
CGI2016 manuscript No.
(will be inserted by the editor)

Dynamic Lapped Texture for Fluid Simulations

Jonathan Gagnon · François Dagenais · Eric Paquette

Abstract We present a new approach for texturing flu-

ids. Particle trackers are scattered on the surface of the

fluid, and used to track deformations and topological

changes. For every frame of the animation, the trackers

are advected and rotated coherently with the flow of the

fluid. Receiver polygons are identified on the fluid sur-

face and are used to transfer uv coordinates, while en-

suring a controllable amount of texture distortion. The

density of the trackers is adjusted when constructing a

texture atlas used for rendering. Trackers that remain

unused when filling the atlas are safely removed, while

texels of the atlas without any corresponding tracker

identify areas where new trackers will be added. To-

gether with our patch layering approach, this tracker

creation and removal process reduces popping artifacts.

Both the input (fluid surface mesh and velocity field)

and the output (texture atlas) of our approach make it
easy to integrate into a typical production pipeline. We

tested our approach on several types of fluid simulation

scenarios, including splashes, rotational flows, and vis-

cous fluids. The resulting animations of textured fluids

are free from temporal artifacts and popping, and show

a limited amount of distortion, blurring, and disconti-

nuity.

Keywords Fluid Animation · Texture Synthesis

J. Gagnon1,2

jonathangagnon@gmail.com

F. Dagenais1

francois.dagenais.2@ens.etsmtl.ca

E. Paquette1

eric.paquette@etsmtl.ca

1Multimedia Lab, École de technologie supérieure, Montreal,
Canada
2Mokko Studio, Montreal, Canada

1 Introduction

Several types of liquids require texturing: mud, foam,

and soiled water to name a few. The typical surface

parametrization method using uv coordinates performs

well when texturing rigid or partially deformable ob-

jects. Nevertheless, for liquids, the surface can undergo

severe distortions that lead to disturbing results if rely-

ing on basic uv coordinates advection. Current methods

for texturing fluids [1,6,9,11,20] rely on either sprite-

based advection or texture synthesis. Methods from

both of these classes have several limitations and re-

sult in spatial and temporal artifacts. When the fluid

surface extends or shrinks, disturbing blurring or pop-

ping artifacts become visible as texture patterns appear

or vanish. Moreover, the global structure of the pat-

tern does not deform accurately when subjected to a

rotational flow, which breaks the illusion of a contin-

uous surface pattern. Finally, changes in topology and

splashes often result in distracting flickering.

While sprite-based methods have their limitations,

they fit well within a conventional visual effects pipeline

and are much less prone to popping and jittering arti-

facts. Moreover, in a typical visual effects context, high-

resolution textures will be used. Compared to texture

synthesis, the computation times of sprite-based meth-

ods will increase at a lower rate as the resolution of the

texture increases.

To overcome the limitations of sprite-based meth-

ods, we propose an approach extending the lapped tex-

ture method to fluids. Our approach tracks the sur-

face changes and updates the texture using overlapping

patches. Although the proposed approach shares some

similarities with sprite-based methods, it brings for-

ward innovative improvements. First of all, our method

tracks the surface movement with both particle trackers



2 Jonathan Gagnon et al.

and local coordinate frames, which increases the preci-

sion and eases the texturing of rotational flows. We also

present an entirely new approach to maintain an appro-

priate distribution over the surface, while preventing

popping artifacts as well as allowing thin splashes and

drops to be textured in a realistic manner. Finally, the

proposed method fills a texture atlas with the texture

exemplars, making it easy for the textured fluids to be

integrated into a typical rendering pipeline. To summa-

rize, the contributions of the proposed approach are:

– an atlas-based texture synthesis;

– a distortion control over the receiver polygons iden-

tification and atlas filling;

– an atlas coverage tracker distribution update;

– a tracker plus local frame advection.

Our expandable texture synthesis approach is easily

amenable to texturing with several exemplars at the

same time, and to exemplars evolving over time. Com-

pared with previous methods, this new approach pro-

vides results with increased realism for texturing flu-

ids with rotational flows, high-curvature areas, and

splashes.

