etc.
 - rasterization
- Filling
- Filtering
- 2D transformations

Image Processing		CG
processing	image	> synthesis
filtering, thresholding	volume	rendering
	color & perception	
A A A	sampling	
aliasing		antialiasing
filtering		supersampling
\times \times \times	texture filtering	
image 2D 🔸	mapping	texture mapping
transformation	forward-reverse	
image ┥	morphing	animation
		Eric Paquette, LESIA

Shared Advanced Topics

Image Processing		CG
shape from shading		shading
stereo	projection	image synthesis
brightness, contrast, gamma		HDRI mapping
image compression	wavelets	multiresolution surfaces
analysis	texture	synthesis
	3D reconstruction	

HDRI: High Dynamic Range Imagery

CoGIP Book

No appropriate book

 topics not covered in appropriate depth
 missing topics

Our Books and Chapters

[Watt & Policarpo 1998], ch. 25	perception, color
[Hill 2001], ch. 10	sampling, vector primitives, reproduction, filling
[Effort 2000], ch. 7	image filtering (spatial)
[Gonzalez & Woods 2002], ch. 5	image filtering (frequency)
[Foley et al. 1990], ch. 11	curves
[Hearn & Baker 2004], ch. 5	transformations

Overview

- Motivation
- Topics
- Labs

 lab topics
 J2DCG lab tool
- Discussion
- Conclusion

CoGIP Labs

Торіс	CG / IP (Image Processing)			Vector / Raster		
Color models	both			both		
Filling	CG	Ų		raster		
Filtering	\rightarrow		IP	raster		
Curves	CG	\ge	\geq	vector		
Transformations	CG	(and so	ome IP)	vector (and some raster)		

J2DCG

• Focus

integrated vector & raster graphics
 less coding effort
 OpenSource project
 j2dcg.sourceforge.net/

Overview

- Motivation
- Topics
- Labs
- Discussion

 benefits
 challenges

 Conclusion

Advantages

- Advantage compared to 3D CG course
 - perception
 - color
 - acquisition / reproduction
 - image transformation
 - image composition
 - vector graphics

Benefits for students

- Efficient with 2D graphics software – create, edit, reproduce quality content
 Knowledge to interact with
 - CG & Image Processing specialists

Benefits for teachers

- Require similar knowledge

 mathematics
 programming
- Less duplication with Image Processing
- Starting point for advanced courses
 Vision, 3D CG, animation, ...

Challenges

 Division – CG / Image Processing - Vector / Raster No appropriate book Advanced course must follow CoGIP before – must refresh their memory

GTI410: Our Experience

- Students appreciate
 - topics
 - labs
 - labs in a single system
- Course notes from chapters

 appropriate
- Advanced course on 3D

Overview

- Motivation
- Topics
- Labs
- Discussion
- Conclusion

Conclusion

- Good combination
 natural integration
 less duplication
- Good starting point for advanced courses
- Good for many curricula

Future Work

- Approaches

 (interactive) 3D CG
 2D CG and Image Processing
 interactive 3D CG and HCI
 others
- Which approach, when, where?

Acknowledgments

Research supported by grants from NSERC ETS

Additional Material

References

Books

- [Effort 2000] Efford, N. 2000. Digital Image Processing: A Practical Introduction Using Java. Addison-Wesley.
- [Foley et al. 1990] Foley, J., Van Dam, A., Feiner, S., And Hughes, J. 1990. Computer Graphics Principles and Practice, 2nd ed. Addison-Wesley.
- [Gonzalez & Woods 2002] Gonzalez, R., And Woods, R. 2002.
 Digital Image Processing, 2nd ed. Prentice Hall.
- [Hearn & Baker 2004] Hearn, D., And Baker, M. 2004. Computer Graphics with OpenGL, 3rd ed. Prentice Hall.
- [Hill 2001] Hill, F. 2001. Computer Graphics Using OpenGL, 2nd ed. Pearson Education.
- [Watt & Policarpo 1998] Watt, A., And Policarpo, F. 1998. The Computer Image. Addison-Wesley.

References

Papers

- [Brown et al. 1988] Brown, J., Burton, R., Cunningham, S., And Ohlson, M. 1988. Varieties of computer graphics courses in computer science. In Proceedings of the nineteenth SIGCSE technical symposium on Computer science education, 313.
- [Cunningham 2002] Cunningham, S., 2002. Recommendations of the computer science curriculum group of interest. Eurographics/SIGGRAPH Workshop on Computer Graphics Education 02 (CGE 02).
- [Grissom et al. 1995] Grissom, S., Bresenham, J., Kubitz, B., Owen, G. S., And Schweitzer, D. 1995. Approaches to teaching computer graphics. In Proceedings of the twenty-sixth SIGCSE technical symposium on Computer science education, 382–383.
- [Hitchner et al. 1999] Hitchner, L. E., And Sowizral, H. A. 1999. Adapting computer graphics curricula to changes in graphics. In Graphics and Visualization Education Workshop (GVE '99) Proceedings, J. C. Teixeira, W. Hansmann, and M. McGrath, Eds., 23–30.
- [Larrondo-petrie et al. 1994] Larrondo-petrie, M. M., Bresenham, J., Laxer, C., Lansdown, J., And Owen, G. S. 1994. Approaches to teaching introductory computer graphics. In Proceedings of the 21st annual conference on Computer graphics and interactive techniques, ACM Press, 479–480.
- [Wolfe 1999] WOLFE, R. 1999. Brining the introductory computer graphics course into the 21st century. In Graphics and Visualization Education Workshop (GVE '99) Proceedings, J. C. Teixeira, W. Hansmann, and M. McGrath, Eds., 3–8.

Contributions

- Description of a course on 2D CG & IP
- Identification of practical / theoretical relationships between 2D CG & IP
- Relationship to advanced courses
- Identification of benefits and drawbacks
- OpenSource Framework for labs
- Survey on CG courses

2D to 3D CG

2D CG + Image Processing		Advanced CG
2D	curves	3D, surfaces
2D	transformations	3D, projection
2D	animation	3D, gimbal lock
2D vector	primitives	polygon, sphere, torus, etc.
DDA, mid point	vector to raster	scanline

DDA: Digital Differential Analyser

CoGIP Lab Tool

• Focus

- easily implement the algorithms
 - less coding effort
 - less user interface development

Abstract class

Example concrete class

Mean Filter3x3

Books constraints

 [Watt & Policarpo 1998] - insufficient details 3D CG books - insufficient filtering, image transformations IP books - insufficient vector primitives, curves, vector to raster, filling, 2D transformations, reproduction

Data

- From data available on the Web
- Undergraduate CS curricula
- Number of
 - 5 countries
 - 31 universities
 - 50 programs
 - 37 introductory CG courses

Data

- Countries

 Australia
 Canada
 - New Zealand
 - United Kingdom
 - United States

IT Engineering

- Information Technology Engineering
- Applied Computer Science
 - business
 - transactional environment
 - information technology
 - internet / intranet
- Integrators

IT Engineering (GTI)

• Curriculum

Engineering	CHM101 ING120 MAT115	COM110 MAT235 PHY102	ING130 MAT320 PHY105	GIA450 MAT415	GIA400 MAT140	GPO661 TIN501 GIA601 ¹	GTI790
Computer Science	LOG120	LOG220	LOG340	GT1440 ²			
Computer Graphics			011510	GTI410		GT1664	GTI420 ¹
Network				LOG610	GTI525 GTI530	400110	GTI710
Business		GTI210			GTI520		