2 Related Work

Example-based texture synthesis is often used to create

large textures from smaller texture exemplars. We look

at two main approaches to synthesizing a texture: using

texels and using patches. Texel-based methods synthe-

size one texel at a time [4], using a window of neighbor

texels to identify the best match from the texture ex-

emplar. Even with improvements relying on Gaussian

pyramids [16] and optimizations [7], it remains time-

consuming, especially when considering larger input or

output textures.

Instead of computing and copying colors on a per-

texel basis, other methods [3,8,18] copy several adja-

cent texels at once. With this set of texels, the syn-

thesis corresponds to juxtaposing patches. As patch-

based methods do not optimize texel colors individu-

ally, they are often augmented with methods to improve

the color transition between patches, such as minimum

error boundary cut [3,8] or feature maps [18].

The methods discussed so far are designed to syn-

thesize textures on a flat surface. When considering

curved surfaces, there are two main ways to synthesize

a texture: using vertices or using patches. Vertex-based

methods synthesize a texture using vertex colors and

vertex neighborhoods [15,17]. Patch-based methods use

overlapping patches to synthesize a texture on a curved

surface [13,14]. These methods perform well with static

surfaces.

The surface of a simulated fluid goes through defor-

mation, distortion, and topological changes, making it

difficult to texture map. The advection of vertex col-

ors was used to track these changes [1,6,9–11]. Surface

tracking [2] can be used in a similar manner to deter-

mine the movement of the texture. For both advected

vertices and surface tracking methods, a large amount

of stretching is introduced, the global texture patterns

quickly diverge, and these do not provide an adequate

solution for texturing newly exposed areas. In a sim-

ilar fashion as for texel-based methods, it is possible

to correct the vertex colors by finding best match col-

ors in the exemplar [1,6]. The method of Bargteil et

al. [1] can follow the optical flow, but it does not han-

dle rotational flows: the features of the texture do not

rotate. Kwatra et al. [6] correct this problem by advect-

ing orientations. However, according to Yu et al. [19],

the resulting optical flow of these methods [1,6] does

not show a very accurate match with the input flow.

Moreover, these methods [1,6] introduce popping arti-

facts. Narain et al. [10] use a parameter map, which

allows for a better similarity with the optical flow, but

still has popping artifacts. According to Jamriska et

al. [5], the pixel-based synthesis can also suffer from a

wash-out effect: after a few frames, the resulting texture

converges to blurred local minimum. While the method

of Jamriska et al. [5] is free from the wash-out effect

and improves the texture flow, when subject to a ro-

tational flow the texture patterns have a tendency to

locally retain their orientation, especially at the center.

Furthermore, the method relies on 2D motion flows in-

stead of 3D free surfaces. Finally, the texture exemplar

used with these vertex-based methods are often quite

small. Using high-definition exemplars with texel-based

methods significantly increases computation times.

To improve the texture flow in accordance with the

fluid flow, the patch-based approach of Yu et al. [20]

proposes to use deformable overlapping patches. This

approach allows the use of large texture exemplars

without increasing the computation time thanks to the

patch-based strategy. It also corrects distortion and

popping artifacts, but suffers from the blurring.

While tracking deformations, fluid texturing meth-

ods need to deal with changes in topology, as well as

shrinking and expanding surfaces. All of these changes

affect the distribution of points tracked on the sur-

face. Homogeneous scattering with Poisson disk distri-

bution [20] or with point repulsion [1,6] can introduce

a loss of details; on features such as splashes and thin

threads, the target distribution can be achieved with-

out generating a sufficient number of trackers to cover

all sides of these thin features.



Dynamic Lapped Texture for Fluid Simulations 3

(a) Trackers and local frames (b) Receiver polygons (c) Atlas creation from layered receiver

polygons

Fig. 1 Overview of our approach.

Vertex-based methods [1,6] track deformations us-

ing advected colors on the vertices of the fluid surface,

while deformable grids are used for the patch-based

method of Yu et al. [20]. Although vertex-based meth-

ods can handle free surface meshes, the patch-based

method of Yu et al. [20] has been developed for 2D

and 2 1
2D fluid simulations. Therefore, to our knowledge,

there is no precise tracking method for patch-based tex-

ture synthesis on free surfaces. Compared to previous

methods, our approach introduces a new precise patch

tracking on free surfaces. It also proposes a coherent

patch distribution update allowing topological changes.

It performs well with complex fluid movements involv-

ing thin features, splashes, and rotational flows.

3 Dynamic Lapped Texture

To texture the surface of a fluid, the user provides an

input texture exemplar and a mask, together with the

per-frame tessellated surface and the velocity field sup-

plied by any fluid simulator. Our approach uses these

to output a texture atlas that can be processed through

any typical rendering pipeline and tools. The approach

consists of three main phases as outlined in Fig. 1.

Trackers (particles) are first advected and their local

frames updated according to the velocity field of the

fluid and the tessellated surface (see Sec. 3.1). In the

second phase, receiver polygons are identified around

each tracker (see Sec. 3.2), and the last phase com-

putes the texture atlas using an overlapping principle

(see Sec. 3.3).

3.1 Tracker and Local Frames Advection

The first phase of our approach is the local frame advec-

tion process, which is split into three steps: advecting

the trackers, updating the local frames, and updating

the tracker distribution.

3.1.1 Advecting Trackers

Our tracker advection brings together advantages from

the Poisson disk advection of Yu et al. [20] and the

orientation advection of Kwatra et al. [6]. We advect

trackers in the same fashion as Yu et al. [20]. Simi-

larly to Kwatra et al. [6] who use orientation vectors on

mesh vertices, we use an orientation per tracker. The

input to the tracker advection is the tessellated surface

of the fluid and the velocity field of the fluid simulation

(either through particles or a grid). These properties

are straightforward to extract from most fluid simula-

tors. In our approach, each tracker particle Pi is on

the surface of the fluid. For each frame, tracker Pi is

advected to P ′i based on the fluid simulation. This pro-

cess requires the velocity, which we store at the vertices

of the surface to avoid transferring the whole velocity

field. Errors tend to accumulate if the advection uses a

low-order scheme. To maintain accurate results, espe-

cially for turbulent fluids, we use a fourth-order Runge-

Kutta integration. After advection, each tracker P ′i is

projected toward the closest location on the fluid sur-

face (P ′′i ).

3.1.2 Updating Local Frames

For each tracker, we use a tangent tracker (Ti) to cre-

ate a local coordinate frame defining the orientation

of the patch (see Fig. 2). Unlike P ′′i , tracker T ′i is not

projected onto the surface. The local frame is updated

using the advected trackers P ′′i and T ′i . The orthonor-

mal basis is defined from the normal −→ni of the tracker

and the binormal
−→
bi = −→ni × P ′′i T ′i . The position of the

tangent tracker is then adjusted to T ′′i such that P ′′i T
′′
i

is perpendicular to −→ni and
−→
bi . The local frame orienta-

tion is important as it allows a better similarity with

the velocity field. As it can be seen in the accompany-

ing video, if we remove the orientation, the result looks

unrealistic, especially in rotational flows.



4 Jonathan Gagnon et al.

Texture exemplar

Mask

Fig. 2 We track the flow of the fluid with the tracker (in
red), the tangent tracker (in green), and the surface normal
(in black).

3.1.3 Updating Trackers Distribution

Initially, a Poisson disk sampling is done to cover the

surface with a uniform distribution of trackers. The ra-

dius of the Poisson disk matches the patch size set by

the user. Previous methods [1,6,20] use a density ap-

proach to determine if it is possible to add or remove

Poisson disks to preserve a homogeneous distribution.

Although this works well on flat and moderately curved

surfaces, it could be difficult to achieve the target dis-

tribution while having enough trackers to cover thin

threads or splashes.

Our solution ensures that the surface is completely

covered by patches with the relation between the

patches and the texture atlas used for rendering (see

Sec. 3.3). When rasterizing the receiver polygons to the

atlas, we identify uncovered areas of the surface by find-

ing the texels that are mapped to a triangle, but that

do not get colored. A random distribution of trackers is

done on the uncovered areas of the surface. This process

is repeated until every atlas texel mapped to a triangle

is colored. The appearance of new patches happens only

where newly uncovered areas are exposed. Furthermore,

the new patches are layered below older ones through

the use of a layering number. Thus, the new patches af-

fect only the newly uncovered areas, leaving the already

covered areas free of any popping artifacts.

The distribution update also involves finding the

patches that are fully concealed. Each patch that re-

mains unused when filling the atlas is not visible and

thus removed. A sink is a particular case where the

patch on top is likely to stop moving, but will never

disappear because of our layering scheme. To circum-

vent this, we apply an additional test where we measure

if velocity vectors at the four corners of the patch are

oriented toward the center of the patch. Such patches

are temporally deleted by blending their masks, at a

rate proportional to the speed of the inward-pointing

velocity vectors.

3.2 Patch-to-Receiver-Polygons Parametrization

The second phase identifies the polygons of the fluid

surface that will receive the properties from each patch.

This phase is performed in two steps. First, we identify

the polygons based on the tracker position and the lo-

cal frame orientation. In the second step, the uv coor-

dinates and layering of the patches are transferred to

the receiver polygons through an orthogonal projection.

This process is repeated for each patch and results in a

list of uv coordinates and layering IDs for each vertex

of the fluid surface.

3.2.1 Receiver Polygons

The potential receiver polygons are those around

tracker Pi within a distance equal to the patch size.

From this set of polygons, we reject those not connected

to the polygon closest to the tracker; this avoids select-

ing polygons that are nearby, but from a disjoint part

of the liquid. Since flattening a closed or excessively

curved surface introduces too much distortion, we ex-

clude polygons pointing away from the local frame’s

normal with a threshold angle φmax. For the exam-

ples presented in this paper, we exclude polygons with

an angle larger than φmax = 130◦. This is a user-

controllable parameter, enabling a compromise between

the amount of distortion and the number of trackers re-

quired to cover the surface. As we reject more polygons,

more trackers will be required to completely cover the

surface.

When defining a parametrization between a curved

and a flat surface, there are often remaining distortions.

To address this issue, we use an alpha falloff inspired by

the method of Praun et al. [13]. As we rely on an orthog-

onal projection (described in Sec. 3.2.2) , the distortion

of the texture increases as the angle θ between the nor-

mal of the polygon vertices and the normal of the local

frame increases. Thus, receiver polygon vertices with

an angle θ < ψα=1 are set as opaque, whereas polygon

vertices with an angle θ > ψα=0 are set as completely

transparent. Linear interpolation of the alpha value is

used when ψα=1 < θ < ψα=0.

The angle thresholds should be set so that ψα=1 <

ψα=0 < φmax. These thresholds are controllable param-

eters which can be used to reduce distortion if required.

The receiver polygon identification and the alpha blend-

ing are not time-consuming, produce satisfying results

(see Fig. 3), and are smooth over time as can be seen

in the accompanying video.



Dynamic Lapped Texture for Fluid Simulations 5

Fig. 3 Texturing a viscous fluid using overlapping patches.
Visualization of the patches using a single random color per
patch.

3.2.2 Patch Properties Transfer

Given a specific patch on the surface of the fluid, we

transfer its properties to the receiver polygons of the

tessellated surface. Each vertex of the receiver poly-

gons is orthogonally projected on the supporting plane

of the patch, along the direction of the local frame’s

normal. The corresponding locations in the patch tex-

ture space are computed based on the patch size and

the projection on the patch local frame. The uv co-

ordinates from the local frame and the layering IDs of

the patch are then added to the per-vertex list of prop-

erties. A texture ID could also be stored, should we

want to use multiple texture exemplars. The properties

transferred from the patch to the atlas is typically the

color, but it could be any other texture properties, for

example a normal map or a displacement map.

3.3 Dual-Purpose Texture Atlas

The last phase is the preparation of a texture atlas, a

general representation enabling the use of any rendering

tool. Surface splatting [22] could be used to render the

patches instead of using our atlas construction. While

splatting would require a dedicated shader, relying on

the atlas has the advantage that it can be used with

any standard renderer and shader, making it much more

easy to integrate in the set of shading and lighting tools

used in a visual effects studio. The atlas is created in

two steps: (1) the surface of the fluid is unwrapped to

the texture space of the atlas, and (2) the texels of the

atlas are filled based on the patch uv and layering ID

stored with the fluid surface (see Alg. 1). For the first

step, several mesh unwrapping methods could be used.

In our implementation, we rely on SideFXTM Houdini’s

“UV Unwrapping” operator. In our experience, the un-

wrapping does not even have to be temporally coher-

ent. Strong temporal inconsistencies in the unwrapping

will still provide a temporally-coherent rendering of the

patches.

After unwrapping, each polygon of the fluid surface

has a corresponding location in the atlas texture space.

In the second step, the layered texture patches and their

masks are combined, yielding the atlas texel values. For

each texel of the atlas, the corresponding polygon is

fetched together with its list of layering IDs and tex-

ture exemplar uv coordinates. The layered patches are

handled from bottom to top. The texture exemplar col-

ors are accumulated, considering the mask color and the

alpha falloff. The atlas rendering is repeated for every

frame of the animation.

In highly curved regions, alpha falloff is used, as de-

scribed in Sec. 3.2.1. In this case, if none of the patches

affecting this texel are opaque, a patch is added below

in the patch distribution update step. This process en-

sures the surface is fully covered with patches even if

we use alpha blending.

Unwrapped polygons = unwrap(fluid surface)
foreach Unwrapped polygon do

foreach Texel of Atlas in Unwrapped polygon do
TColor = null
foreach Patch in layered order do

uvE =
AtlasToExemplarCoords(uvA, Patch)

EColor = Exemplar(Patch, uvE)
Mα = Mask(Patch, uvE)
Falloffα =

FalloffInterp(Unwrapped polygon)

TColor = (1 − Falloffα) TColor+
FalloffαMαEColor

Algorithm 1: Per-frame atlas creation.

4 Results

To validate our approach, we tested a variety of fluid

scenarios, as shown in Figs. 4-9, as well as in the accom-

panying video. Our approach works well with structural

patterns. Figs. 4 and 5 show that the structure of two

different texture exemplars is preserved. Compared to

the method of Narain et al. [10], we do not need a pa-

rameter map in order to avoid the washout effect of

the convergence to a local minimum. Since it is a

patch-based method, and because of our receiver poly-

gon identification and alpha falloff, the proposed ap-

proach introduces a limited and controllable amount of

distortion.

The texture follows the velocity field in a realistic

way with the help of the trackers and tangent trackers.

The translations and rotations of the patches follow the



6 Jonathan Gagnon et al.

(a) (b) (c)

Fig. 4 Double dam break using a mud texture exemplar. There is only limited distortion and it is very difficult to distinguish
the patches.

Fig. 5 Viscous fluid animation. Even with the slow move-
ment, and the significant amount of topology changes, the
animation is temporally coherent and does not suffer from
flickering.

Fig. 6 Rotational flow: there are only a few blurring artifacts
and no popping artifacts in the animation.

flow of the liquid, as shown in Fig. 6 and the accompa-

nying video.

Liquids often carry different materials visible at

their surface. It is very easy to adapt our approach

to support the simultaneous use of several texture ex-

emplars. In fact, since each has an associated texture

exemplar, we can have a different texture per tracker.

This way, we can reproduce complex texture such as

mud, lava, or any type of fluid having small fragments

of different types as illustrated in Figs. 7 and 8.

Fig. 7 Texture exemplars combined with a color shader
based on surface temperature.

The lava example (Fig. 7) has been created us-

ing three different texture exemplars of melted rock.

A standard FLIP simulation [21] was used to animate

the lava. The fluid is initially set to a maximal temper-

ature, and the temperature of each particle follows an

exponential decay. Throughout the animation, the same

exemplars are used, regardless of the lava temperature.

We used a temperature interval from a minimal tem-

perature at which the rock becomes solid to a maximal

temperature when the rock is considered completely liq-

uid. Then, to simulate solidifying rocks, the viscosity

of the fluid is affected by the temperature: maximal

temperature is fully liquid and minimal temperature is

highly viscous. Finally, a shader modulates the color

from the temperature by interpolating between black

for the minimal temperature and bright yellow-orange

for the maximal temperature.

When dealing with a set of multiple exemplars,

the initialization and update of the tracker distribu-

tion need to take into account the selection of a spe-

cific exemplar for each new tracker. Our approach can

support various exemplar selection strategies. First, the

selection can be determined by regions where a specific

exemplar will be selected, such as the parameter map

of Narain et al. [10]. A second strategy is to rely on

a user-defined discrete probability distribution among



Dynamic Lapped Texture for Fluid Simulations 7

Fig. 8 Multiple texture exemplars.

the set of exemplars. When a more uniform distribution

is required, the selection could rely on the computation

of a local histogram of the neighbor exemplar types.

The exemplar for the new tracker is then selected to

steer the local histogram toward the user-specified tar-

get distribution.

Our approach avoids blocky artifacts and prevents

popping artifacts thanks to the layering strategy. As

shown in the accompanying video, the patch distri-

bution update is smooth. Our approach also limits

blurring artifacts when updating the distribution, by

only deleting concealed patches. Only two cases remain

where our approach can introduce blurring artifacts:

when deleting patches because of inward-pointing ve-

locity vectors, and on receiver polygons of high cur-

vature regions. The first case of deleting patches with

inward velocity never happened for the animations re-

lated to Figs 4-9. We created a fake velocity field with

velocities all pointing to a sink position. Even consid-

ering the fact that this scenario was explicitly set up to
force alpha blended path deletions, only 1% of the patch

deletions were done based on inward velocity vectors,

introducing a limited amount of blurring artifacts. The

second case where our approach can introduce blurring

is when we use alpha blending based on the normal of

the local frame and the normals for the receiver poly-

gons’ vertices. This affects 2% of the atlas texels on

average for our examples. Overall, our animations have

a very limited amount of blurring artifacts.

Since our approach is patch-based, the use of high-

resolution exemplars has a negligible effect on compu-

tation time. All texture exemplars used in this paper

are in high-definition (1024 × 1024) and include a dis-

placement map, except for the green exemplar (64×64,

no displacement map). There are between 60k and 200k

polygons in the tessellated fluid surfaces of our anima-

tions. The number of trackers is between 5k and 20k,

and the resolution of the atlas is between 3k × 3k and

8k× 8k.

Fig. 9 With this structured pattern, its high-contrasting col-
ors, and the designed mask, it is easier to guess where the
seams between neighbor patches are located.

We used a 12-core Intel i7-3960X with 64 GB of

RAM and a Quadro 4000 graphics card to run our tex-

turing approach. All of our animations are 10 seconds

long at 24 frames per second. Computation times and

other statistics are illustrated in Tables 1 and 2. As can

be seen in Fig. 10, the most time-consuming part is the

atlas creation. This phase takes around 60% of the to-

tal time. For our examples, the whole texturing process

takes between one and six minutes per frame.

Our current implementation takes advantage of par-

allel computation for the atlas creation, but uses a

single core for the advection and the receiver poly-

gons stages. It outputs frames every few seconds to a

few minutes depending on the scene complexity. For

example, the dam break of Fig. 4 takes an average

of 75.5 seconds per frame. Rendering at a resolution

of 1920 × 1080, with global illumination, displacement

map, and a 5× 5 supersampling, is around one minute

per frame using SideFX MantraTM.

Table 1 Per frame computation times (in seconds) for the
advection, identification of receiver polygons, and creation of
the atlas.

Advect Receiver Atlas Total
poly

Dam break (Fig. 4) 0.55 30 45 75.55
Viscous fluid (Figs. 5 & 8) 0.86 60 42 102.86
Vortex (Fig. 6) 2.2 50 75 127.5
Lava (Fig. 7) 1.25 175 180 356.25
Armadillo (Fig. 9) 0.5 15 70 85.5

5 Discussion

Even though our method outputs texture atlases

roughly as fast as they can be rendered, the whole pro-

cess can be time-consuming, and this could be a limi-

tation. The input texture exemplar and manual design



8 Jonathan Gagnon et al.

Fig. 10 Relative computation times for the advection, iden-
tification of receiver polygons, and creation of the atlas.

Table 2 Average number of polygons, number of trackers,
and output resolution of the atlas in texels.

Surface # of Output
resolution trackers resolution

Dam break (Fig. 4) 65k 10k 3.5k × 3.5k
Viscous fluid (Figs. 5 & 8) 200k 5.2k 5k × 5k
Vortex (Fig. 6) 175k 11k 6k × 6k
Lava (Fig. 7) 260k 5k 8k × 8k
Armadillo (Fig. 9) 80k 3k 6k × 6k

of the mask influence the quality of the result. Fig. 9

shows an example with layered patches, where borders

of the pattern introduce contrasting edges not found in

the input. This is an inherent problem from the lapped

texture method [13].

Furthermore, large patches will not follow the veloc-

ity field appropriately, and the texture will locally look

rigid. In that case, it is possible to observe seams, espe-

cially with more regular texture exemplars. Moreover,

large patches on high-curvature areas can introduce vis-

ible blurring artifacts and distortions caused by the or-

thogonal projection and the alpha falloff. Large patches

on high-curvature areas can also introduce visible pop-

ping artifacts since there could be texels without any

opaque color from the layered patches. This texel re-

quires a new patch that could create a popping artifact.

To avoid such a scenario, the patch size is important:

using smaller patches will fit the curved surface more

accurately.

6 Conclusion

We have presented an approach to texture the surface of

fluids that handles any kind of topological changes in-

cluding splashes. With the spatial and temporal coher-

ences ensured by the surface trackers and local frames,

we achieve patch advection with improved precision.

Moreover, the update of the tracker distribution is done

in the atlas process, thus ensuring that every polygon

of the surface is fully covered by texels, including the

polygons of splashes, and thin threads. Popping arti-

facts are avoided using the overlapping patches prin-

ciple: new patches appear underneath existing ones in

a natural way. Blurring artifacts are also avoided by

deleting only patches that are concealed, once identified

during the generation of the atlas. The approach works

well with rotational flows, thanks to the introduction

of the tangent tracker. Our texture projection is simple

and efficient, and it allows for a controllable amount of

distortion within the cross parametrization among the

texture exemplar, receiver polygons, and texture atlas.

Deriving a method using Poisson blending [12] to

hide seams in a temporally coherent manner is an in-

teresting direction for future work. Our approach prop-

agates patches in a spatially and temporally coherent

manner throughout the animation. It would be interest-

ing to propagate painting in the same manner by trans-

ferring surface or atlas texture edits to the patches rep-

resentation. It would also be interesting to rethink the

patch representation, replacing flat texture exemplars

with volumetric textures. This should avoid distortions

and provide a better pattern continuity, especially on

high curvature areas.

7 Acknowledgements

This work was funded by Mokko Studio, NSERC,

Prompt/CINQ, ÉTS, and FRQNT; We gratefully ac-

knowledge the involvement of Danny Bergeron, pres-

ident of Mokko Studio and the Mokko Studio R&D
team. We thank SideFX for providing HoudiniTM li-

cences, and Hippolyte Mounier, from Photosculpt, for

sharing some of the texture exemplars used in this

project.

References

1. Bargteil, A.W., Sin, F., Michaels, J.E., Goktekin, T.G.,
O’Brien, J.F.: A texture synthesis method for liq-
uid animations. In: Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion. ACM (2006)

2. Bojsen-Hansen, M., Li, H., Wojtan, C.: Tracking surfaces
with evolving topology. ACM Trans. Graph. 31(4), 53:1–
53:10 (2012)

3. Efros, A.A., Freeman, W.T.: Image quilting for texture
synthesis and transfer. In: Proceedings of SIGGRAPH
’00, Annual Conference Series, pp. 341–346. ACM (2001)

4. Efros, A.A., Leung, T.K.: Texture synthesis by non-
parametric sampling. In: Proceedings of the Intl. Conf. on
Computer Vision - Volume 2, ICCV ’99, pp. 1033–1038.
IEEE Computer Society (1999)



Dynamic Lapped Texture for Fluid Simulations 9

5. Jamrǐska, O., Fǐser, J., Asente, P., Lu, J., Shechtman,
E., Sýkora, D.: Lazyfluids: Appearance transfer for fluid
animations. ACM Trans. on Graph. 34(4) (2015)

6. Kwatra, V., Adalsteinsson, D., Kim, T., Kwatra, N.,
Carlson, M., Lin, M.: Texturing fluids. IEEE Trans. Visu-
alization and Computer Graphics 13(5), 939–952 (2007)

7. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture
optimization for example-based synthesis. ACM Trans.
Graph. 24, 795–802 (2005)

8. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.:
Graphcut textures: Image and video synthesis using
graph cuts. ACM Trans. Graph. 22(3), 277–286 (2003)

9. Mihalef, V., Metaxas, D., Sussman, M.: Textured liquids
based on the marker level set. Computer Graphics Forum
26(3), 457–466 (2007)

10. Narain, R., Kwatra, V., Lee, H.P., Kim, T., Carlson,
M., Lin, M.: Feature-guided dynamic texture synthesis
on continuous flows. In: EGSR ’07 (2007)

11. Neyret, F.: Advected textures. In: Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, pp. 147–153. Eurographics Association
(2003)

12. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing.
ACM Trans. Graph. 22(3), 313–318 (2003)

13. Praun, E., Finkelstein, A., Hoppe, H.: Lapped textures.
In: Proceedings of SIGGRAPH ’00, Annual Conference
Series, pp. 465–470 (2000)

14. Soler, C., Cani, M.P., Angelidis, A.: Hierarchical pattern
mapping. ACM Trans. Graph. 21(3), 673–680 (2002)

15. Turk, G.: Texture synthesis on surfaces. In: Proceedings
of SIGGRAPH ’01, Annual Conference Series, pp. 347–
354. ACM (2001)

16. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-
structured vector quantization. In: Proceedings of SIG-
GRAPH ’00, Annual Conference Series, pp. 479–488.
ACM (2000)

17. Wei, L.Y., Levoy, M.: Texture synthesis over arbitrary
manifold surfaces. In: Proceedings of SIGGRAPH ’01,
Annual Conference Series, pp. 355–360. ACM (2001)

18. Wu, Q., Yu, Y.: Feature matching and deformation for
texture synthesis. ACM Trans. Graph. 23(3), 364–367
(2004)

19. Yu, Q., Neyret, F., Bruneton, E., Holzschuch, N.: Scalable
real-time animation of rivers. Computer Graphics Forum
28(2), 239–248 (2009)

20. Yu, Q., Neyret, F., Bruneton, E., Holzschuch, N.: La-
grangian texture advection: Preserving both spectrum
and velocity field. IEEE Trans. Visualization and Com-
puter Graphics 17(11), 1612 –1623 (2011)

21. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM
Trans. Graph. 24(3), 965–972 (2005)

22. Zwicker, M., Pfister, H., van Baar, J., Gross, M.: Sur-
face splatting. In: Proceedings of SIGGRAPH 01, Annual
Conference Series, pp. 371–378 (2001)


